JPH0590398A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0590398A
JPH0590398A JP24995491A JP24995491A JPH0590398A JP H0590398 A JPH0590398 A JP H0590398A JP 24995491 A JP24995491 A JP 24995491A JP 24995491 A JP24995491 A JP 24995491A JP H0590398 A JPH0590398 A JP H0590398A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
semiconductor device
substrate
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24995491A
Other languages
Japanese (ja)
Inventor
Hideyuki Obara
秀雪 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP24995491A priority Critical patent/JPH0590398A/en
Publication of JPH0590398A publication Critical patent/JPH0590398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a semiconductor device in which a current amplification factor of a parasitic element is reduced by introducing a crystal defect controlled to an element isolation layer. CONSTITUTION:A method for manufacturing a semiconductor device comprises the steps of forming a reverse conductivity type epitaxial layer 2 on a predetermined region on one conductivity type semiconductor substrate 1, ion implanting either conductivity type impurity to a predetermined position of the layer 2, and forming a reverse conductivity type layer to that of the layer 2 in a depth reaching the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体装置の製造方法
に関し,更に詳しくは集積回路の内部に発生する寄生素
子の影響を極小にし,異常回路動作(ラッチアップ)の
防止をはかった製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device in which an influence of a parasitic element generated inside an integrated circuit is minimized to prevent abnormal circuit operation (latch-up). Regarding

【0002】[0002]

【従来の技術】一般に集積回路の素子分離としては分離
すべき箇所に対して逆導電形の不純物を埋め込んでp−
n分離を行っている。図2(a)〜(c)は従来の素子
分離方法の一例を示す概略工程断面図である。はじめに
(a)図において,p形基板1の表面にエピタキシャル
成長により数μmの厚さにn形層2が形成されている。
そしてこのn形層2の上にSiO2 等で絶縁膜3を形成
し,分離すべき箇所のパタ―ニングを行って凹部4を形
成しエピタキシャル層2を露出させる。次に(b)図に
おいて,凹部4を含む基板全面にB(ボロン)を混入し
た拡散塗布材5を塗布する。次に(c)図においてp層
(ボロン)が基板1まで達するドライブインの熱拡散を
行なう。この後拡散塗布剤及び絶縁膜3を除去する。上
記の工程によれば,絶縁膜3で覆われていた部分はn形
のままであり,熱拡散を行った部分は素子分離層(p+
形)となるのでn形部分を分離することができる。
2. Description of the Related Art Generally, as element isolation of an integrated circuit, a p-type is formed by embedding a reverse conductivity type impurity in a portion to be isolated.
n separation is performed. 2A to 2C are schematic process sectional views showing an example of a conventional element isolation method. First, in FIG. 1A, an n-type layer 2 having a thickness of several μm is formed on the surface of a p-type substrate 1 by epitaxial growth.
Then, an insulating film 3 made of SiO 2 or the like is formed on the n-type layer 2, and a portion to be separated is patterned to form a concave portion 4 to expose the epitaxial layer 2. Next, in FIG. 2B, a diffusion coating material 5 containing B (boron) is applied to the entire surface of the substrate including the recess 4. Next, in FIG. 3C, thermal diffusion of drive-in in which the p layer (boron) reaches the substrate 1 is performed. After that, the diffusion coating agent and the insulating film 3 are removed. According to the above process, the portion covered with the insulating film 3 remains the n-type, and the portion subjected to the thermal diffusion is the element isolation layer (p +
Therefore, the n-type portion can be separated.

【0003】[0003]

【発明が解決しようとする課題】近年材料の精製技術が
向上し,拡散により形成される分離層6内のp+ 層は欠
陥の少ないものとなる。そのため基板1内には図2に示
すように寄生素子7としてのnpn接合が形成されるこ
とになり,基板1(p)の不純物濃度,エピタキシャル
層2(n)の不純物濃度またはそれらの結晶性により寄
生素子7の電流増幅率αが変化する。例えばこのαは素
子分離層6の結晶欠陥が少なくなると増加する。本発明
は素子分離層6に制御された結晶欠陥を導入し,寄生素
子の電流増幅率αを小さくすることを目的とする。
In recent years, the technology for refining materials has improved, and the p + layer in the separation layer 6 formed by diffusion has few defects. Therefore, the npn junction as the parasitic element 7 is formed in the substrate 1 as shown in FIG. 2, and the impurity concentration of the substrate 1 (p), the impurity concentration of the epitaxial layer 2 (n) or their crystallinity is obtained. As a result, the current amplification factor α of the parasitic element 7 changes. For example, this α increases as the number of crystal defects in the element isolation layer 6 decreases. An object of the present invention is to introduce a controlled crystal defect into the element isolation layer 6 to reduce the current amplification factor α of the parasitic element.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する為に
本発明は,一導電形の半導体基板上の所定領域に逆導電
形のエピタキシャル層を形成する工程と,該エピタキシ
ャル層の所定の箇所に前記いずれかの導電形の不純物を
イオン注入する工程と,前記エピタキシャル層とは逆導
電形の層を前記基板に達する深さに形成する工程,を含
むことを特徴とするものである。
In order to solve the above problems, the present invention provides a step of forming an epitaxial layer of opposite conductivity type in a predetermined region on a semiconductor substrate of one conductivity type, and a predetermined portion of the epitaxial layer. And a step of forming a layer having a conductivity type opposite to that of the epitaxial layer to a depth reaching the substrate.

【0005】[0005]

【作用】イオン注入により注入された不純物はにエピタ
キシャル層に欠陥を生じさせる。この欠陥はその後に塗
布剤を熱拡散させる工程で素子分離層全体に拡がり,寄
生素子が形成されるのを抑制する。
The impurity implanted by the ion implantation causes defects in the epitaxial layer. This defect spreads over the entire element isolation layer in the subsequent step of thermally diffusing the coating material and suppresses the formation of a parasitic element.

【0006】[0006]

【実施例】図1(a)〜(e)は本発明の一実施例を示
す概略工程断面図である。工程に従って説明する。 工程1(図a参照) 比抵抗10〜20Ω/cm,厚さ500μm程度のp形
Si基板1の表面に,比抵抗1〜5/cm,厚さ15μ
m程度のエピタキシャル層2を成長させ,そのエピタキ
シャル層2の上にSiO2 膜3を0.7μm程度の厚さ
に形成し,そのSiO2 膜3をパタ―ニングして凹部を
4形成し,分離層を形成すべきエピタキシャル層2を露
出させる(ここまでは従来と同様である)。 工程2(図b参照) SiO2 膜2をイオン注入のマスクとして1015〜10
16/cm3 程度の濃度のボロン(B)を40〜90ke
Vで注入する。このイオン注入によりエピタキシャル層
2に欠陥が生じる。 工程3(図c参照) 次にスピンコ―トによりBが含まれた拡散塗布剤5を
0.7〜2μm程度塗布し,酸素に窒素を混入させた9
00〜2000℃のガス雰囲気中で1〜2時間予備拡散
(プリデポジション)を行う。 工程4(図d参照) 次に1100〜1200℃の酸素雰囲気中で本拡散(ド
ライブイン)を行って素子分離層6aを形成する。上記
の工程によればドライブイン拡散中に分離層全体に欠陥
が拡がることになる。この様に分離層に欠陥を有してい
るので寄生素子7が形成されることのない半導体素子を
得ることができる。なお,分離層中の欠陥の度合はイオ
ン注入の際の速度や濃度,ドライブインの温度等を考慮
することにより制御可能である。また,本実施例におい
ては,基板をp形としn形のエピタキシャル層を形成し
たが,n形の基板にp形のエピタキシャル層を形成しp
またはn形のイオンを注入するようにしても良い。
1 (a) to 1 (e) are schematic process sectional views showing an embodiment of the present invention. It demonstrates according to a process. Step 1 (see FIG. A) A specific resistance of 1 to 5 / cm and a thickness of 15 μ are formed on the surface of a p-type Si substrate 1 having a specific resistance of 10 to 20 Ω / cm and a thickness of about 500 μm.
m of the epitaxial layer 2 is grown, a SiO 2 film 3 is formed on the epitaxial layer 2 to a thickness of about 0.7 μm, and the SiO 2 film 3 is patterned to form 4 recesses, The epitaxial layer 2 on which the separation layer is to be formed is exposed (up to this point, it is the same as the conventional one). Step 2 (see FIG. B) 10 15 to 10 Using the SiO 2 film 2 as a mask for ion implantation
Boron (B) having a concentration of about 16 / cm 3 is 40 to 90 ke
Inject with V. This ion implantation causes defects in the epitaxial layer 2. Step 3 (see FIG. C) Next, a diffusion coating agent 5 containing B was applied by a spin coat to about 0.7 to 2 μm, and nitrogen was mixed with oxygen 9
Pre-diffusion (pre-deposition) is performed in a gas atmosphere of 00 to 2000 ° C. for 1 to 2 hours. Step 4 (see FIG. D) Next, main diffusion (drive-in) is performed in an oxygen atmosphere at 1100 to 1200 ° C. to form the element isolation layer 6a. The process described above will cause defects to propagate throughout the isolation layer during drive-in diffusion. Since the isolation layer has a defect in this manner, it is possible to obtain a semiconductor element in which the parasitic element 7 is not formed. The degree of defects in the separation layer can be controlled by considering the speed and concentration during ion implantation, the drive-in temperature, and the like. Further, in the present embodiment, the substrate is a p-type and the n-type epitaxial layer is formed. However, when the p-type epitaxial layer is formed on the n-type substrate, the p-type epitaxial layer is formed.
Alternatively, n-type ions may be implanted.

【発明の効果】以上実施例とともに具体的に説明した様
に,本発明の半導体製造方法によれば素子分離層に意図
的に欠陥を生じさせ,かつ,その欠陥の度合を制御する
ことが可能なので,寄生素子が形成されることのない半
導体素子を得ることができ,集積回路の動作異常即ち,
出力が電源にラッチアップされる現象を防止することが
できる。
As described above in detail with reference to the embodiments, according to the semiconductor manufacturing method of the present invention, it is possible to intentionally cause a defect in the element isolation layer and control the degree of the defect. Therefore, it is possible to obtain a semiconductor element in which a parasitic element is not formed, and an abnormal operation of the integrated circuit, that is,
It is possible to prevent the phenomenon that the output is latched up by the power supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(e)は本発明の半導体装置の製造方
法の概略製作工程を示す断面図である。
1A to 1E are cross-sectional views showing a schematic manufacturing process of a method for manufacturing a semiconductor device of the present invention.

【図2】(a)〜(c)は従来の半導体装置の製造方法
の概略製作工程を示す断面図である。
2A to 2C are cross-sectional views showing a schematic manufacturing process of a conventional method for manufacturing a semiconductor device.

【図3】寄生素子の状態を示す図である。FIG. 3 is a diagram showing a state of a parasitic element.

【符号の説明】[Explanation of symbols]

1 基板 2 エピタキシャル層 3 絶縁膜 4 凹部 5 拡散塗布剤 6,6a 素子分離層 7 寄生素子 1 Substrate 2 Epitaxial Layer 3 Insulating Film 4 Recess 5 Diffusion Coating Agent 6, 6a Element Separation Layer 7 Parasitic Element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電形の半導体基板上の所定領域に逆
導電形のエピタキシャル層を形成する工程と,該エピタ
キシャル層の所定の箇所に前記いずれかの導電形の不純
物をイオン注入する工程と,前記エピタキシャル層とは
逆導電形の層を前記基板に達する深さに形成する工程,
を含むことを特徴とする半導体装置の製造方法。
1. A step of forming an epitaxial layer of an opposite conductivity type in a predetermined region on a semiconductor substrate of one conductivity type, and a step of ion-implanting an impurity of either conductivity type into a predetermined portion of the epitaxial layer. Forming a layer having a conductivity type opposite to that of the epitaxial layer to reach the substrate,
A method of manufacturing a semiconductor device, comprising:
JP24995491A 1991-09-30 1991-09-30 Manufacture of semiconductor device Pending JPH0590398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24995491A JPH0590398A (en) 1991-09-30 1991-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24995491A JPH0590398A (en) 1991-09-30 1991-09-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0590398A true JPH0590398A (en) 1993-04-09

Family

ID=17200659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24995491A Pending JPH0590398A (en) 1991-09-30 1991-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0590398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100299612B1 (en) * 1998-12-12 2001-11-30 김영환 Device isolation method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100299612B1 (en) * 1998-12-12 2001-11-30 김영환 Device isolation method of semiconductor device

Similar Documents

Publication Publication Date Title
US4505759A (en) Method for making a conductive silicon substrate by heat treatment of oxygenated and lightly doped silicon single crystals
EP0090940B1 (en) Method of forming emitter and intrinsic base regions of a bipolar transistor
JPH0473619B2 (en)
US4485552A (en) Complementary transistor structure and method for manufacture
JPS5917243A (en) Manufacture of semiconductor device
JPH0590398A (en) Manufacture of semiconductor device
JP2001093985A (en) Silicon carbide semiconductor device and its manufacturing method
JPH04155829A (en) Manufacture of semiconductor device
KR960015929B1 (en) Method for manufacturing bipolar transistor
RU845678C (en) Method of manufacturing hf p- &&& -p transistors
JPH0214516A (en) Manufacture of semiconductor device
JPH0783116B2 (en) Method for manufacturing semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPS5927524A (en) Fabrication of semiconductor device
JPH0563228A (en) Manufacture of phototransistor
JPH05121345A (en) Manufacture of semiconductor device
JPH10189470A (en) Fabrication of semiconductor device
JPH0684926A (en) Bipolar transistor and its production
JPH0244732A (en) Manufacture of semiconductor device
JPH04264754A (en) Manufacture of integrated circuit
JPH04180234A (en) Manufacture of semiconductor device
JPS63306659A (en) Semiconductor device and manufacture thereof
JPS61129824A (en) Manufacture of semiconductor device
JPH01283821A (en) Manufacture of semiconductor device