JPH059013A - Fullerene synthesizing device - Google Patents

Fullerene synthesizing device

Info

Publication number
JPH059013A
JPH059013A JP3155043A JP15504391A JPH059013A JP H059013 A JPH059013 A JP H059013A JP 3155043 A JP3155043 A JP 3155043A JP 15504391 A JP15504391 A JP 15504391A JP H059013 A JPH059013 A JP H059013A
Authority
JP
Japan
Prior art keywords
carbon
diameter
fullerene
carbon rod
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3155043A
Other languages
Japanese (ja)
Other versions
JP3016275B2 (en
Inventor
Katsumi Tanigaki
勝己 谷垣
Sadanori Kuroshima
貞則 黒島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3155043A priority Critical patent/JP3016275B2/en
Publication of JPH059013A publication Critical patent/JPH059013A/en
Application granted granted Critical
Publication of JP3016275B2 publication Critical patent/JP3016275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide the device for easily synthesize fullerene at a high yield. CONSTITUTION:An evaporating carbon rod 1 having a diameter within 1mm and a counter electrode carbon rod 2 having the diameter of >=2 times this diameter are brought into contact with each other. The circumference of the carbon rods 1, 2 is enclosed by a cylinder 20. Two holes facing each other are provided on the cylinder 20. The one of these holes is used as a helium introducing port 4 and the other as a suction port 5a for collecting the formed carbon powder. The suction port is differentially discharged and the carbon powder gathers at the collector 6. The carbon rods 1, 2 are heat under resistance to evaporate the carbon from the carbon rod 1. Since just two holes are bored at the cylinder 20, the smooth flow of the carbon vapor from the introducing port 4 side to the suction port 5a side is generated. More than 85% of the consumed carbon rod 1 is, therefore, collected as the carbon powder in the collector. More than 15% in the recovered carbon powder is the fullerence (C60, C70). Since the diameter of the evaporating carbon rod 1 is confined to <=1mm, there is no need for a large-capacity power source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素のみからなるサッ
カーボール状のクラスタ分子であるフラーレンの合成装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for synthesizing fullerene, which is a soccer ball-shaped cluster molecule consisting of carbon only.

【0002】[0002]

【従来の技術】1985年にクロト(Kuroto)に
より、初めて炭素からなるサッカーボール状のクラスタ
分子C6 0 /C7 0 (フラーレン)の存在が確認され
た。ところが、最近に至るまでフラーレンを大量に合成
し単離することはできなかった。しかし、1990年に
なってスモーリ(Smalley)等の研究者によって
合成技術が報告されて以来、フラーレンは単離合成がで
きるようになった。この単離合成技術の結果、フラーレ
ンは半導体、超導電体などの特性を有することが発見さ
れ将来の応用が期待されている。
2. Description of the Related Art In 1985, the existence of soccer ball-shaped cluster molecules C 60 / C 70 (fullerene) made of carbon was first confirmed by Kuroto. However, until recently, it was not possible to synthesize and isolate fullerenes in large quantities. However, in 1990, fullerene has been able to be isolated and synthesized since a synthetic technique was reported by researchers such as Smalley. As a result of this isolation and synthesis technology, fullerenes have been discovered to have characteristics such as semiconductors and superconductors, and are expected to be applied in the future.

【0003】[0003]

【発明が解決しようとする課題】スモーリ等により最初
に報告された合成装置は、直径6mmの炭素棒を使用
し、10−20Vで100−150Aの電流を通じて炭
素棒の周囲を水冷しながら、ヘリウムのアーク放電条件
で合成するものであった。生成した粉末固体中に存在す
るフラーレンの収率は約10%であると報告されてい
る。(ジャーナル オブ フィジカル ケミストリ
(J.of Physical Chemistry)
vol94、p1634〜36、1990)しかし、こ
の方法では大容量電源を必要とし、また発生する熱によ
る装置の過熱を防ぐために冷却するための機能を付加す
る必要があった。さらに生成した種々のクラスタは装置
全体に飛散するために、それらを集める際に多くの損失
があり蒸発した炭素棒のせいぜい40%程度を集められ
るにすぎなかった。つまり最終的に得られるフラーレン
は、最大でも蒸発した炭素棒の4%(0.4×0.1=
0.04)ていどにすぎなかった。
The synthesis apparatus first reported by Smolley et al. Uses a carbon rod having a diameter of 6 mm and a helium electrode while water-cooling the periphery of the carbon rod through a current of 100-150 A at 10-20V. It was synthesized under the arc discharge conditions. The yield of fullerenes present in the powder solids produced is reported to be about 10%. (Journal of Physical Chemistry)
However, this method requires a large-capacity power source, and it is necessary to add a function for cooling in order to prevent the device from overheating due to generated heat. In addition, the various clusters formed were scattered throughout the device, so there was a lot of loss in collecting them, and at most about 40% of the vaporized carbon rods could be collected. In other words, the fullerene finally obtained is 4% (0.4 × 0.1 =) of the evaporated carbon rod.
0.04) It was just a matter of time.

【0004】本発明はこの様な状況から生まれたもの
で、大容量の電源を必要とせず、水冷などの冷却機能も
必要としないで、フラーレンを簡便にしかも収率よく合
成するための装置を提供するためになされたものであ
る。
The present invention was born from such a situation, and an apparatus for synthesizing fullerenes easily and in high yield without requiring a large-capacity power source and a cooling function such as water cooling is provided. It was made to provide.

【0005】[0005]

【課題を解決するための手段】直径1mmに内の大きさ
の蒸発炭素棒とこの蒸発炭素棒の2倍以上の直径を有す
る炭素の対電極が接触し、少なくともこの接触部分をと
りかこむカバーを設け、このカバーには二つの穴を設け
一方の穴をヘリウムの導入口とし、他方の穴を差動排気
して、生成した炭素粉末を集める吸引口とし、ヘリウム
雰囲気中で前記炭素棒を抵抗加熱してフラーレンを合成
することを特徴とするフラーレン合成装置である。
[MEANS FOR SOLVING THE PROBLEMS] An evaporated carbon rod having an inside diameter of 1 mm and a carbon counter electrode having a diameter more than twice that of the evaporated carbon rod come into contact with each other, and a cover surrounding at least this contact portion is provided. This cover is provided with two holes, one hole is used as a helium inlet, the other hole is differentially exhausted to serve as a suction port for collecting the generated carbon powder, and the carbon rod is resistant in a helium atmosphere. A fullerene synthesizing apparatus characterized by synthesizing fullerene by heating.

【0006】[0006]

【作用】我々は、種々の大きさの炭素棒を検討した結
果、抵抗加熱で蒸発する方の炭素棒の大きさが直径1m
m以下の場合には、10ボルト、40アンペア程度の電
源でよく、また蒸発する炭素棒の領域が小さいので装置
全体の温度がそれほど上昇せず冷却機能を付加する必要
がないことを見いだした。実際の炭素棒の蒸発部分では
温度は約4000℃になると言われている。また、対電
極となる炭素棒は蒸発させる炭素棒の2倍以上の大きさ
が必要である。これは、対電極の炭素棒の大きさが小さ
いと対電極自身が蒸発してしまい、連続して蒸発させる
べき炭素棒を消費することが出来ないからである。ま
た、生成したフラーレンの損失を極力抑えて集めるため
に、炭素蒸発源を取り囲む筒に開けた吸収口を差動排気
してコレクタとした。この差動排気したコレクタによ
り、実際に消費した炭素棒の85%以上を容易に炭素粉
末の形で回収することができた。これは、カバーには2
つの穴しか開けておらず、炭素蒸気の流れがヘリウム導
入側から差動排気されているコレクタ側ヘスムーズに生
じるためと考えられる。コレクタ部分で回収した炭素粉
末中に含まれるフラーレンの量は、用いる電圧・電流特
性とチャンバー内のヘリウムの圧力に大きく存在してお
り、最もよい条件の場合には15%以上の高収率であ
り、これまでの報告より優れていた。高収率の原因は、
炭素蒸発部分に高圧力のヘリウムが絶えず流入してくる
ためである。
[Function] As a result of studying carbon rods of various sizes, the size of the carbon rod that evaporates by resistance heating is 1 m in diameter.
In the case of m or less, it was found that a power source of about 10 volts and 40 amps is sufficient, and since the area of the carbon rod to be evaporated is small, the temperature of the entire apparatus does not rise so much and it is not necessary to add a cooling function. It is said that the temperature of the actual evaporating portion of the carbon rod is about 4000 ° C. Further, the carbon rod serving as the counter electrode needs to be twice as large as the carbon rod to be evaporated. This is because when the size of the carbon rod of the counter electrode is small, the counter electrode itself evaporates, and the carbon rod to be continuously vaporized cannot be consumed. In addition, in order to collect the generated fullerene while suppressing it as much as possible, the absorption opening opened in the cylinder surrounding the carbon evaporation source was differentially exhausted to form a collector. With this differentially evacuated collector, 85% or more of the actually consumed carbon rods could be easily recovered in the form of carbon powder. This is 2 for the cover
It is considered that this is because only one hole is opened and the flow of carbon vapor smoothly occurs on the collector side, which is differentially exhausted from the helium introduction side. The amount of fullerene contained in the carbon powder collected in the collector part largely depends on the voltage / current characteristics used and the pressure of helium in the chamber. Under the best conditions, a high yield of 15% or more is obtained. Yes, and was superior to previous reports. The cause of high yield is
This is because high-pressure helium constantly flows into the carbon evaporation portion.

【0007】[0007]

【実施例】図1は本発明の装置の一例を示す概略図であ
る。太さ0.95mm、長さ70mmの蒸発炭素棒1の
先端を針状にとがらせ、この先端を太さ2mm、長さ1
mmの対電極炭素棒2に接触させる。接触の程度は両者
が触れるか触れないかの程度である。炭素棒1、2の周
囲を直径25mm、長さ120mmのステンレス製の円
筒20で被る。円筒20が長いので炭素棒1、2は全体
が被われる。炭素棒1、2と筒20の中心軸は一致させ
ておく。円筒20には対向する二つの穴が炭素棒1、2
をはさむようにしてあけてあり、それぞれヘリウムガス
の導入口4と、生成した炭素粉末を集める吸引口5aで
ある。導入口4と吸引口5aの中心を結ぶ線は炭素棒
1、2の接触点を通るようにしておく。導入口4にはヘ
リウム導入ノズル3の先端が位置しており、吸引口5a
の近傍にはコレクタ側の吸引口5bがじょうごのような
形状で設置してあり、吸引口5bの近くに円筒形のコレ
クタ6を設ける。コレクタ6は外固に水冷パイプ7を巻
いてありフラーレン合成時に水を流して冷却する。まず
ロータリポンプ10でチャンバを10- 3 torrにし
た。その後、ヘリウムをヘリウム導入ノズル3から導入
し可変リークバルブ9を調節してチャンバ内の圧力を1
00torrにした。その状態で、電源11から3ボル
ト・10アンペアの電力で炭素棒のガス出しをする。次
に10ボルト・40アンペアで蒸発炭素棒1を加熱して
そこから炭素を蒸発させた。炭素の蒸気は、差動排気さ
れ冷却されたコレクタ6に集められる。コレクタ6内の
炭素粉末を集めて収量を測定した結果、蒸発した炭素棒
の85%以上が炭素粉末として回収できていた。得られ
た炭素粉末をソックスレを用いてベンゼンで抽出したと
ころ、炭素粉末中のフラーレンの収率は15%以上であ
った。フラーレンであることを確認するため質量分析し
たところ、純粋な一つのピークで720(12×6
0)、840(12×70)の質量数のものがありそれ
ぞれC6 0 、C7 0 であることを確認した。なお生成す
る割合としてはC7 0 よりC6 0 の方が圧倒的に多かっ
た。また、実験中におけるチャンバ30の温度上昇は7
0℃以下で水冷等の冷却機能を施こす必要はなかった。
1 is a schematic view showing an example of the apparatus of the present invention. The tip of the evaporated carbon rod 1 having a thickness of 0.95 mm and a length of 70 mm is sharpened into a needle shape, and the tip has a thickness of 2 mm and a length of 1.
mm counter electrode carbon rod 2 is contacted. The degree of contact is the degree of contact between the two. The circumference of the carbon rods 1 and 2 is covered with a stainless cylinder 20 having a diameter of 25 mm and a length of 120 mm. Since the cylinder 20 is long, the carbon rods 1 and 2 are entirely covered. The central axes of the carbon rods 1 and 2 and the cylinder 20 are made to coincide with each other. The cylinder 20 has two holes facing each other.
And a suction port 5a for collecting the produced carbon powder. The line connecting the centers of the inlet 4 and the suction port 5a is set to pass through the contact points of the carbon rods 1 and 2. The tip of the helium introduction nozzle 3 is located at the introduction port 4, and the suction port 5a
A suction port 5b on the collector side is installed in the shape of a funnel in the vicinity of, and a cylindrical collector 6 is provided near the suction port 5b. The collector 6 has a water-cooling pipe 7 wound around the outer solid, and cools it by flowing water during fullerene synthesis. First, the chamber was set to 10 −3 torr with the rotary pump 10. After that, helium is introduced from the helium introducing nozzle 3 and the variable leak valve 9 is adjusted to adjust the pressure in the chamber to 1
It was set to 00 torr. In this state, the carbon rod is degassed from the power source 11 with electric power of 3 volts and 10 amps. The vaporized carbon rod 1 was then heated at 10 volts and 40 amps to vaporize the carbon. The carbon vapor is collected in the collector 6 which is differentially pumped and cooled. As a result of collecting the carbon powder in the collector 6 and measuring the yield, it was found that 85% or more of the evaporated carbon rods could be recovered as carbon powder. When the obtained carbon powder was extracted with benzene using a Soxhlet, the yield of fullerene in the carbon powder was 15% or more. Mass spectrometric analysis confirmed that the fullerene was 720 (12 × 6).
0) and 840 (12 × 70) in mass number, and it was confirmed to be C 60 and C 70 , respectively. In addition, as a generation ratio, C 60 was overwhelmingly larger than C 70 . In addition, the temperature rise of the chamber 30 during the experiment is 7
It was not necessary to provide a cooling function such as water cooling below 0 ° C.

【0008】[0008]

【発明の効果】以上述べたように、本発明の装置を用い
れば、実験室でおこなうフラーレンの実験に必要な量の
試料を、大がかりな装置を使用することなく高収率で得
ることができる。前述の実施例では最終的に得られるフ
ラーレンは悪くても13%(0.85×0.15)であ
り、従来例の最大4%に比べはるかに高収率であること
がわかる。フラーレンは超伝導物性を示すなど、これか
らの研究開発でその工業的応用が非常に期待される新し
い物質である。本装置を用いると、簡便に高収率でフラ
ーレンを合成することができるのでその意義は大きい。
As described above, by using the apparatus of the present invention, it is possible to obtain a sample in an amount required for a fullerene experiment conducted in a laboratory in a high yield without using a large-scale apparatus. .. In the above-mentioned Examples, the fullerene finally obtained was 13% (0.85 × 0.15) at the worst, which is far higher than the maximum of 4% in the conventional example. Fullerene is a new substance that shows superconducting properties and is expected to be industrially applied in future research and development. By using this device, fullerene can be easily synthesized in high yield, which is significant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の一例を示す図である。FIG. 1 is a diagram showing an example of an apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸発用炭素棒 2 対電極用炭素棒 3 ヘリウム導入ノズル 4 導入口 5a、5b 吸引口 6 コレクタ 7 水冷パイプ 8 差動排気 9 可変リークバルブ 10 ロータリポンプ 11 電源(交流/直流) 20 円筒 30 チャンバ 1 carbon rod for evaporation 2 carbon rod for counter electrode 3 helium introduction nozzle 4 introduction port 5a, 5b suction port 6 collector 7 water cooling pipe 8 differential exhaust 9 variable leak valve 10 rotary pump 11 power supply (AC / DC) 20 cylinder 30 chamber

Claims (1)

【特許請求の範囲】 【請求項1】 直径1mmに内の大きさの蒸発炭素棒と
この蒸発炭素棒の2倍以上の直径を有する炭素の対電極
が接触し、少なくともこの接触部分をとりかこむカバー
を設け、このカバーには二つの穴を設け一方の穴をヘリ
ウムの導入口とし、他方の穴を差動排気して、生成した
炭素粉末を集める吸引口とし、ヘリウム雰囲気中で前記
炭素棒を抵抗加熱してフラーレンを合成することを特徴
とするフラーレン合成装置。
Claim: What is claimed is: 1. An evaporated carbon rod having a diameter of 1 mm and a carbon counter electrode having a diameter twice or more that of the evaporated carbon rod are in contact with each other, and at least this contact portion is incorporated. A cover is provided, two holes are provided in this cover, one hole is used as a helium inlet port, and the other hole is differentially exhausted to serve as a suction port for collecting the generated carbon powder. A fullerene synthesizing device, which synthesizes fullerene by resistance heating.
JP3155043A 1991-06-27 1991-06-27 Fullerene synthesis equipment Expired - Fee Related JP3016275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3155043A JP3016275B2 (en) 1991-06-27 1991-06-27 Fullerene synthesis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3155043A JP3016275B2 (en) 1991-06-27 1991-06-27 Fullerene synthesis equipment

Publications (2)

Publication Number Publication Date
JPH059013A true JPH059013A (en) 1993-01-19
JP3016275B2 JP3016275B2 (en) 2000-03-06

Family

ID=15597425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3155043A Expired - Fee Related JP3016275B2 (en) 1991-06-27 1991-06-27 Fullerene synthesis equipment

Country Status (1)

Country Link
JP (1) JP3016275B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797204A (en) * 1993-09-28 1995-04-11 Sansha Electric Mfg Co Ltd Recovery equipment for fullerene soot
WO2002096800A1 (en) * 2001-06-01 2002-12-05 Job Joint S.R.L. Method for producing fullerene-containing carbon and device for carrying out said method
WO2005087662A1 (en) * 2004-03-18 2005-09-22 Obschestvo S Ogranichennoi Otvetstvennoctju 'nauchno-Proizvodstvennoe Predpriyatie 'energosberegayuschie Tekhnologii' Device for producing a fullerene-containing black
WO2008123802A1 (en) * 2007-04-06 2008-10-16 Obschestvo S Ogranichennoy Otvetsvennostju, 'nauchno-Proizvodstvennaya Kompaniya 'neotekprodakt' Device for producing fullerene-containing soot

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797204A (en) * 1993-09-28 1995-04-11 Sansha Electric Mfg Co Ltd Recovery equipment for fullerene soot
WO2002096800A1 (en) * 2001-06-01 2002-12-05 Job Joint S.R.L. Method for producing fullerene-containing carbon and device for carrying out said method
US7153398B2 (en) 2001-06-01 2006-12-26 Euronano Spa Method for producing fullerene-containing carbon and device for carrying out said method
CN100348480C (en) * 2001-06-01 2007-11-14 工程联合有限公司 Fullerene-containing carbon, production method and device
WO2005087662A1 (en) * 2004-03-18 2005-09-22 Obschestvo S Ogranichennoi Otvetstvennoctju 'nauchno-Proizvodstvennoe Predpriyatie 'energosberegayuschie Tekhnologii' Device for producing a fullerene-containing black
WO2008123802A1 (en) * 2007-04-06 2008-10-16 Obschestvo S Ogranichennoy Otvetsvennostju, 'nauchno-Proizvodstvennaya Kompaniya 'neotekprodakt' Device for producing fullerene-containing soot

Also Published As

Publication number Publication date
JP3016275B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US5227038A (en) Electric arc process for making fullerenes
US7578980B2 (en) Producing apparatus and producing method for manufacturing carbon structure
KR100383493B1 (en) Method of preparing film of carbon nano-tube and film of carbon nano-tube prepared thereby
Yu et al. Simultaneous synthesis of carbon nanotubes and nitrogen-doped fullerenes in nitrogen atmosphere
US5493094A (en) Preparation of fullerenes and apparatus therefor
JP3986711B2 (en) Method for producing single-walled carbon nanotube
JP2004538227A (en) Fullerene-containing soot and method and apparatus for producing the same
JP2546511B2 (en) Method for synthesizing fullerene and carbon nanotube
CN100515936C (en) Preparation device and method of carbon nano-tube
Omurzak et al. Synthesis method of nanomaterials by pulsed plasma in liquid
JP2006273707A (en) Method for producing nanocarbon material, producing device, and nanocarbon material
JP2000072422A (en) Method for refining carbon nano tube and apparatus therefor
JPH059013A (en) Fullerene synthesizing device
JP2003252614A (en) Method for manufacturing hollow carbon nanocapsule
Zhang et al. The effect of different kinds of inert gases and their pressures on the preparation of carbon nanotubes by carbon arc method
CN207325953U (en) A kind of production equipment of sub-micron and nano metal powder
Tang et al. Two possible emission mechanisms involved in the arc discharge method of carbon nanotube preparation
Mieno et al. JxB arc jet fullerene producer with a revolver type automatic material injector
JPH07138009A (en) Device for producing fullerene and method for recovering the same
JPH05201715A (en) Metal containing carbon cluster and production thereof
Maruyama et al. Formation Process of Empty and Metal-Containing Fullerenes—Molecular Dynamics and FT-ICR Studies
JPH11263610A (en) Production of carbon nanotube
JPH07187632A (en) Method for synthesizing embracing fullerene and device therefor
KR100566566B1 (en) Nozzle beam nanoparticle generation method and generation device using ion seed
Mieno et al. Efficient production of single-walled carbon nanotubes by J× B gas-arc method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991124

LAPS Cancellation because of no payment of annual fees