JPH0590400A - Semiconductor device with built-in high breakdown strength element - Google Patents

Semiconductor device with built-in high breakdown strength element

Info

Publication number
JPH0590400A
JPH0590400A JP3280799A JP28079991A JPH0590400A JP H0590400 A JPH0590400 A JP H0590400A JP 3280799 A JP3280799 A JP 3280799A JP 28079991 A JP28079991 A JP 28079991A JP H0590400 A JPH0590400 A JP H0590400A
Authority
JP
Japan
Prior art keywords
high breakdown
breakdown voltage
region
semiconductor device
breakdown strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280799A
Other languages
Japanese (ja)
Inventor
Toshiaki Komoto
敏明 弘本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP3280799A priority Critical patent/JPH0590400A/en
Publication of JPH0590400A publication Critical patent/JPH0590400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To miniaturize a semiconductor device containing a high breakdown strength element by reducing the rear of the element. CONSTITUTION:Double diffused regions formed of an N<+> type drain region and an N<-> type region of a high breakdown strength NMOS transistor is isolated by a groove 7c in which an insulator 8 is buried thereby to prevent lateral extension of the N<-> type region in an outward direction, thereby reducing the area of a high breakdown strength element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表示デバイス駆動装
置、各種モータ駆動装置、DC−DCコンバータ、スイ
ッチング電源用スイッチ装置等のように、高耐圧素子を
内蔵した半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a high breakdown voltage element such as a display device driving device, various motor driving devices, a DC-DC converter, a switching device for a switching power supply and the like.

【0002】[0002]

【従来の技術】近年、集積回路の電源は低電圧化の傾向
にあり、これに支えられてMOS集積回路の微細加工技
術は一段と進歩している。しかし、半導体装置内に高耐
圧素子を同時に作り込もうとすると、拡散層を浅くして
横拡がりを抑えながら微細化を進めるという上記の微細
加工技術の方向に逆らって、拡散層を深くしてPN接合
の電界緩和を図る必要がある。このような高耐圧素子を
実現する手法として、二重拡散法が知られている。
2. Description of the Related Art In recent years, the power supply of integrated circuits has tended to become lower in voltage, and the fine processing technology of MOS integrated circuits has been further advanced under this tendency. However, if a high breakdown voltage element is to be simultaneously fabricated in a semiconductor device, the diffusion layer should be made deeper in the opposite direction of the above-mentioned microfabrication technique of making the diffusion layer shallower and suppressing the lateral spread to promote miniaturization. It is necessary to reduce the electric field of the PN junction. A double diffusion method is known as a method for realizing such a high breakdown voltage element.

【0003】図3は、二重拡散法を用いて実現した高耐
圧NチャネルMOSトランジスタの構成を示した断面図
である。図中、符号1はP- 型のシリコン基板であり、
このシリコン基板1上にゲートG、ドレインD、ソース
SからなるMOSトランジスタが作り込まれている。高
電圧が印加されるドレイン領域は、N- 領域2aと、N
+ 領域2bとからなる二重拡散構造になっている。この
ような二重拡散構造によると、ドレイン−基板間は不純
物濃度勾配の緩いPN接合になるので、ドレインDに高
電圧が印加された際にPN接合部の空乏層が拡がり、こ
の部分に作用する電界が緩和され、耐圧を向上させるこ
とができる。
FIG. 3 is a sectional view showing a structure of a high breakdown voltage N-channel MOS transistor realized by using the double diffusion method. In the figure, reference numeral 1 is a P type silicon substrate,
A MOS transistor including a gate G, a drain D and a source S is built on the silicon substrate 1. The drain region to which a high voltage is applied is N region 2a and N region 2a.
It has a double diffusion structure composed of + region 2b. According to such a double diffusion structure, a PN junction having a gentle impurity concentration gradient is formed between the drain and the substrate, so that when a high voltage is applied to the drain D, the depletion layer of the PN junction portion expands and acts on this portion. The applied electric field is relaxed, and the breakdown voltage can be improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな構成を有する従来例の場合には、次のような問題が
ある。すなわち、従来例によれば、素子の高耐圧化を図
ろうとするほど、低濃度拡散層を広く、かつ深くしてP
N整合の濃度勾配を緩くする必要があるので、前記拡散
層の横方向の拡がりが大きくなり、高耐圧素子の占有面
積が大きくなるという問題点がある。
However, the conventional example having such a structure has the following problems. That is, according to the conventional example, as the breakdown voltage of the device is increased, the low-concentration diffusion layer is made wider and deeper and P
Since it is necessary to loosen the N matching concentration gradient, there is a problem that the lateral expansion of the diffusion layer becomes large and the occupation area of the high breakdown voltage element becomes large.

【0005】本発明は、このような事情に鑑みてなされ
たものであって、低耐圧素子のみならず、高耐圧素子の
占有面積も小さくすることができる高耐圧素子内蔵半導
体装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides a semiconductor device with a built-in high breakdown voltage element which can reduce the occupied area of the high breakdown voltage element as well as the low breakdown voltage element. It is an object.

【0006】[0006]

【課題を解決するための手段】本発明は、このような目
的を達成するために、次のような構成をとる。すなわ
ち、本発明は、電界緩和のための二重拡散構造を備えた
高耐圧素子を内蔵する半導体装置において、前記高耐圧
素子の二重拡散領域を、前記二重拡散領域の低不純物濃
度層よりも深く、かつ内部に絶縁体が埋め込まれた溝で
分離したものである。
The present invention has the following constitution in order to achieve such an object. That is, according to the present invention, in a semiconductor device including a high breakdown voltage element having a double diffusion structure for relaxing an electric field, a double diffusion region of the high breakdown voltage element is formed from a low impurity concentration layer of the double diffusion region. It is also deep and separated by a groove in which an insulator is embedded.

【0007】[0007]

【作用】本発明によれば、二重拡散構造の低不純物濃度
層によりPN接合部の濃度勾配が緩くなるので、電界の
集中が緩和されるとともに、前記低不純物濃度層を深く
することによる横拡がりは、絶縁物を埋め込んだ溝によ
って防止される。
According to the present invention, since the concentration gradient of the PN junction is made gentle by the low impurity concentration layer having the double diffusion structure, the concentration of the electric field is relieved and the lateral concentration by making the low impurity concentration layer deeper. Spreading is prevented by trenches with embedded insulation.

【0008】[0008]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は、本発明に係る高耐圧素子内蔵半導体装
置の一実施例の素子構造を示した断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an element structure of an embodiment of a semiconductor device with a high breakdown voltage element according to the present invention.

【0009】図1に示した半導体装置は、P- 型のシリ
コン基板1に、PMOSトランジスタ3およびNMOS
トランジスタ4とからなる低耐圧のC−MOSトランジ
スタ5と、高耐圧のNMOSトランジスタ6とを含み、
各素子はシリコン基板1に形成された溝7a〜7dによ
って絶縁分離されている。各溝内には、例えばシリコン
酸化膜のような絶縁体8が埋め込まれている。
The semiconductor device shown in FIG. 1 includes a PMOS transistor 3 and an NMOS on a P - type silicon substrate 1.
A low breakdown voltage C-MOS transistor 5 including a transistor 4 and a high breakdown voltage NMOS transistor 6;
Each element is insulated and separated by the grooves 7a to 7d formed in the silicon substrate 1. An insulator 8 such as a silicon oxide film is embedded in each groove.

【0010】PMOSトランジスタ3において、9はN
- ウエル領域、10はポリシリコンゲート、11および
12はP+ 領域からなるドレインおよびソース領域であ
る。ここで、溝7a,7bは、N- ウエル領域9の横拡
がりを防止して、素子の微細化を図る役目を担ってい
る。
In the PMOS transistor 3, 9 is N
- well region 10 is polysilicon gates, 11 and 12 are drain and source regions composed of P + regions. Here, the trenches 7a and 7b have a role of preventing lateral expansion of the N well region 9 and achieving miniaturization of the element.

【0011】NMOSトランジスタ4において、13は
ポリシリコンゲート、14および15はN+ 領域からな
るドレインおよびソース領域である。
In the NMOS transistor 4, 13 is a polysilicon gate, and 14 and 15 are drain and source regions formed of N + regions.

【0012】高耐圧のNMOSトランジスタ6におい
て、16はポリシリコンゲート、17および18はN+
領域からなるドレインおよびソース領域である。また、
19は、ドレイン領域17とシリコン基板1間のPN接
合に濃度勾配を持たせて高耐圧化を図るために設けられ
た低濃度領域であるN-領域である。ここで、溝7c
は、N- 領域19の横拡がりを防止し、溝7dはソース
領域18の横拡がりを防止している。なお、NMOSト
ランジスタ6の寸法を可能な限り小さくするために、溝
7dでソース領域18の横拡がりを防止しているが、ソ
ース領域18の横拡がりは僅かであるので、必ずしも溝
7dを設ける必要はない。
In the high breakdown voltage NMOS transistor 6, 16 is a polysilicon gate and 17 and 18 are N +.
The drain and source regions are regions. Also,
Reference numeral 19 denotes an N region which is a low concentration region provided for increasing the breakdown voltage by giving a concentration gradient to the PN junction between the drain region 17 and the silicon substrate 1. Here, the groove 7c
Prevent lateral expansion of the N region 19, and the groove 7d prevents lateral spread of the source region 18. In order to make the size of the NMOS transistor 6 as small as possible, the lateral extension of the source region 18 is prevented by the groove 7d. However, the lateral extension of the source region 18 is slight, so the groove 7d is not necessarily provided. There is no.

【0013】上述のように、NMOSトランジスタ6の
ドレイン領域は、従来例で説明したような二重拡散構造
になっているので、電界集中が緩和され、高耐圧化され
ている。しかも、溝7cによって、N- 領域19の外方
向への横拡がりが防止されているで、従来の高耐圧素子
よりも素子面積を小さくすることができる。
As described above, since the drain region of the NMOS transistor 6 has the double diffusion structure as described in the conventional example, the electric field concentration is relaxed and the breakdown voltage is increased. Moreover, since the groove 7c prevents lateral expansion of the N region 19 in the outward direction, the element area can be made smaller than that of the conventional high breakdown voltage element.

【0014】図1に示した半導体装置は以下のように製
造される。まず、シリコン基板1に、反応性イオンエッ
チング(RIE)等の異方性エッチングを施すことによ
り、素分離用の溝7a〜7dを形成する。各溝7a〜7
dの深さは、少なくともN- 領域9,19よりも深く設
定する必要があるが、通常、1〜数μmの範囲である。
次に、CVD(Chemical Vapor Deposition)法によりシ
リンコ酸化膜等の絶縁体8を積層した後、エッチバック
を施すことにより、溝7a〜7d内に絶縁体8を埋め込
む。PMOSトランジスタ3の領域にN- ウエル領域9
を形成するとともに、NMOSトランジスタ6のドレイ
ン領域にN- 領域19を形成する。次に、ゲート酸化膜
を介して各トランジスタのポリシリコンゲート10,1
3,16を形成し、これらのゲートをマスクとしてドレ
イン領域11,14,17およびソース領域12,1
5,18を自己整合により形成する。以上のようにし
て、図1に示した素子が製造される。
The semiconductor device shown in FIG. 1 is manufactured as follows. First, the silicon substrate 1 is subjected to anisotropic etching such as reactive ion etching (RIE) to form the grooves 7a to 7d for element separation. Each groove 7a-7
The depth of d must be set at least deeper than the N regions 9 and 19, but is usually in the range of 1 to several μm.
Next, after the insulator 8 such as a silico oxide film is laminated by the CVD (Chemical Vapor Deposition) method, the insulator 8 is buried in the trenches 7a to 7d by etching back. The N - well region 9 is formed in the region of the PMOS transistor 3.
And the N region 19 is formed in the drain region of the NMOS transistor 6. Next, through the gate oxide film, the polysilicon gates 10 and 1 of each transistor are formed.
3, 16 are formed, and the drain regions 11, 14, 17 and the source regions 12, 1 are formed by using these gates as a mask.
5, 18 are formed by self-alignment. As described above, the device shown in FIG. 1 is manufactured.

【0015】なお、前記実施例では、P- 型のシリコン
基板1に高耐圧のNMOSトランジスタ6を形成する場
合を例に採って説明したが、本発明はN- 型のシリコン
基板に高耐圧のPMOSトランジスタを形成する場合に
も適用することができる。
In the above embodiment, the case where the high breakdown voltage NMOS transistor 6 is formed on the P type silicon substrate 1 has been described as an example, but the present invention is applied to the N type silicon substrate. It can also be applied when forming a PMOS transistor.

【0016】また、本発明は高耐圧のMOSトランジス
タに適用できるだけでなく、例えば高耐圧のダイオード
等にも適用することができる。図2は、本発明を高耐圧
ダイオードに適用した例を示している。すなわち、P-
型のシリコン基板1に、絶縁体8が埋め込まれた溝7
e,7fを形成して、素子領域を分離する。そして、こ
の素子領域内に電界集中を緩和するためのN- 領域20
を形成し、さらに、その上にN+ 領域21を形成してい
る。なお、図中、符号Aはアノード電極、Kはカソード
電極である。本実施例によっても、溝7e,7fによっ
てN- 拡散層20の横拡がりが防止されるので、素子面
積の小さな高耐圧ダイオードを実現することができる。
The present invention can be applied not only to high breakdown voltage MOS transistors, but also to high breakdown voltage diodes, for example. FIG. 2 shows an example in which the present invention is applied to a high breakdown voltage diode. That is, P
Groove 7 in which an insulator 8 is embedded in a silicon substrate 1 of a mold
e and 7f are formed to separate the element regions. Then, an N region 20 for relaxing electric field concentration in this element region
And an N + region 21 is further formed thereon. In the figure, reference symbol A is an anode electrode and K is a cathode electrode. Also in this embodiment, since the lateral expansion of the N diffusion layer 20 is prevented by the grooves 7e and 7f, it is possible to realize a high breakdown voltage diode having a small element area.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、高耐圧素子の二重拡散領域を、前記二重拡散
領域の低不純物濃度層よりも深く、かつ内部に絶縁体が
埋め込まれた溝で分離したので、前記低不純物濃度層の
横拡がりが防止され、素子間寸法を小さくする設定する
ことができ、高耐圧素子を内蔵する半導体装置の微細化
を図ることができる。
As is apparent from the above description, according to the present invention, the double diffusion region of the high breakdown voltage element is deeper than the low impurity concentration layer of the double diffusion region, and the insulator is provided inside. Since the trenches are separated by the buried trench, lateral expansion of the low impurity concentration layer can be prevented, a dimension between elements can be set small, and a semiconductor device having a high breakdown voltage element can be miniaturized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高耐圧素子内蔵半導体装置の一実
施例の素子構造を示した断面図である。
FIG. 1 is a sectional view showing an element structure of an example of a semiconductor device with a built-in high breakdown voltage element according to the present invention.

【図2】本発明の別実施例に係る高耐圧ダイオードの素
子構造を示した断面図である。
FIG. 2 is a cross-sectional view showing an element structure of a high breakdown voltage diode according to another embodiment of the present invention.

【図3】従来例に係る高耐圧素子の構造を示した断面図
である。
FIG. 3 is a cross-sectional view showing a structure of a high breakdown voltage element according to a conventional example.

【符号の説明】[Explanation of symbols]

1…シリコン基板 3…PMOSトランジスタ 4…NMOSトランジスタ 5…C−MOSトランジスタ 6…高耐圧NMOSトランジスタ 7a〜7f…溝 8…絶縁体 9…N- ウエル領域 10,13,16…ポリシリコンゲート 11,14,17…ドレイン領域 12,15,18…ソース領域 19,20…N- 領域DESCRIPTION OF SYMBOLS 1 ... Silicon substrate 3 ... PMOS transistor 4 ... NMOS transistor 5 ... C-MOS transistor 6 ... High breakdown voltage NMOS transistor 7a-7f ... Groove 8 ... Insulator 9 ... N - well region 10, 13, 16 ... Polysilicon gate 11, 14, 17 ... Drain region 12, 15, 18 ... Source region 19, 20 ... N - region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電界緩和のための二重拡散構造を備えた
高耐圧素子を内蔵する半導体装置において、 前記高耐圧素子の二重拡散領域を、前記二重拡散領域の
低不純物濃度層よりも深く、かつ内部に絶縁体が埋め込
まれた溝で分離したことを特徴とする高耐圧素子内蔵半
導体装置。
1. A semiconductor device incorporating a high breakdown voltage element having a double diffusion structure for relaxing an electric field, wherein a double diffusion region of the high breakdown voltage element is formed more than a low impurity concentration layer of the double diffusion region. A semiconductor device with a built-in high breakdown voltage element, characterized in that it is deeply separated by a groove in which an insulator is embedded.
JP3280799A 1991-09-30 1991-09-30 Semiconductor device with built-in high breakdown strength element Pending JPH0590400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280799A JPH0590400A (en) 1991-09-30 1991-09-30 Semiconductor device with built-in high breakdown strength element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280799A JPH0590400A (en) 1991-09-30 1991-09-30 Semiconductor device with built-in high breakdown strength element

Publications (1)

Publication Number Publication Date
JPH0590400A true JPH0590400A (en) 1993-04-09

Family

ID=17630137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280799A Pending JPH0590400A (en) 1991-09-30 1991-09-30 Semiconductor device with built-in high breakdown strength element

Country Status (1)

Country Link
JP (1) JPH0590400A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552390B2 (en) * 2001-06-20 2003-04-22 Kabushiki Kaisha Toshiba Semiconductor device
JP2007173833A (en) * 2005-12-21 2007-07-05 Samsung Electronics Co Ltd Asymmetric semiconductor device and its manufacture method
JP2008263073A (en) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp Semiconductor device
US8735238B2 (en) 2005-12-21 2014-05-27 Samsung Electronics Co., Ltd. Method of fabricating a semiconductor device including high voltage and low voltage MOS devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552390B2 (en) * 2001-06-20 2003-04-22 Kabushiki Kaisha Toshiba Semiconductor device
JP2007173833A (en) * 2005-12-21 2007-07-05 Samsung Electronics Co Ltd Asymmetric semiconductor device and its manufacture method
US8735238B2 (en) 2005-12-21 2014-05-27 Samsung Electronics Co., Ltd. Method of fabricating a semiconductor device including high voltage and low voltage MOS devices
JP2008263073A (en) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP2689606B2 (en) Method for manufacturing insulated gate field effect transistor
US6855581B2 (en) Method for fabricating a high-voltage high-power integrated circuit device
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6313508B1 (en) Semiconductor device of high-voltage CMOS structure and method of fabricating same
US6787849B2 (en) Semiconductor devices and methods of manufacturing the same
US5191401A (en) MOS transistor with high breakdown voltage
US6194772B1 (en) High-voltage semiconductor device with trench structure
JPS62229976A (en) Semiconductor device and manufacture thereof
US6307224B1 (en) Double diffused mosfet
JP2005136150A (en) Semiconductor device and its manufacturing method
US20010035553A1 (en) Semiconductor device and method of manufacturing thereof
JP2845493B2 (en) Semiconductor device
JPH09129868A (en) Semiconductor device and its manufacture
US6784059B1 (en) Semiconductor device and method of manufacturing thereof
JPH0590400A (en) Semiconductor device with built-in high breakdown strength element
EP0981163A1 (en) Semiconductor power device with insulated circuit and process for its manufacture
JP3340361B2 (en) Semiconductor device and manufacturing method thereof
US6140193A (en) Method for forming a high-voltage semiconductor device with trench structure
JPH10163338A (en) Semiconductor device and its manufacturing method
KR20030009766A (en) BCD device and method of manufacturing the same
JP2940308B2 (en) Semiconductor device and manufacturing method thereof
JP2003249650A (en) Semiconductor device and manufacturing method therefor
JP3191285B2 (en) Semiconductor device and manufacturing method thereof
JPS5944784B2 (en) Complementary MOS semiconductor device
JPH067596B2 (en) Method for manufacturing semiconductor device