JPH0588078A - Heterogeneous lens - Google Patents

Heterogeneous lens

Info

Publication number
JPH0588078A
JPH0588078A JP12187691A JP12187691A JPH0588078A JP H0588078 A JPH0588078 A JP H0588078A JP 12187691 A JP12187691 A JP 12187691A JP 12187691 A JP12187691 A JP 12187691A JP H0588078 A JPH0588078 A JP H0588078A
Authority
JP
Japan
Prior art keywords
refractive index
lens
distribution
medium
radial type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12187691A
Other languages
Japanese (ja)
Other versions
JP3079497B2 (en
Inventor
Hirobumi Tsuchida
博文 槌田
Norihiko Aoki
法彦 青木
Toshiyuki Nagaoka
利之 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP03121876A priority Critical patent/JP3079497B2/en
Publication of JPH0588078A publication Critical patent/JPH0588078A/en
Application granted granted Critical
Publication of JP3079497B2 publication Critical patent/JP3079497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a bright lens system which is easily manufactured and has a small maximum refractive index difference and a large lens diameter by making the refractive index distribution of a radial tape heterogeneous lens discontinuous. CONSTITUTION:The refractive index distribution of the radial type heterogeneous lens whose refractive index varies radially with the distance from the optical axis is made discontinuous. The refracting power phiM of the medium of the radial type heterogeneous lens is determined by the distribution coefficient N1 of a heterogeneous lens and the thickness (t) of the heterogeneous lens judging from an expression I. Here, when the thickness (t) of the lens is fixed, the refracting power of the medium is nearly determined by N1. Therefore, not the refracting index itself, but the inclination of the refractive index distribution determines the refracting power of the medium of the radial type heterogeneous lens. For the purpose, the part of the distribution is made discontinuous without varying the gradient of the distribution to vary the refractive index NO of a base, thereby reducing the maximum refractive index difference without varying the refracting power nor diameter of the lens system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光軸から半径方向に離
れるにしたがって屈折率が変化するラジアル型不均質レ
ンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radial type inhomogeneous lens whose refractive index changes with distance from the optical axis in the radial direction.

【0002】[0002]

【従来の技術】光軸から半径方向に離れるにしたがって
屈折率が変化するラジアル型不均質レンズは、平板でも
集光作用を有することが知られており、レンズの屈折率
分布の選定によって球面を良好に補正出来る。
2. Description of the Related Art It is known that a radial type inhomogeneous lens whose refractive index changes with distance from the optical axis in the radial direction has a condensing function even on a flat plate, and a spherical surface can be formed by selecting the refractive index distribution of the lens. Can be corrected well.

【0003】またアプライド・オプティクス、第21
巻、993頁〜に記載されているように、ラジアル型不
均質レンズの面に曲率をつけることによってさらに高度
な収差補正を行なうこともできる。
Applied Optics, No. 21
As described in Vol. 3, page 993-, more advanced aberration correction can be performed by giving a curvature to the surface of the radial type inhomogeneous lens.

【0004】このラジアル型不均質レンズの屈折率分布
は、光軸と直交する方向の距離をy、半径yのところで
の屈折率をn(y) 、光軸上(ベース)の屈折率をN0 、
分布係数をN1 ,N2 とすると、以下の式(a)で表わ
される。 n(y) =N0 +N1 y2 +N2 y4 +… (a) 又このラジアル型不均質レンズの媒質は、おおむね下記
式(b)で与えられる屈折力を持つ。 φM ≒ -2・N1・t (b) ただしφM は媒質の屈折力、tは不均質レンズの厚さで
ある。
The refractive index distribution of this radial type inhomogeneous lens has a distance y in the direction orthogonal to the optical axis, a refractive index n (y) at a radius y, and a refractive index N0 on the optical axis (base). ,
When the distribution coefficients are N1 and N2, they are expressed by the following equation (a). n (y) = N0 + N1 y 2 + N2 y 4 + ... (a) The medium of the radial type heterogeneity lens has a refractive power substantially given by the following formula (b). φM ≈ −2 · N1 · t (b) where φM is the refractive power of the medium and t is the thickness of the inhomogeneous lens.

【0005】このように、ラジアル型不均質レンズは、
レンズの形状が平板であっても、媒質で屈折力を持つ。
そして平板レンズの場合は、式(b)のφM の値がその
ままレンズの屈折力になる。
As described above, the radial type inhomogeneous lens is
Even if the lens has a flat plate shape, it has a refractive power in the medium.
In the case of a flat lens, the value of φM in equation (b) becomes the refractive power of the lens as it is.

【0006】式(b)から、媒質の屈折力を大きくする
ためには、N1 又はtを大にすればよいことがわかる。
しかしtを大にすると、レンズの厚さが大になり、その
結果、屈折率分布の最大屈折率差ΔNが大になる。
From the equation (b), it can be seen that the refractive power of the medium can be increased by increasing N1 or t.
However, when t is increased, the thickness of the lens is increased, and as a result, the maximum refractive index difference ΔN of the refractive index distribution is increased.

【0007】このようなラジアル型不均質媒質を用いた
平板レンズの従来例を次に示す。 (不均質平板レンズ) f=51.06 ,F/2.55 r1 =∞ d1 =10.000 r2 =∞ 分布係数 N0 =1.6000,N1 =-1.0000 ×10-3,N2 以上は0、
φM =0.01959 ΔN=0.1 この従来例はφM =0.01959(f=51.06)
でその屈折率分布は、その断面が図7に表わされるよう
な放物状である。実際の分布は、図7を光軸のまわりに
回転させたものである。又この図7からも分かるように
最大屈折率差ΔNは0.1である。
A conventional example of a flat plate lens using such a radial type inhomogeneous medium is shown below. (Heterogeneous flat lens) f = 51.06, F / 2.55 r1 = ∞ d1 = 10000.r2 = ∞ Distribution coefficient N0 = 1.6000, N1 = -1.0000 × 10 -3 , N2 and above is 0,
φ M = 0.01959 ΔN = 0.1 In this conventional example, φ M = 0.01959 (f = 51.06)
The refractive index distribution is parabolic in cross section as shown in FIG. The actual distribution is obtained by rotating FIG. 7 around the optical axis. Further, as can be seen from FIG. 7, the maximum refractive index difference ΔN is 0.1.

【0008】この平板レンズに平行光線を入射させた時
の集光状況は、図8の通りである。又その時の球面収差
は図9の通りである。尚この例では、簡単のためにN1
の係数までしか用いずN2 以上は0であるが、高次の係
数も用いることによって更に球面収差を良好に補正でき
る。
FIG. 8 shows the condensing state when parallel rays are incident on this flat lens. The spherical aberration at that time is as shown in FIG. In this example, for simplicity, N1
However, spherical aberration can be satisfactorily corrected by using a higher-order coefficient.

【0009】上記の例は、設計例であるが、このレンズ
を実際に作る場合は、ΔNが大きくなればなるほどその
作製が難しくなる。それは、ΔNを大きくしようとすれ
ばする程、媒質内のガラスの組成比を大きく変化させな
ければならないからである。したがって、現状では作製
し得るΔNには限度があり、そのため制限されたΔNで
媒質に大きな屈折力を持たせようとするとレンズの径が
小さい暗いレンズ系になる。
Although the above example is a design example, when actually manufacturing this lens, it becomes more difficult to manufacture as ΔN becomes larger. This is because the composition ratio of the glass in the medium must be changed more as the ΔN is increased. Therefore, at present, there is a limit to the ΔN that can be manufactured, and therefore, if the medium is made to have a large refractive power with the limited ΔN, a dark lens system with a small lens diameter is obtained.

【0010】[0010]

【発明が解決しようとする課題】本発明は、光軸から半
径方向に離れるにしたがって屈折率が変化するラジアル
型不均質レンズであって、現在実際に作製が容易な小さ
いΔNで、レンズの径の大きい明るいレンズを提供する
ことを目的としている。
DISCLOSURE OF THE INVENTION The present invention is a radial type inhomogeneous lens whose refractive index changes with the distance from the optical axis in the radial direction. The aim is to provide a large bright lens.

【0011】[0011]

【課題を解決するための手段】本発明のレンズは、光軸
から半径方向に離れるにしたがって屈折率の変化するラ
ジアル型不均質レンズでその屈折率分布が図1に示すよ
うに不連続である。式(b)から、N1 とtによってラ
ジアル型不均質レンズの媒質の屈折力はほぼきまること
がわかる。ここで、レンズの厚さtを固定して考える
と、N1 で媒質の屈折力がほぼ決まる。したがって、ラ
ジアル型不均質レンズの媒質の屈折力を決めるのは屈折
率そのものではなく、屈折率分布の傾きであるといえ
る。つまり、ベースの屈折率N0 は媒質の屈折力に影響
を与えない。したがって図1に示すように分布の勾配を
変化させないようにして、分布の一部を不連続にしてベ
ースの屈折率N0 を変化させると、レンズ系の屈折力、
口径を変化させることなしに最大屈折率差を小さくする
ことが出来る。
The lens of the present invention is a radial type inhomogeneous lens whose refractive index changes with distance from the optical axis in the radial direction, and its refractive index distribution is discontinuous as shown in FIG. .. From the equation (b), it can be seen that the refractive power of the medium of the radial type inhomogeneous lens is substantially different depending on N1 and t. Here, when the thickness t of the lens is fixed, N1 determines the refractive power of the medium. Therefore, it can be said that it is not the refractive index itself but the gradient of the refractive index distribution that determines the refractive power of the medium of the radial type inhomogeneous lens. That is, the refractive index N0 of the base does not affect the refractive power of the medium. Therefore, if the gradient of the distribution is not changed as shown in FIG. 1 and a part of the distribution is discontinuous and the refractive index N0 of the base is changed, the refractive power of the lens system becomes
The maximum difference in refractive index can be reduced without changing the aperture.

【0012】図1で、本発明の領域Iの部分のベースポ
イントがA(屈折率1.55)領域IIの部分のベースポ
イントがB(屈折率1.6)となる。
In FIG. 1, the base point of the region I of the present invention is A (refractive index 1.55) and the base point of the region II is B (refractive index 1.6).

【0013】このようにして1ケ所の不連続部分をつけ
ることにより、必要なΔNは約半分になる。図1より従
来の場合の最大屈折率差は0.1であるが、不連続部分
を設けた時の最大屈折率差は0.05となっている。図
1では、領域Iの最大の屈折率差と領域IIの最大屈折率
差を等しく0.05としている。これは必ずしも等しく
する必要はないが、等しくした方がレンズ系全体の最大
屈折率差ΔNを小さくすることが出来る。
By adding one discontinuous portion in this way, the required ΔN becomes about half. From FIG. 1, the maximum refractive index difference in the conventional case is 0.1, but the maximum refractive index difference when the discontinuous portion is provided is 0.05. In FIG. 1, the maximum difference in refractive index in the region I and the maximum difference in refractive index in the region II are equal to 0.05. This does not necessarily have to be the same, but it is possible to reduce the maximum refractive index difference ΔN of the entire lens system by making them equal.

【0014】また領域Iと領域IIとでは、係数N1 をほ
ぼ等しくすることが望ましい。これをほぼ等しくすれば
領域Iと領域IIがほぼ同じ屈折力を持つことになる。
Further, it is desirable that the coefficient N1 be substantially equal in the areas I and II. If this is made almost equal, the regions I and II will have almost the same refractive power.

【0015】一方各領域における係数N1 の違いの許容
量はレンズ系により異なるが、集光レンズ等の場合10
%程度であると考えられる。もしN1 の値が各領域で極
端に異なるといわゆる2重焦点になり、好ましくない。
On the other hand, the permissible amount of the difference in the coefficient N1 in each region differs depending on the lens system.
It is considered to be about%. If the value of N1 is extremely different in each area, a so-called double focal point is obtained, which is not preferable.

【0016】また不連続部分の数を増やすことにより最
大屈折率差ΔNを更に小さくすることが出来る。
Further, the maximum refractive index difference ΔN can be further reduced by increasing the number of discontinuous portions.

【0017】これまでの説明では、媒質の屈折力を近似
式(b)を用いていたが、この屈折力φm は、厳密には
ジヤーナル オブ ザ オプチカル ソサエティ オブ
アメリカ 61巻 879頁〜に記載されているよう
に、N1 <0の場合、次の式で表わされる。 φm =−2N1 ・(sinαt/α) (c) α2 =|2N1/N0 | この式(c)からわかるように、媒質の屈折力φm は、
N0 にも影響される。しかしその度合いはほんの僅かで
あって、厳密な式を用いた場合でも、いままでの議論は
ほぼ成立つ。ただし、レンズ系に求められる収差の許容
量が、小さい場合は、この厳密な式(c)を用いて計算
するか、実際に光線追跡を行なって計算することが望ま
しい。
In the above description, the refractive power of the medium is approximated by the equation (b), but this refractive power φm is strictly described in Journal of the Optical Society of America, Vol. 61, p. 879-. As described above, when N1 <0, it is expressed by the following equation. φ m = −2N1 · (sin αt / α) (c) α 2 = | 2N1 / N0 | As can be seen from this equation (c), the refractive power φm of the medium is
It is also affected by N0. However, the degree is very small, and even if the exact formula is used, the arguments so far are almost valid. However, when the allowable amount of aberration required for the lens system is small, it is desirable to calculate using this strict formula (c) or actually perform ray tracing.

【0018】[0018]

【実施例】次に本発明の不均質レンズの各実施例を示
す。 実施例1 焦点距離f=51.09 ,F/2.56 面番 曲率半径 面間隔 有効半径 媒質 波長587.56nm(dライン) 1 ∞ 10.000 10.0 ラジアル型不均質 2 ∞ 10.0 ラジアル型不均質の係数 |y|< 3.54 のとき N0 =1.5500,N1 =-1.0000 ×10-3, N2 以上は0 3.54<|y|<5 のとき N0 =1.6000,N1 =-1.0000 ×10-3, N2 以上は0 φm =0.01957 ,ΔN=0.05 実施例2 焦点距離f=51.10 ,F/2.56 面番 曲率半径 面間隔 有効半径 媒質 波長587.56nm(dライン) 1 ∞ 10.000 10.0 ラジアル型不均質 2 ∞ 10.0 ラジアル型不均質の係数 |y|< 2.5のとき N0 =1.5250,N1 =-1.0000 ×10-3, N2 以上は0 2.5 <|y|<3.54のとき N0 =1.5500,N1 =-1.0000 ×10-3 N2 以上は0 3.54<|y|<4.33のとき N0 =1.5750,N1 =-1.0000 ×10-3 N2 以上は0 4.33<|y|<5 のとき N0 =1.6000,N1 =-1.0000 ×10-3 N2 以上は0 φm =0.01957 ,ΔN=0.025 実施例1は、断面が図2に示すような屈折率分布を持つ
もので、分布中1カ所に不連続部分を有している。レン
ズ系のスペックは、前述の従来例とほとんど同じであ
る。
EXAMPLES Examples of the inhomogeneous lens of the present invention will be shown below. Example 1 Focal length f = 51.09, F / 2.56 Surface number Curvature radius Surface spacing Effective radius Medium Wavelength 587.56 nm (d line) 1 ∞ 10.000 10.0 Radial inhomogeneity 2 ∞ 10.0 Radial inhomogeneity coefficient | y | <3.54 When N0 = 1.5500, N1 = -1.0000 × 10 -3 , N2 or more is 0 3.54 <| y | <5 When N0 = 1.6000, N1 = -1.0000 × 10 -3 , N2 or more is 0 φm = 0.01957, ΔN = 0.05 Example 2 Focal length f = 51.10, F / 2.56 Surface number Curvature radius Radius Surface spacing Effective radius Medium Wavelength 587.56nm (d line) 1 ∞ 10.000 10.0 Radial inhomogeneity 2 ∞ 10.0 Radial inhomogeneity coefficient | y | When <2.5, N0 = 1.5250, N1 = -1.0000 × 10 -3 , N2 or more is 0 2.5 <| y | <3.54 When N0 = 1.5500, N1 = -1.0000 × 10 -3 N2 or more is 0 3.54 <| y When <4.33, N0 = 1.5750, N1 = -1.0000 × 10 -3 N2 0 or more When 4.33 <| y | <5 N0 = 1.6000, N1 = -1.0000 For φ10 −3 N 2 or more, 0 φm = 0.01957, ΔN = 0.025 In Example 1, the cross section has a refractive index distribution as shown in FIG. 2, and one discontinuous portion is present in the distribution. The specifications of the lens system are almost the same as the above-mentioned conventional example.

【0019】この実施例のレンズ系に平行光線を入射さ
せた時の光線の集光状況は、図3に示す通りであり、そ
の時の球面収差は図3の通りである。これら図からわか
るように、光線は前述の従来例とほぼ同じように集光す
ることがわかる。図4に示す球面収差に不連続部分がみ
られるが、これは屈折率分布の不連続部分に対応してい
る。又不連続部分の近傍で、球面収差が値を持たないと
ころがあるが、これは、不連続な界面で光線が全反射す
るためである。
When the parallel light rays are incident on the lens system of this embodiment, the light rays are condensed as shown in FIG. 3, and the spherical aberration at that time is as shown in FIG. As can be seen from these figures, the light rays are condensed in substantially the same manner as the above-mentioned conventional example. The spherical aberration shown in FIG. 4 has a discontinuous portion, which corresponds to the discontinuous portion of the refractive index distribution. Further, there is a portion where the spherical aberration has no value near the discontinuous portion, because the light rays are totally reflected at the discontinuous interface.

【0020】この実施例1は、最大屈折率差ΔNが0.
05で従来例の半分になっており、不均質素材作成上非
常に有利である。又この実施例でΔNを従来例と同じに
すれば、口径が従来例の1.4倍になり明るいレンズ系
にすることが出来る。
In Example 1, the maximum refractive index difference ΔN is 0.
The value of 05 is half that of the conventional example, which is very advantageous in producing a heterogeneous material. If .DELTA.N is the same as that of the conventional example in this embodiment, the aperture becomes 1.4 times that of the conventional example, and a bright lens system can be obtained.

【0021】この実施例1は、係数N1 の値を、従来例
と同じ値にしているが、媒質の屈折力は、従来例と微妙
に異なっている。それは前述の媒質の屈折力を表わす式
(b)の近似の影響である。したがって、屈折力を従来
例と全く同じにしたい場合は、N1 の値を若干変化させ
ればよい。
In the first embodiment, the value of the coefficient N1 is the same as that of the conventional example, but the refractive power of the medium is slightly different from that of the conventional example. It is an influence of the approximation of the equation (b) representing the refractive power of the medium described above. Therefore, when it is desired to make the refracting power exactly the same as that of the conventional example, the value of N1 may be slightly changed.

【0022】また実施例1は、N2 以上の高次の係数を
用いていないが、高次の係数を用いることによって、球
面収差の形をコントロールでき、収差を更に良好に補正
できる。
Further, although the first embodiment does not use the higher-order coefficient of N2 or more, the shape of the spherical aberration can be controlled by using the higher-order coefficient, and the aberration can be corrected more favorably.

【0023】実施例2は、断面が図5に示す屈折率分布
を持つものであり、分布の3カ所に不連続部分を持って
いる。スペックは、前述の従来例とほとんど同じであ
る。この実施例2のレンズ系に平行光線を入射した時の
球面収差は、図6に示す通りである。この図より光線
は、従来例とほぼ同様に集光することがわかる。球面収
差に不連続な部分が見られるのは、実施例1と同様に、
屈折率分布の不連続部分に対応したものである。この不
連続部分の近傍で球面収差が値を持たないところがある
のは、実施例1同様全反射によるものである。
In Example 2, the cross section has the refractive index distribution shown in FIG. 5, and the distribution has three discontinuous portions. The specifications are almost the same as the above-mentioned conventional example. Spherical aberration when parallel rays are incident on the lens system of the second embodiment is as shown in FIG. From this figure, it can be seen that the light rays are condensed in almost the same manner as in the conventional example. The discontinuous portion of the spherical aberration is seen as in the first embodiment.
This corresponds to the discontinuous portion of the refractive index distribution. The spherical aberration has no value in the vicinity of this discontinuous portion due to total internal reflection as in the first embodiment.

【0024】この実施例2は、最大屈折率差ΔNが0.
025で、従来例に比べ1/4 になっており、不均質素材
製作上、非常に有利である。又ΔNを従来例と同じにす
れば、口径が従来のものに比べて2倍程度の明るいレン
ズ系とすることが出来る。また実施例1と同様にN2 以
上の係数を用いていないが、これを用いれば、収差を一
層良好に補正できる。
In the second embodiment, the maximum refractive index difference ΔN is 0.
This is 025, which is 1/4 of that of the conventional example, which is very advantageous in manufacturing a heterogeneous material. Further, if ΔN is the same as that of the conventional example, a bright lens system having a diameter about twice that of the conventional one can be obtained. Further, as in Example 1, no coefficient of N2 or more is used, but if this is used, aberrations can be corrected even better.

【0025】[0025]

【発明の効果】本発明は、光軸から半径方向に離れるに
したがって屈折率の変化するラジアル型不均質レンズで
あって、現在実際に作成が容易な小さな最大屈折率差
で、レンズ径の大きい明るいレンズ系を達成し得たもの
である。
INDUSTRIAL APPLICABILITY The present invention is a radial type inhomogeneous lens whose refractive index changes with distance from the optical axis in the radial direction. At present, it is easy to actually make a small maximum refractive index difference and a large lens diameter It was possible to achieve a bright lens system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す図。FIG. 1 is a diagram showing the principle of the present invention.

【図2】実施例1の分布を示す図。FIG. 2 is a diagram showing a distribution of Example 1.

【図3】実施例1の光線の集光状況を示す図。FIG. 3 is a diagram showing how light rays are condensed in Example 1.

【図4】実施例1の球面収差を表す図。FIG. 4 is a diagram showing spherical aberration of Example 1.

【図5】実施例2の分布を示す図。FIG. 5 is a diagram showing a distribution of Example 2.

【図6】実施例2の球面収差を表す図。FIG. 6 is a diagram showing spherical aberration of the second embodiment.

【図7】従来の分布を示す図。FIG. 7 is a diagram showing a conventional distribution.

【図8】従来例の光線の集光状況を示す図。FIG. 8 is a view showing a light collecting state of a conventional example.

【図9】従来例の球面収差を表す図。FIG. 9 is a diagram showing a spherical aberration of a conventional example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光軸から半径方向に離れるにしたがって屈
折率の変化するラジアル型不均質レンズにおいてその屈
折率分布が不連続であることを特徴とするレンズ。
1. A radial type inhomogeneous lens whose refractive index changes with distance from the optical axis in the radial direction, wherein the refractive index distribution is discontinuous.
【請求項2】屈折率分布を表す係数のうちN1 の値がほ
ぼ一定であることを特徴とする請求項1のレンズ。
2. The lens according to claim 1, wherein the value of N1 among the coefficients representing the refractive index distribution is substantially constant.
JP03121876A 1991-04-25 1991-04-25 Heterogeneous lens Expired - Fee Related JP3079497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03121876A JP3079497B2 (en) 1991-04-25 1991-04-25 Heterogeneous lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03121876A JP3079497B2 (en) 1991-04-25 1991-04-25 Heterogeneous lens

Publications (2)

Publication Number Publication Date
JPH0588078A true JPH0588078A (en) 1993-04-09
JP3079497B2 JP3079497B2 (en) 2000-08-21

Family

ID=14822114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03121876A Expired - Fee Related JP3079497B2 (en) 1991-04-25 1991-04-25 Heterogeneous lens

Country Status (1)

Country Link
JP (1) JP3079497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100587995B1 (en) * 1998-03-17 2006-06-08 소니 가부시끼 가이샤 Image pickup device
JP2012078818A (en) * 2010-09-10 2012-04-19 Canon Inc Method for manufacturing lens, device for manufacturing lens, and method for manufacturing optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100587995B1 (en) * 1998-03-17 2006-06-08 소니 가부시끼 가이샤 Image pickup device
JP2012078818A (en) * 2010-09-10 2012-04-19 Canon Inc Method for manufacturing lens, device for manufacturing lens, and method for manufacturing optical device

Also Published As

Publication number Publication date
JP3079497B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
US5138495A (en) Diffractive optical lens
JPH0442650B2 (en)
US5159495A (en) Graded index optical elements and catadioptric optical systems
JPH0572477A (en) Afocal optical device
JP2004213006A (en) Hybrid achromatic optical lens and its manufacturing method
JPS6048727B2 (en) scanning optical system
US5631763A (en) Fθ lens system in a laser scanning unit
JPS59149312A (en) Photographic lens of high aperture ratio
JPH01293311A (en) Collimator lens for optical memory
JPH04215610A (en) Element of single-hybrid reflecting and refracting optical system
US7800806B1 (en) Two-element Fθ lens with short focal distance for laser scanning unit
JPH0588078A (en) Heterogeneous lens
JPH02101416A (en) Objective lens for optical memory
JPS61277913A (en) Image forming lens
RU2010272C1 (en) Reflecting lens of telescope
JP4127883B2 (en) Diffraction lens design method
JP2842620B2 (en) Collimating lens for optical recording / reproducing device
CN110333601B (en) High-resolution imaging system with micro-optical element
JPS581762B2 (en) Tight lens
RU2174245C2 (en) Lens with correction for aberrations
JPH0774857B2 (en) Shooting lens system
JPH0772385A (en) Objective optical system for infrared ray
RU2222819C2 (en) Gradient lens ( variants )
JPH06308382A (en) Optical scanning system
JPS61179409A (en) Objective of optical information reader

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000530

LAPS Cancellation because of no payment of annual fees