JPH0590378A - Impurity analyzing method - Google Patents

Impurity analyzing method

Info

Publication number
JPH0590378A
JPH0590378A JP24960291A JP24960291A JPH0590378A JP H0590378 A JPH0590378 A JP H0590378A JP 24960291 A JP24960291 A JP 24960291A JP 24960291 A JP24960291 A JP 24960291A JP H0590378 A JPH0590378 A JP H0590378A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
analyzed
impurities
etching
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24960291A
Other languages
Japanese (ja)
Other versions
JP2973638B2 (en
Inventor
Kaori Watanabe
かおり 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3249602A priority Critical patent/JP2973638B2/en
Publication of JPH0590378A publication Critical patent/JPH0590378A/en
Application granted granted Critical
Publication of JP2973638B2 publication Critical patent/JP2973638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To extremely accurately perform a microanalysis of impurities of a semiconductor substrate and a thin film on the substrate. CONSTITUTION:The surface of an object such as a semiconductor substrate 1 is etched with plasma gas, and an etching residue 2 is obtained on the surface to be etched. Then, the residue 2 is decomposed with fluoric acid vapor to obtain decomposed matter 3. Further, recovery liquid 4 in which the matter 3 is recovered with recovery liquid is obtained, and analyzed by using a high sensitivity analyzer 5. Thus, the semiconductor substrate itself, a polysilicon film and a thick nitride film which were heretofore difficult to be analyzed, can be analyzed. Particularly, surface contaminant metal impurities are detected and can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基板および半導体
基板上薄膜などの物体の不純物の分析方法に利用され、
特に、物体の表面をプラズマ化したガスでエッチング
し、そのエッチング残渣を分析するように改良した不純
物の分析方法に関する。
The present invention is used in a method for analyzing impurities in an object such as a semiconductor substrate and a thin film on a semiconductor substrate,
In particular, the present invention relates to an impurity analysis method improved so that the surface of an object is etched with a gas that has been turned into plasma and the etching residue is analyzed.

【0002】[0002]

【従来の技術】電子工業分野ではデバイスの微細化に伴
い、材料やプロセス起因の金属不純物によるウェーハ汚
染(金属汚染)が、リーク電流増大、接合耐圧や酸化膜
耐圧の劣化の原因として問題になっている。デバイスの
高信頼性化を図り、生産歩留りを向上させるためには、
材料高純度化、プロセス汚染低減により金属汚染を低減
しなければならない。今後は、1010原子/cm2 以下
のレベルまで汚染を低減させなければならないと言われ
ている。金属汚染を低減するに当たって、半導体基板中
の金属不純物を109 原子/cm2 以下の濃度レベルま
で定量的に把握することが不可欠である。
2. Description of the Related Art In the electronic industry, as devices are miniaturized, wafer contamination (metal contamination) due to metal impurities caused by materials and processes becomes a problem as a cause of increased leak current and deterioration of junction breakdown voltage and oxide film breakdown voltage. ing. To improve device reliability and improve production yield,
Metal contamination must be reduced by improving the purity of materials and reducing process contamination. It is said that pollution must be reduced to a level of 10 10 atoms / cm 2 or less in the future. In reducing metal contamination, it is essential to quantitatively grasp metal impurities in a semiconductor substrate up to a concentration level of 10 9 atoms / cm 2 or less.

【0003】また、基板上につけた薄膜の特性を利用す
る技術が急速に進んでおり、基板上にポリシリコン膜お
よび窒化膜などの薄膜が形成され、利用されている。半
導体の超高集積化に伴って、これらの薄膜の高品質化が
要求され、NaおよびFeなどの金属不純物についても
濃度の低減化が要求されている。金属不純物の濃度低減
を図るにあたっては、薄膜中のこれらの不純物の濃度測
定が不可欠となっている。
Further, a technique utilizing the characteristics of a thin film formed on a substrate is rapidly advancing, and thin films such as a polysilicon film and a nitride film are formed on the substrate and used. Along with the ultra-high integration of semiconductors, higher quality of these thin films is required, and reduction of the concentration of metal impurities such as Na and Fe is also required. In order to reduce the concentration of metal impurities, it is essential to measure the concentration of these impurities in the thin film.

【0004】半導体基板および半導体基板上薄膜の不純
物の分析方法として、2次イオン質量分析法(以下、S
IMS法という。)や全反射蛍光X線分析法(以下、T
R−XRF法という。)が用いられていた。また、半導
体基板および半導体基板上薄膜に弗酸蒸気を吹きつけて
分解し、分解物を回収液で回収して、フレームレス原子
吸光分析法などの高感度分析法(以下、弗酸蒸気分解−
原子吸光分析法という。)で分析する方法が用いられて
いた。この場合、弗酸蒸気分解−原子吸光分析法の前処
理は行っていなかった。
As a method for analyzing impurities in a semiconductor substrate and a thin film on the semiconductor substrate, secondary ion mass spectrometry (hereinafter referred to as S
This is called the IMS method. ) And total reflection X-ray fluorescence analysis (hereinafter, T
This is called the R-XRF method. ) Was used. Further, the semiconductor substrate and the thin film on the semiconductor substrate are sprayed with hydrofluoric acid for decomposition, and the decomposed product is recovered by a recovery liquid, and a highly sensitive analysis method such as flameless atomic absorption spectrometry (hereinafter, hydrofluoric acid vapor decomposition-
This is called atomic absorption spectrometry. ) Was used. In this case, the hydrofluoric acid vapor decomposition-atomic absorption spectrometry was not pretreated.

【0005】[0005]

【発明が解決しようとする課題】前述した従来の不純物
の分析方法のうち、SIMS法は元素によっては感度が
不足し、かつ定量分析が難しい欠点があった。また、T
R−XRF法も感度が不足する欠点があった。
Among the above-mentioned conventional impurity analysis methods, the SIMS method has a drawback that sensitivity is insufficient depending on the element and quantitative analysis is difficult. Also, T
The R-XRF method also has the drawback of lacking sensitivity.

【0006】一方、弗酸蒸気分解−原子吸光分析法は、
極めて定量的であり、感度も元素によっては108 原子
/cm2 レベルまで検出されるため、金属汚染低減に効
果を上げている。しかしこの従来の弗酸蒸気分解−原子
吸光分析法は、特別な前処理を行わないため、弗酸蒸気
で分解できる自然酸化膜、熱酸化膜、膜厚の薄い(〜4
00Å)窒化膜、およびガラス膜中の不純物しか分析す
ることができず、半導体基板自体、ポリシリコン膜およ
び膜厚の厚い窒化膜の分析はできない欠点があった。
On the other hand, the hydrofluoric acid vapor decomposition-atomic absorption spectrometry method is
It is extremely quantitative, and the sensitivity is detected up to the level of 10 8 atoms / cm 2 depending on the element, which is effective in reducing metal contamination. However, this conventional hydrofluoric acid vapor decomposition-atomic absorption spectrometry does not require any special pretreatment, so that it can be decomposed with hydrofluoric acid vapor, a natural oxide film, a thermal oxide film, and a thin film (~ 4
00Å) Only the impurities in the nitride film and the glass film can be analyzed, and the semiconductor substrate itself, the polysilicon film, and the thick nitride film cannot be analyzed.

【0007】本発明の目的は、前記の欠点を除去するこ
とにより、特に、半導体基板および半導体基板上薄膜の
不純物について超微量分析可能な不純物の分析方法を提
供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, and in particular, to provide an impurity analysis method which enables ultra trace analysis of impurities in a semiconductor substrate and a thin film on a semiconductor substrate.

【0008】[0008]

【課題を解決するための手段】本発明は、半導体基板お
よび半導体基板上薄膜などの物体の不純物の分析方法に
おいて、前記物体の表面をプラズマ化したガスでエッチ
ングし、そのエッチング残渣を分析することを特徴とす
る。
According to the present invention, in a method of analyzing impurities in an object such as a semiconductor substrate and a thin film on a semiconductor substrate, the surface of the object is etched with a gas that is made into plasma, and the etching residue is analyzed. Is characterized by.

【0009】また、本発明は、前記エッチング残渣の分
析方法は、当該エッチング残渣を弗酸蒸気で分解し、そ
の分解物を回収液で回収し、当該回収液中の不純物を高
感度分析装置で分析する方法であることができる。
Further, the present invention provides the method for analyzing an etching residue, wherein the etching residue is decomposed with hydrofluoric acid vapor, the decomposed product is recovered with a recovery liquid, and impurities in the recovery liquid are analyzed with a high-sensitivity analyzer. It can be a method of analysis.

【0010】[0010]

【作用】半導体基板および半導体基板上薄膜の表面をプ
ラズマ化したガスでエッチングすると、表面不純物はす
べてエッチング残渣となって取り除かれる。そこで、こ
のエッチング残渣を分析することにより、目的とする不
純物の微量分析を高い精度で行うことが可能となる。
When the surfaces of the semiconductor substrate and the thin film on the semiconductor substrate are etched with a gas that is made into plasma, all surface impurities are removed as etching residues. Therefore, by analyzing this etching residue, it becomes possible to carry out the trace analysis of the target impurities with high accuracy.

【0011】なお、このエッチング残渣の分析は、対象
物体上のエッチング残渣を弗酸蒸気で分解し、回収液で
回収し、回収液中の不純物成分を高感度分析装置に分析
することで行うことができる。
The etching residue is analyzed by decomposing the etching residue on the object with hydrofluoric acid vapor, recovering it with a recovery liquid, and analyzing the impurity components in the recovery liquid with a high-sensitivity analyzer. You can

【0012】[0012]

【実施例】以下、本発明の実施例について図面および表
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings and tables.

【0013】図1は本発明の不純物の分析方法の一例を
説明するためのフローチャート、および、図2はそのエ
ッチング装置の一例の要部を示す模式的断面図である。
FIG. 1 is a flow chart for explaining an example of the impurity analysis method of the present invention, and FIG. 2 is a schematic sectional view showing a main part of an example of the etching apparatus.

【0014】図1において、まず、半導体基板1の表面
を図2のエッチング装置でプラズマ化したガスでエッチ
ングすることにより、半導体基板表面上のエッチング残
渣2を得る。次に、このエッチング残渣2を弗酸蒸気で
分解することにより分解物3を得る。次に、この分解物
3を回収液で回収することにより回収液4を得る。そし
て最後に、この回収液4について高感度分析装置5を用
いて分析を行う。なお、図1においては、対象物体を半
導体基板1としたが、これは半導体基板上薄膜について
も同様である。
In FIG. 1, first, the surface of the semiconductor substrate 1 is etched with a gas made into plasma by the etching apparatus of FIG. 2 to obtain an etching residue 2 on the surface of the semiconductor substrate. Next, the etching residue 2 is decomposed with hydrofluoric acid vapor to obtain a decomposition product 3. Then, the decomposed product 3 is recovered with a recovery liquid to obtain a recovery liquid 4. Finally, the recovered liquid 4 is analyzed using the high sensitivity analyzer 5. Although the target object is the semiconductor substrate 1 in FIG. 1, the same applies to a thin film on a semiconductor substrate.

【0015】以下、具体的な実施例について詳細に説明
する。
Specific embodiments will be described in detail below.

【0016】〔実施例1〕実施例1では、シリコン基板
上のポリシリコン薄膜の分析例を示す。
Example 1 Example 1 shows an example of analysis of a polysilicon thin film on a silicon substrate.

【0017】ポリシリコン薄膜(3000Å)を形成し
たシリコン基板1aをエッチングチャンバー6内に設け
られたサセプター7にセットし、以下のエッチング条件
で当該ポリシリコン薄膜をエッチングした。
The silicon substrate 1a on which the polysilicon thin film (3000Å) was formed was set on the susceptor 7 provided in the etching chamber 6, and the polysilicon thin film was etched under the following etching conditions.

【0018】 パワー : 200W ガス : CF4 100SCCM、O2 100SC
CM 圧力 : 1Torr 温度 : 50℃ エッチング時間: 6分 エッチング後、シリコンウェーハ表面を弗酸の発生蒸気
で分解し、分解物を200μlの希薄な弗酸−過酸化水
素溶液で回収して、回収液をフレームレス原子吸光分析
装置で分析した。表1にその結果を示す。
Power: 200 W Gas: CF 4 100SCCM, O 2 100SC
CM pressure: 1 Torr temperature: 50 ° C. Etching time: 6 minutes After etching, the surface of the silicon wafer is decomposed by the generated vapor of hydrofluoric acid, and the decomposed product is recovered with 200 μl of dilute hydrofluoric acid-hydrogen peroxide solution, and the recovered liquid is used. Was analyzed by a flameless atomic absorption spectrometer. The results are shown in Table 1.

【0019】[0019]

【表1】 表1において、前処理バックグランドとは、エッチング
装置自体のバックグランドレベルであり、非常に低レベ
ルで金属不純物の汚染はみられない。測定されたポリシ
リコン膜中の不純物はAlが前処理バックグランドの約
30倍と多いほか、Fe、CuおよびNaも2〜5倍程
度多くなっている。このことから、本発明によりシリコ
ン基板上のポリシリコン薄膜中の109 原子/cm2
ベルの金属汚染を把握できることが分かる。
[Table 1] In Table 1, the pretreatment background is the background level of the etching apparatus itself, and contamination of metal impurities is not seen at a very low level. As for the measured impurities in the polysilicon film, Al is about 30 times as much as the pretreatment background, and Fe, Cu, and Na are about 2 to 5 times as much. From this, it is understood that the present invention makes it possible to grasp the metal contamination of the polysilicon thin film on the silicon substrate at the level of 10 9 atoms / cm 2 .

【0020】また、シリコン基板においても、ポリシリ
コン薄膜をほぼ同様の条件で処理すれば、一定量の分解
および分析が可能である。
Also, with respect to a silicon substrate, if a polysilicon thin film is processed under substantially the same conditions, a certain amount of decomposition and analysis can be performed.

【0021】また、本発明で用いるエッチング装置は、
図2に示したダウンストリームタイプのようにエッチン
グ装置自体からの金属汚染のないものであればよい。
The etching apparatus used in the present invention is
As long as there is no metal contamination from the etching apparatus itself like the downstream type shown in FIG.

【0022】〔実施例2〕実施例2では、窒化膜を本発
明の方法で分析した例を示す。本実施例2でも図1の処
理を行い、分析を行った。
[Embodiment 2] In Embodiment 2, an example in which a nitride film is analyzed by the method of the present invention is shown. In Example 2 as well, the process shown in FIG. 1 was performed and analyzed.

【0023】窒化膜(1000Å)を形成したシリコン
基板1aを実施例1と同様に図2のエッチング装置によ
り、以下のエッチング条件で当該窒化膜をエッチングし
た。
The silicon substrate 1a having the nitride film (1000 Å) formed thereon was etched by the etching apparatus shown in FIG. 2 as in Example 1 under the following etching conditions.

【0024】 パワー : 200W ガス : CF4 100SCCM、O2 100SC
CM 圧力 : 1Torr 温度 : 50℃ エッチング時間: 2.5分 エッチング後、シリコンウェーハ表面を弗酸の発生蒸気
で分解し、分解物を200μlの希薄な弗酸−過酸化水
素溶液で回収して、回収液をフレームレス原子吸光分析
装置で分析した。表2にその結果を示す。
Power: 200 W Gas: CF 4 100SCCM, O 2 100SC
CM pressure: 1 Torr temperature: 50 ° C. Etching time: 2.5 minutes After etching, the surface of the silicon wafer is decomposed with hydrofluoric acid generated vapor, and the decomposed product is recovered with 200 μl of a dilute hydrofluoric acid-hydrogen peroxide solution, The recovered liquid was analyzed by a flameless atomic absorption spectrometer. The results are shown in Table 2.

【0025】[0025]

【表2】 測定されたシリコン基板上窒化膜中の不純物は、Alが
約60倍多く検出されているほか、Fe、Cuは4〜2
0倍程度検出されている。前処理バックグランドは非常
に低レベルなことからエッチング装置からの汚染はな
い。よって、本発明により、シリコン基板上の400Å
以上の膜厚の厚い窒化膜中の金属不純物を109 原子/
cm2 レベルで分析できることが分かる。
[Table 2] Al was detected about 60 times more in the measured impurities in the nitride film on the silicon substrate, and Fe and Cu contained 4 to 2 times.
About 0 times is detected. The pretreatment background is at a very low level so there is no contamination from the etching equipment. Therefore, according to the present invention, 400 Å on a silicon substrate
The metal impurities in the thick nitride film having the above thickness are 10 9 atoms /
It can be seen that analysis can be performed at the cm 2 level.

【0026】[0026]

【発明の効果】以上説明したように、弗酸の発生蒸気で
基板または薄膜を分解し、基板上の分解物を回収液で回
収し、回収液中の不純物成分を高感度分析装置で分析す
る前に、基板または薄膜をプラズマ化したガスでエッチ
ングをし、そのエッチング残渣を分析することにより、
従来分析することのできなかった半導体基板自体、ポリ
シリコン膜あるいは400Å以上の膜厚の厚い窒化膜な
どを分析することができる効果がある。従って、本発明
の分析方法を用いることによって、金属汚染の低減が可
能になり、高品質、高生産歩留りの半導体製品が製造す
ることができ、その効果は大である。
As described above, the substrate or the thin film is decomposed by the generated vapor of hydrofluoric acid, the decomposed product on the substrate is recovered by the recovery liquid, and the impurity component in the recovery liquid is analyzed by the high sensitivity analyzer. Before, by etching the substrate or thin film with a gas that turned into plasma, and analyzing the etching residue,
There is an effect that a semiconductor substrate itself, a polysilicon film or a nitride film having a thickness of 400 Å or more, which cannot be analyzed conventionally, can be analyzed. Therefore, by using the analysis method of the present invention, it is possible to reduce metal contamination and manufacture a semiconductor product of high quality and high production yield, and the effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の不純物分析方法の一例を説明するため
のフローチャート。
FIG. 1 is a flowchart for explaining an example of an impurity analysis method of the present invention.

【図2】そのエッチング装置の一例の要部を示す模式的
断面図。
FIG. 2 is a schematic cross-sectional view showing a main part of an example of the etching apparatus.

【符号の説明】[Explanation of symbols]

1 半導体基板 1a シリコン基板 2 エッチング残渣 3 分解物 4 回収液 5 高感度分析装置 6 エッチングチャンバー 7 サセプター 1 Semiconductor Substrate 1a Silicon Substrate 2 Etching Residue 3 Decomposition Product 4 Recovery Liquid 5 High Sensitivity Analyzer 6 Etching Chamber 7 Susceptor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板および半導体基板上薄膜など
の物体の不純物の分析方法において、 前記物体の表面をプラズマ化したガスでエッチングし、
そのエッチング残渣を分析することを特徴とする不純物
の分析方法。
1. A method for analyzing impurities in an object such as a semiconductor substrate and a thin film on a semiconductor substrate, wherein the surface of the object is etched with a gas that is made into plasma,
A method for analyzing impurities, which comprises analyzing the etching residue.
【請求項2】 前記エッチング残渣の分析方法は、当該
エッチング残渣を弗酸蒸気で分解し、その分解物を回収
液で回収し、当該回収液中の不純物を高感度分析装置で
分析する方法である請求項1に記載の不純物の分析方
法。
2. The method for analyzing the etching residue comprises decomposing the etching residue with hydrofluoric acid vapor, recovering the decomposed product with a recovery liquid, and analyzing impurities in the recovery liquid with a high-sensitivity analyzer. The method for analyzing impurities according to claim 1.
JP3249602A 1991-09-27 1991-09-27 Impurity analysis method Expired - Fee Related JP2973638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3249602A JP2973638B2 (en) 1991-09-27 1991-09-27 Impurity analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3249602A JP2973638B2 (en) 1991-09-27 1991-09-27 Impurity analysis method

Publications (2)

Publication Number Publication Date
JPH0590378A true JPH0590378A (en) 1993-04-09
JP2973638B2 JP2973638B2 (en) 1999-11-08

Family

ID=17195464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3249602A Expired - Fee Related JP2973638B2 (en) 1991-09-27 1991-09-27 Impurity analysis method

Country Status (1)

Country Link
JP (1) JP2973638B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459078B1 (en) * 2001-12-26 2004-12-03 주식회사 실트론 An etcher for analysis of metal impurities near bulk in silicon wafer
KR100557702B1 (en) * 2000-06-22 2006-03-07 주식회사 실트론 Method for analysis of impurities in silicon wafer through local etching
US7083429B2 (en) 2003-06-27 2006-08-01 Tyco Electronics Amp K.K IC socket
US7291021B2 (en) 2004-08-11 2007-11-06 Tyco Electronics Amp K.K. IC socket and IC socket assembly
US8932954B2 (en) 2012-03-15 2015-01-13 Kabushiki Kaisha Toshiba Impurity analysis device and method
CN111336792A (en) * 2018-12-19 2020-06-26 江苏鲁汶仪器有限公司 Cavity for drying micro water drops
US10962519B2 (en) 2015-09-11 2021-03-30 Toshiba Memory Corporation Analysis pretreatment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557702B1 (en) * 2000-06-22 2006-03-07 주식회사 실트론 Method for analysis of impurities in silicon wafer through local etching
KR100459078B1 (en) * 2001-12-26 2004-12-03 주식회사 실트론 An etcher for analysis of metal impurities near bulk in silicon wafer
US7083429B2 (en) 2003-06-27 2006-08-01 Tyco Electronics Amp K.K IC socket
US7291021B2 (en) 2004-08-11 2007-11-06 Tyco Electronics Amp K.K. IC socket and IC socket assembly
US8932954B2 (en) 2012-03-15 2015-01-13 Kabushiki Kaisha Toshiba Impurity analysis device and method
US10962519B2 (en) 2015-09-11 2021-03-30 Toshiba Memory Corporation Analysis pretreatment device
CN111336792A (en) * 2018-12-19 2020-06-26 江苏鲁汶仪器有限公司 Cavity for drying micro water drops

Also Published As

Publication number Publication date
JP2973638B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
KR101868775B1 (en) Silicon substrate analyzing device
EP0488149A2 (en) Method of analyzing metal impurities in surface oxide film of semiconductor substrate
JP2013190403A (en) Apparatus and method for analysing impurity
JP2973638B2 (en) Impurity analysis method
JP3473699B2 (en) Silicon wafer etching method and apparatus and impurity analysis method
JP5413342B2 (en) Silicon wafer surface layer etching method and silicon wafer metal contamination analysis method
Tan Application of vapor phase decomposition techniques (VPD/AAS and ICP-MS) for trace element analysis in oxide coatings on silicon
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
JP3804864B2 (en) Impurity analysis method
US3672980A (en) Method of rapidly detecting contaminated semiconductor surfaces
JP2950310B2 (en) Method for analyzing metal impurities on semiconductor substrate surface and substrate
JPH05343494A (en) Analyzing method for contaminant in production process of semiconductor device
US6146909A (en) Detecting trace levels of copper
EP0339561B1 (en) Impurity measuring method
WO2019198651A1 (en) Method for analyzing silicon substrate
WO2019181104A1 (en) Method for etching boron-doped p-type silicon wafer, method for assessing contamination with metal, and production method
JP2005003422A (en) Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus
JP4232457B2 (en) Method for analyzing metal impurities in surface oxide film on silicon substrate surface
JP2762814B2 (en) Impurity analysis method
KR20030087630A (en) Method for measuring elements in a substrate for optics, electronics or optoelectronics
JP2000332072A (en) Surface analysis method of semiconductor substrate
JP2967608B2 (en) Silicon surface analysis method
JPH0666260B2 (en) Cleanliness evaluation method
Sparks et al. Novel technique for contamination analysis around the edge, the bevel, and the edge exclusion area of 200-and 300-mm silicon wafers
JP2005101298A (en) Etching apparatus, and apparatus and method for evaluating substrate surface

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees