JPH0589788A - Dielectric support for travelling wave tube - Google Patents

Dielectric support for travelling wave tube

Info

Publication number
JPH0589788A
JPH0589788A JP24866691A JP24866691A JPH0589788A JP H0589788 A JPH0589788 A JP H0589788A JP 24866691 A JP24866691 A JP 24866691A JP 24866691 A JP24866691 A JP 24866691A JP H0589788 A JPH0589788 A JP H0589788A
Authority
JP
Japan
Prior art keywords
dielectric
frequency circuit
high frequency
wave tube
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24866691A
Other languages
Japanese (ja)
Inventor
Takayoshi Konishi
隆義 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24866691A priority Critical patent/JPH0589788A/en
Priority to EP92308726A priority patent/EP0534762A1/en
Publication of JPH0589788A publication Critical patent/JPH0589788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • H01J23/26Helical slow-wave structures; Adjustment therefor

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To suppress the electrostatic charge amount of a dielectric support and prevent the disorder of electron beam passing a high frequency circuit by forming an alumina coating layer on the surface of the dielectric support to support the high frequency circuit. CONSTITUTION:The surface of a dielectric support for a travelling wave tube is coated with a dielectric material having 1 or higher secondary electron emitting ratio in the case primary electron with eE (eV) energy comes in wherein E (V) stands for the potential of a high frequency circuit part and (e) (Coul) for the battery's charge. That is, a dielectric support 1 of boron nitride(BN) is coated with a thin alumina 2 coating and a part of the electrons emitted from the cathode, having 10 kev kinetic energy, are sent in the support 1 from the high frequency circuit in the case that the voltage E (V) between the cathode of a travelling wave tube and the high frequency circuit is 10 keV. In that case, the electrostatic charge amount of the support 1 is suppressed and the electron beam passing the high frequency circuit is prevented from being disordered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、進行波管の誘電体支柱
に関し、特に、その帯電防止構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric support for a traveling wave tube, and more particularly to an antistatic structure for the dielectric support.

【0002】[0002]

【従来の技術】進行波管は、高周波と電子ビームを相互
作用させ、高周波を増幅させる高周波回路を有してい
る。ヘリックス形またはリングループ形進行波管では、
高周波回路は、通常3本の誘電体支柱によって真空封止
用金属パイプ内に支えられている。
2. Description of the Related Art A traveling wave tube has a high-frequency circuit that interacts a high frequency with an electron beam to amplify the high frequency. In a helix or phosphorus group type traveling wave tube,
The high frequency circuit is usually supported in a vacuum sealing metal pipe by three dielectric columns.

【0003】図3にヘリックス形進行波管の高周波回路
部の構造を示す。高周波回路3は真空封止用金属パイプ
4の中に誘電体支柱5によって支持されている。通常は
3本の誘電体支柱5が120°間隔に配置され、金属パ
イプ4内で高周波回路3を支持している。 従来の誘電
体支柱の例を図4に示す。従来、誘電体支柱材としてア
ルミナ(Al2 3 )やベリリア(BeO)が使用され
てきたが、最近は進行波管の効率を上げるため、誘電率
の小さいボロンナイトライド(BN)が使用されはじめ
ている。しかしながら、ボロンナイトライドは進行波管
動作中に、高周波回路内を通る電子ビームによって帯電
して電位変化をおこし、それによって電子ビーム軌道の
不安定化をもたらして高周波回路を破損する場合があ
る。
FIG. 3 shows the structure of a high frequency circuit section of a helix type traveling wave tube. The high frequency circuit 3 is supported by a dielectric support 5 in a vacuum sealing metal pipe 4. Usually, three dielectric support columns 5 are arranged at 120 ° intervals and support the high frequency circuit 3 in the metal pipe 4. An example of a conventional dielectric strut is shown in FIG. Conventionally, alumina (Al 2 O 3 ) or beryllia (BeO) has been used as a dielectric strut material, but recently, boron nitride (BN) having a small dielectric constant is used to improve the efficiency of the traveling wave tube. It is starting. However, boron nitride may be charged by the electron beam passing through the high-frequency circuit during the traveling-wave tube operation to cause a potential change, which may cause instability of the electron beam trajectory and damage the high-frequency circuit.

【0004】従来、ボロンナイトライドの帯電を防止す
るため、ボロンナイトライドの表面に炭素を薄くコーテ
ィングし、電荷がコーティング層を通って高周波回路ま
たは真空封止用金属パイブに流れるようにした例もあ
る。
Conventionally, in order to prevent the electrification of boron nitride, there is also an example in which carbon is thinly coated on the surface of boron nitride so that electric charges flow through a coating layer to a high frequency circuit or a metal pipe for vacuum sealing. is there.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来技
術の炭素コーティングは高周波ロスの増大につながり、
進行波管の出力や利得の低下をもたらすという欠点があ
る。
However, the carbon coating of the prior art leads to an increase in high frequency loss,
There is a drawback in that the output and gain of the traveling wave tube are reduced.

【0006】[0006]

【課題を解決するための手段】本発明の進行波管用誘電
体支柱は、進行波管の陰極電位を基準とした高周波回路
部の電位をE(V)とし、電池電荷をe(Coul)と
し、eE(eV)の1次電子が入射した場合の2次電子
放出比が1に等しいかそれ以上である誘電体を表面にコ
ーティングしてあることを特徴としている。なお、コー
ティングする誘電体としては、アルミナ,べリリアが適
している。
In the dielectric support for a traveling-wave tube according to the present invention, the electric potential of the high-frequency circuit portion with respect to the cathode potential of the traveling-wave tube is E (V), and the battery charge is e (Coul). , EE (eV) primary electrons are incident, the surface is coated with a dielectric material having a secondary electron emission ratio equal to or more than 1. Alumina and beryllia are suitable as the dielectric to be coated.

【0007】[0007]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の第1の実施例を示す断面図である。
ボロンナイトライドの誘電体支柱1にアルミナ2を薄く
コーティングしてある。図2にボロンナイトライドとア
ルミナの2次電子放出比を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention.
Alumina 2 is thinly coated on a boron nitride dielectric pillar 1. FIG. 2 shows the secondary electron emission ratio of boron nitride and alumina.

【0008】今、進行波管の陰極・高周波回路間の電圧
E(v)が10kvであるとすると、陰極より放出され
た電子は10kevの運動エネルギーを持って高周波回
路を通り、一部が誘電体支柱に入射する。誘電体支柱が
ボロンナイトライドのみからなるときには、図2よりわ
かるように、誘電体支柱の2次電子放出比は1以下であ
るため、誘電体支柱は電子を蓄積し負に帯電することに
よって周辺の電位を下げる。それによって高周波回路を
通過する電子ビームの軌道は不安定になる。
Now, assuming that the voltage E (v) between the cathode and the high frequency circuit of the traveling wave tube is 10 kv, the electrons emitted from the cathode have a kinetic energy of 10 kev and pass through the high frequency circuit, and a part of it is dielectric. It is incident on the body pillar. When the dielectric strut is composed of only boron nitride, as can be seen from FIG. 2, the secondary strut emission ratio of the dielectric strut is 1 or less, so that the dielectric strut accumulates electrons and becomes negatively charged to the periphery. Lower the potential of. As a result, the trajectory of the electron beam passing through the high frequency circuit becomes unstable.

【0009】一方、誘電体支柱が図1のようにボロンナ
イトライドにアルミナコーティングしてある構造である
場合には、図2より10kevの電子入射でもアルミナ
の2次電子放出比は1より大であるため、誘電体支柱は
負に帯電しない。また、誘電体支柱が正に帯電すること
はあり得るが、正に帯電すると誘電体支柱の電位を上
げ、2次電子を誘電体支柱にひきもどすことになるので
正の帯電量は少なく、高周波回路を通過する電子ビーム
の軌道を乱すほどではない。
On the other hand, in the case where the dielectric pillar has a structure in which boron nitride is coated with alumina as shown in FIG. 1, the secondary electron emission ratio of alumina is larger than 1 even when the electron is incident at 10 kev as shown in FIG. As such, the dielectric struts do not become negatively charged. In addition, the dielectric support may be positively charged, but if it is positively charged, the potential of the dielectric support will be raised and secondary electrons will be returned to the dielectric support, so the amount of positive charge is small and high frequency It does not disturb the trajectory of the electron beam passing through the circuit.

【0010】このように、ボロンナイトライドにアルミ
ナがコーティングしてある誘電体支柱では、電子ビーム
の衝突によっても帯電がおさえられ、周辺の電位をあま
り変化させないため、電子ビームの乱れをひきおこさな
い。さらに、アルミナは誘電体であるので炭素コーティ
ングのようなジュール損がなく、進行波管の利得低下や
出力低下をひきおこすことはない。
As described above, in the dielectric pillar in which the boron nitride is coated with alumina, the charge is suppressed even by the collision of the electron beam and the peripheral potential is not changed so much that the disturbance of the electron beam is not caused. . Further, since alumina is a dielectric substance, it does not have a Joule loss unlike carbon coating, and does not cause a gain reduction or output reduction of a traveling wave tube.

【0011】本発明の第2の実施例として、ボロンナイ
トライドの誘電体支柱にアルミナではなくベリリアをコ
ーティングした例をあげることができる。第1の実施例
と同じ進行波管に使用された場合には、図2により第1
の実施例と同様に帯電防止、電子ビーム軌道の乱れ防止
が期待できる上に、ベリリアはアルミナよりも熱伝導率
が高く、誘電率が小さいので、第1の実施例の場合より
も進行波管の放熱効果、効率の上昇が見込まれる。
As a second embodiment of the present invention, it is possible to cite an example in which a dielectric pillar of boron nitride is coated with beryllia instead of alumina. When used in the same traveling wave tube as in the first embodiment, the first
In the same manner as in the first embodiment, antistatic property and electron beam orbital disturbance prevention can be expected, and beryllia has a higher thermal conductivity and a lower dielectric constant than alumina. It is expected that the heat dissipation effect and efficiency will be increased.

【0012】なお、アルミナやベリリアの誘電体のコー
ティングは、CVDまたはイオンプレーティングによっ
て行うことができる。
The alumina or beryllia dielectric coating can be performed by CVD or ion plating.

【0013】[0013]

【発明の効果】以上説明したように、本発明の進行波管
用誘電体支柱は、進行波管の陰極・高周波回路間の電圧
をE(v)として、eE(ev)の1次電子が入射した
場合の2次電子放出比が1に等しいかそれ以上である誘
電体を表面にコーディングしてあるので、誘電体支柱の
帯電量がおさえられ、高周波回路を通過する電子ビーム
を乱さないという効果を有する。
As described above, in the dielectric support for a traveling wave tube of the present invention, the primary electron of eE (ev) is incident with the voltage between the cathode and the high frequency circuit of the traveling wave tube being E (v). In this case, the secondary electron emission ratio is equal to or more than 1, and the surface is coated with a dielectric, so that the charge of the dielectric support is suppressed and the electron beam passing through the high frequency circuit is not disturbed. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の誘電体支柱を示す断面
図である。
FIG. 1 is a cross-sectional view showing a dielectric pillar according to a first embodiment of the present invention.

【図2】誘電体の2次電子放出比を示す図である。FIG. 2 is a diagram showing a secondary electron emission ratio of a dielectric.

【図3】進行波管の高周波回路部の構造を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing the structure of a high frequency circuit section of a traveling wave tube.

【図4】従来の誘電体支柱を示す断面図である。FIG. 4 is a cross-sectional view showing a conventional dielectric strut.

【符号の説明】[Explanation of symbols]

1 BN支柱 2 アルミナコーティング層 3 高周波回路 4 金属パイプ 5,6 誘電体支柱 1 BN support 2 Alumina coating layer 3 High frequency circuit 4 Metal pipe 5,6 Dielectric support

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 進行波管の高周波回路を支持する誘電体
支柱において、前記進行波管の陰極・高周波回路間の電
圧をE(V),電子電荷をe(Coul)として,eE
(eV)の1次電子が入射した場合の2次電子放出比が
1に等しいかそれ以上である誘電体を表面にコーティン
グしてあること特徴とする進行波管用誘電体支柱。
1. A dielectric strut for supporting a high-frequency circuit of a traveling-wave tube, wherein the voltage between the cathode and the high-frequency circuit of the traveling-wave tube is E (V), and the electronic charge is e (Coul), eE
A dielectric column for a traveling-wave tube, characterized in that the surface thereof is coated with a dielectric having a secondary electron emission ratio equal to or more than 1 when primary electrons of (eV) are incident.
【請求項2】 コーティングする誘電体がアルミナであ
る請求項1記載の進行波管用誘電体支柱。
2. The dielectric pillar for a traveling wave tube according to claim 1, wherein the dielectric to be coated is alumina.
【請求項3】 コーティングする誘電体がベリリアであ
る請求項1記載の進行波管用誘電体支柱。
3. A dielectric support for a traveling wave tube according to claim 1, wherein the dielectric to be coated is beryllia.
JP24866691A 1991-09-27 1991-09-27 Dielectric support for travelling wave tube Pending JPH0589788A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24866691A JPH0589788A (en) 1991-09-27 1991-09-27 Dielectric support for travelling wave tube
EP92308726A EP0534762A1 (en) 1991-09-27 1992-09-24 Dielectric support rod for a traveling-wave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24866691A JPH0589788A (en) 1991-09-27 1991-09-27 Dielectric support for travelling wave tube

Publications (1)

Publication Number Publication Date
JPH0589788A true JPH0589788A (en) 1993-04-09

Family

ID=17181536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24866691A Pending JPH0589788A (en) 1991-09-27 1991-09-27 Dielectric support for travelling wave tube

Country Status (2)

Country Link
EP (1) EP0534762A1 (en)
JP (1) JPH0589788A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702388A1 (en) 1994-08-17 1996-03-20 Kabushiki Kaisha Toshiba Slow-wave circuit assembly for traveling-wave tube and method of manufacturing a slow-wave circuit assembly
JP2006134751A (en) * 2004-11-08 2006-05-25 Nec Microwave Inc Electron tube
JP2010186714A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Plasma igniting device
CN114538933A (en) * 2020-11-24 2022-05-27 娄底市安地亚斯电子陶瓷有限公司 Method for manufacturing travelling wave tube clamping rod

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2946989B2 (en) * 1993-02-03 1999-09-13 日本電気株式会社 Spiral slow-wave circuit structure and method of manufacturing the same
FR2883409B1 (en) * 2005-03-18 2007-04-27 Thales Sa METHOD FOR MANUFACTURING A TOP WITH REDUCED CHARGE EFFECT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL92638C (en) * 1953-12-10
US3466494A (en) * 1968-05-01 1969-09-09 Siemens Ag Traveling wave tube with delay line supports having a lossy layer and an insulation layer
DE3235753A1 (en) * 1982-09-27 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Travelling wave tube having a helical delay line
FR2629634B1 (en) * 1984-12-18 1990-10-12 Thomson Csf PROGRESSIVE WAVE TUBE HAVING A PROPELLER-TYPE DELAY LINE FIXED TO A SLEEVE THROUGH BORON NITRIDE DIELECTRIC SUPPORT
US5038076A (en) * 1989-05-04 1991-08-06 Raytheon Company Slow wave delay line structure having support rods coated by a dielectric material to prevent rod charging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702388A1 (en) 1994-08-17 1996-03-20 Kabushiki Kaisha Toshiba Slow-wave circuit assembly for traveling-wave tube and method of manufacturing a slow-wave circuit assembly
JP2006134751A (en) * 2004-11-08 2006-05-25 Nec Microwave Inc Electron tube
JP2010186714A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Plasma igniting device
CN114538933A (en) * 2020-11-24 2022-05-27 娄底市安地亚斯电子陶瓷有限公司 Method for manufacturing travelling wave tube clamping rod

Also Published As

Publication number Publication date
EP0534762A1 (en) 1993-03-31

Similar Documents

Publication Publication Date Title
US6364958B1 (en) Plasma assisted semiconductor substrate processing chamber having a plurality of ground path bridges
JPS59140375A (en) Magnetron electrode for use in low pressure chamber of plasma treatment device
US5796211A (en) Microwave vacuum tube devices employing electron sources comprising activated ultrafine diamonds
US4716340A (en) Pre-ionization aided sputter gun
JP3546945B2 (en) Cold cathode device
US3702951A (en) Electrostatic collector for charged particles
JPH0589788A (en) Dielectric support for travelling wave tube
US5461282A (en) Advanced center post electron gun
JP3156763B2 (en) Electrode voltage application method and apparatus for cold cathode mounted electron tube
JPS634308B2 (en)
JPS63939A (en) Collector of traveling wave tube
JP3147227B2 (en) Cold cathode electron gun
JP3225283B2 (en) Surface treatment equipment
JPH11232995A (en) Method for operating electron tube
TW202214889A (en) Film forming device
JPH08319588A (en) Plasma etching device
JP3156464B2 (en) Insulating ceramics for microwave tubes
JP3334694B2 (en) Traveling wave tube
US7071604B2 (en) Electron source
JP3022504B2 (en) Self-biased collector for linear electron beam microwave tubes.
JPS61208799A (en) Fast atomic beam source unit
CA1065386A (en) Electron tube provided with a cylindrical ceramic envelope part
US5466359A (en) Method of manufacturing microwave tube collector
JPH07207471A (en) Plasma etching device
JPH11256315A (en) Vapor deposition source and vapor deposition apparatus