JPH0572477A - Afocal optical device - Google Patents

Afocal optical device

Info

Publication number
JPH0572477A
JPH0572477A JP23505091A JP23505091A JPH0572477A JP H0572477 A JPH0572477 A JP H0572477A JP 23505091 A JP23505091 A JP 23505091A JP 23505091 A JP23505091 A JP 23505091A JP H0572477 A JPH0572477 A JP H0572477A
Authority
JP
Japan
Prior art keywords
mirror
reflecting surface
optical axis
angle
order aspherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23505091A
Other languages
Japanese (ja)
Inventor
Yuzuru Takashima
譲 高島
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP23505091A priority Critical patent/JPH0572477A/en
Publication of JPH0572477A publication Critical patent/JPH0572477A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE:To reduce the off-axis aberration at the maximum in-use field angle and to improve aberration characteristics over the entire in-use range by optimizing at least a circular cone constant between the circular cone coefficient and a high-order aspherical surface coefficient when the reflecting surfaces of a main and a subordinate mirror are made into high-order aspherical surfaces. CONSTITUTION:This afocal optical device consists of the main mirror 1 which has the concave reflecting surface 3 where a through-hole 2 that a light beam passes through is formed in the center part and the subordinate mirror 4 which has the convex reflecting surface 5 arranged opposite the through-hole 2. The reflecting surfaces 3 and 5 of the main mirror 1 and subordinate mirror 4 consists of the high-order aspherical surfaces which are based upon a rotary parabolic surface and determined by an equation I. Then at least the parameter (k) between the parameters (k) and An in the equation I is optimized. In the equation I, X is coordinates along an optical axis O, (h) coordinates in a direction crossing the optical axis O at right angles, (k) the cone constant, An the high-order aspherical surface coefficient, and (c) the center curvature.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は望遠鏡やビ−ム整形光学系などに用いられるアフォ−カル光学装置に関する。 BACKGROUND OF THE INVENTION This invention telescope and beauty - afocal used such beam shaping optical system - related local optical device.

【0002】 [0002]

【従来の技術】放物面からなる反射面を有する主鏡と副鏡とをカセグレン配置にすると、軸上無収差の非焦点系(アフォ−カル系)が得られる。 When BACKGROUND ART to primary mirror and a Cassegrain arrangement a secondary mirror having a reflecting surface made paraboloid, axial aplanatic-focus system (afocal - Cal system) can be obtained. しかしながら、光軸に対して所定の角度で傾斜した画角においては収差が存在する。 However, the aberration is present in a field angle which is inclined at a predetermined angle with respect to the optical axis. この収差を軸外収差という。 This aberration of off-axis aberration.

【0003】従来、アフォ−カル系の光学装置においては、軸外収差を補正するということがほとんど行われていなかった。 Conventionally, afocal - the optical device of the local system, is that to correct the off-axis aberration little was done. 図3(a)は従来のアフォ−カル光学系における画角と軸外収差との関係を示す。 3 (a) shows a conventional afocal - showing the relationship between the angle and the off-axis aberrations in the local optical system. この図から分かるように、軸外収差は画角が大きくなればなる程、大きくなる。 As can be seen from this figure, off-axis aberration enough to become the larger the angle of view increases. そのため、その光学系が軸外での使用を要求される場合、高い光学性能が得られないということがあった。 Therefore, the case where the optical system is required for use in off-axis, there is the fact that high optical performance can not be obtained.

【0004】 [0004]

【発明が解決しようとする課題】このように、従来のアフォ−カル光学装置は、画角が大きくなればなる程、収差も大きくなるので、軸外で使用する場合の光学性能が低下するということがあった。 THE INVENTION Problems to be Solved] Thus, conventional afocal - the local optical device, as the angle becomes the greater, since the aberration also increases, that the optical performance deteriorates when used off-axis it was a.

【0005】この発明は上記事情にもとづきなされたもので、その目的とするところは、使用画角が大きくなっても、その使用画角の範囲全体にわたって良好な収差特性が得られるようにしたアフォ−カル光学装置を提供することにある。 [0005] afocal This invention has been made based on the above circumstances, it is an object also increases the use angle was so good aberration characteristics can be obtained over the entire range of its use angle - to provide a local optical device.

【0006】 [0006]

【課題を解決するための手段】上記課題を解決するためにこの発明は、中心部に光線が通る通孔が形成された凹状反射面を有する主鏡と、上記通孔に対向して配置された凸状反射面を有する副鏡とから構成され、上記主鏡と副鏡との反射面は回転放物面を基本とし、下記式によって定められる高次非球面からなるとともに、光軸に対して傾いた所定の範囲内の画角における軸外収差が所定値以下となるよう、下記式中におけるk、A nのパラメ− SUMMARY OF THE INVENTION The present invention in order to solve the above problems, a primary mirror having a concave reflecting surface passing hole through which light beam is formed in the center portion, is disposed opposite to the through hole is composed of a secondary mirror having a convex reflecting surface, the reflecting surface of the primary mirror and the secondary mirror is basically a rotation paraboloid, together consisting of high order aspheric surface is defined by the following equation, with respect to the optical axis as the off-axis aberration at the angle within a predetermined range which is inclined Te is equal to or less than a predetermined value, k in the formula, the a n parameters -
タのうち、少なくともkが最適化されることを特徴とするアフォ−カル光学装置にある。 Of data, afocal and at least k is optimized - in local optical device.

【0007】 [0007]

【数2】 [Number 2] ただし、Xは光軸方向に沿う座標、hは光軸と直交する方向の座標、kは円錐定数、A nは高次非球面係数、c However, X is the coordinate along the optical axis direction, h is the direction of the coordinate perpendicular to the optical axis, k is a conic constant, A n higher-order aspherical coefficients, c
は中心曲率である。 It is the center of curvature.

【0008】 [0008]

【作用】上記構成によれば、使用される所定の範囲内の画角における軸外収差を所定値以下とすることができるから、その画角内における光学性能を向上させることができる。 According to the above arrangement, since it is possible to off-axis aberrations in angle within a predetermined range used below a predetermined value, it is possible to improve the optical performance at the field angles within.

【0009】 [0009]

【実施例】以下、この発明の一実施例を図面を参照して説明する。 EXAMPLES The following will be described with reference to the drawings an embodiment of the present invention. 図1はアフォ−カル光学装置を示し、同図中1は主鏡である。 Figure 1 is afocal - Cal shows an optical device in FIG. 1 is a primary mirror. この主鏡1には、中心部に光線Lが入射する通孔2が穿設されているとともに、通過側の一側面は回転放物面を基本とする高次非球面からなる凹状反射面3に形成されている。 The main mirror 1, the hole 2 the light beam L is incident is formed in the central portion, the concave reflecting surface 3 made of high order aspheric one side of the passage side of the basic paraboloid of revolution It is formed in.

【0010】上記主鏡1の凹状反射面3と対向する部位には、副鏡4が光学中心を上記主鏡1の光学中心と同一光軸O上に位置させて配置されている。 [0010] at a site facing the concave reflecting surface 3 of the main mirror 1, the secondary mirror 4 is arranged an optical center is positioned on the same optical axis on O and the optical center of the main mirror 1. この副鏡4の上記凹状反射面3と対向する面は、回転放物面を基本とする高次非球面からなる凸状反射面5に形成されていて、 The above concave reflecting surface 3 and the opposing surfaces of the secondary mirror 4, a paraboloid of revolution be formed in a convex shape reflecting surface 5 consisting of high order aspheric surface to the base,
この凸状反射面5と上記凹状反射面3とは焦点Fを共有して配置されている。 It is arranged to share the focal point F and the convex reflecting surface 5 and the concave reflecting surface 3. したがって、上記主鏡1の通孔2 Therefore, holes 2 of the main mirror 1
から光線Lが光軸Oと平行に入射すれば、その光線Lは副鏡4の凸状反射面5で拡大方向に反射して主鏡1の凹状反射面3に入射し、この凹状反射面3で上記光軸Oと平行に反射する。 If parallel incident beam L and the optical axis O from the light L is incident on the concave reflecting surface 3 of the main mirror 1 is reflected in the expanding direction by the convex reflecting surface 5 of the secondary mirror 4, the concave reflective surface parallel to reflections and the optical axis O in 3. 光線Lが光軸Oに対して所定の傾斜角度で上記通孔2から入射すれば、主鏡1の凹状反射面3 If entering from the through hole 2 at a predetermined inclination angle light L is the optical axis O, a concave reflecting surface 3 of the main mirror 1
で反射した光線Lは図1の鎖線で示すように光軸Oに対して傾斜し、角度rの画角が生じることになる。 In reflected light L is inclined with respect to the optical axis O as shown by a chain line in FIG. 1, so that the angle of the angle r is generated.

【0011】上記凹状反射面3と凸状反射面5とは、図2に示すように光軸O方向に沿う座標をX、光軸Oと直交する方向の座標をhとすると、次式による高次非球面に設定されている。 [0011] The above concave reflecting surface 3 and a convex reflecting surface 5, the coordinate along the optical axis O direction, as shown in FIG. 2 X, when the direction of the coordinate perpendicular to the optical axis O which is h, equal to: It is set to higher order aspheric.

【0012】 [0012]

【数3】 [Number 3]

【0013】上記(1)式において、kは円錐定数、A In the above (1), k is a conic constant, A
は4次非球面係数、Bは6次非球面係数、Cは8次非球面係数、Dは10次非球面係数、cは中心曲率である。 4. This aspherical coefficient, B represents 6th order aspherical coefficient, C represents 8th order aspherical coefficient, D represents 10th order aspherical coefficient, c is the center of curvature.
そして、上記各反射面3、5の形状を設定するにあたっては、円錐定数k、および4〜10次の非球面係数A〜 Then, when setting the shape of each reflecting surface 3 and 5, the conic constant k, and 4-10-order aspheric coefficients A~
Dの各パラメ−タを下記[表1]に示す例1〜例5のようにした。 Each of the D parameter - to the data as in Example 1 to Example 5 are shown in the following Table 1. つまり、各例において、4〜10次の非球面係数A〜Dは選択的に使用し、円錐定数は各例の全てに必ず使用した。 Specifically, in each example, 4 to 10-order aspherical coefficients A~D used selectively, the conic constant was always used in all the examples. なお、(1)式は(2)式から導出される。 Note that (1) is derived from equation (2).

【0014】 [0014]

【数4】 [Number 4]

【0015】すなわち、(1)式はl(エル)=5の場合を示している。 [0015] that is, the case (1) is l (el) = 5. ただし、(1)式における係数Aは(2)式における係数A 2 、同じく(1)式における係数Bは(2)式における係数A 3 、同じく(1)式における係数Cは(2)式における係数A 4 、同じく(1) However, (1) the coefficients A are (2) Factor A 2, also (1) factor in the equation B is (2) the coefficient in the equation A 3 in formula, also (1) coefficient C (2) in the equation in the equation factor A 4 in, also (1)
式における係数Dは(2)式における係数A 5となっている。 Factor D in formula has a coefficient A 5 in formula (2). なお、この実施例において、(1)式中にA 1 Incidentally, in this embodiment, A 1 h in (1)
2 2 の項がないのは、この2次項が(1)式中の Of there no terms, the second-order terms are (1) where the

【0016】 [0016]

【数5】 [Number 5] の項により、現わされることによる。 The term, due to being Genwa. また、l(エル) In addition, l (el)
は6以上であってもよいこと無論である。 Is of course that may be 6 or more.

【0017】 [0017]

【表1】 [Table 1]

【0018】下記[表2]は[表1]に示される例1〜 [0018] The following [Table 2] Example 1 shown in Table 1
5の円錐定数kおよび高次非球面係数A〜Dのパラメ− 5 conic constant k and higher order aspherical coefficients A~D of parameters -
タの使用形態において、これらパラメ−タを最適化した値を示す。 In usage of the data, these parameters - shows the optimized value data.

【0019】 [0019]

【表2】 [Table 2]

【0020】図3(b)は[表2]の例3にもとづく最適化によって主鏡1と副鏡4との反射面3、5を高次非球面化して収差配分した場合の画角と波面収差との関係を示し、使用画角0と、最大使用画角(この場合は1mr [0020] FIG. 3 (b) and angle in the case of aberration distribution and higher-order aspherical reflecting surfaces 3 and 5 of the main mirror 1 and the auxiliary mirror 4 by the optimization based on Example 3 of Table 2 shows the relationship between the wave front aberration, and use angle 0, the maximum use angle (in this case 1mr
ad)とでの波面収差がほぼ等しくなるよう設定した。 Wavefront aberration of de and ad) has set substantially equal as. つまり、光軸O上の収差を許し、光軸O外の収差を低減することで、従来に比べて使用最大画角における最大収差を十分に小さくし、使用画角全体にわたって良好な収差特性となるようにした。 In other words, allowing aberration on the optical axis O, to reduce the optical axis O outside of aberrations, sufficiently reduce the maximum aberration at the maximum angle of view used in comparison with the prior art, and good aberration properties throughout use angle It was as to become. それによって、使用画角全体にわたって波面収差を所定値以下にできるから、画角が0 Since thereby possible wavefront aberration below a predetermined value throughout use angle, angle 0
から1mradの範囲内で所定値以上の光学精度で使用することができる。 It can be used for a given value or more optical precision in the range of 1mrad from.

【0021】なお、図3(a)、(b)は光線Lの波長λが780nm の場合の画角と、波面収差との関係を示し、 [0021] Incidentally, FIG. 3 (a), (b) shows the angle of view when the wavelength of the light beam L lambda is 780 nm, the relationship between the wavefront aberration,
最大使用画角が1mradのときに、従来は図3(a)のように波面収差が約λ/11(RMS)であったものが、反射面3、5をこの発明にもとづいて高次非球面化すると、 When the maximum use angle of 1 mrad, those wavefront aberration as in the prior art FIGS. 3 (a) was about λ / 11 (RMS) is higher non based reflective surfaces 3 and 5 with the present invention When the spherical surface of,
図3(b)に示すように最大使用画角1mradにおいて、 In the maximum use angle 1mrad as shown in FIG. 3 (b),
波面収差を約λ/22.7(RAS) に改善することができたことを示している。 It indicates that it was possible to improve the wavefront aberration of about λ / 22.7 (RAS). この発明は上記一実施例に限定されず、たとえば光線Lの光路中に補正レンズを配置し、軸外収差をさらに小さくするようにしてもよい。 This invention is the one not limited to the embodiments, for example, to place the correction lens in the optical path of the light beam L, may be further reduced off-axis aberrations.

【0022】 [0022]

【発明の効果】以上述べたようにこの発明は、アフォ− This invention, as described above, according to the present invention, the afocal -
カル光学系を構成する主鏡と副鏡の反射面を高次非球面化するに際して、円錐定数と高次非球面係数のうち、少なくとも上記円錐定数を最適化するようにした。 In higher order aspherical reflective surface of the primary mirror and the secondary mirror constituting the local optical system, of the conic constant and the higher order aspherical coefficients, and to optimize at least the conical constant.

【0023】そのため、軸外での使用が要求される場合、使用される最大画角における収差を従来に比べて小さくし、使用画角内全体における収差を所定値以下に平均化することができるから、使用画角全体にわたって光学的性能の向上が計れる。 [0023] Therefore, if the use of off-axis is required, it is possible to aberrations in the maximum angle of view which is used to smaller than the conventional averaging the aberrations across the used angle of view than a predetermined value from improvement in optical performance can be achieved throughout the use angle.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】この発明の一実施例の全体構成図。 [1] an overall configuration diagram of an embodiment of the present invention.

【図2】同じく反射面形状を設定する式におけるXとh [2] Also X and h in the formula for setting the reflection surface shape
との関係の説明図。 Illustration of the relationship between.

【図3】(a)は軸外収差を補正しない従来の反射面の画角と収差との関係を示すグラフ、(b)は軸外収差を補正した場合の反射面の画角と収差との関係を示すグラフ。 3 (a) is a graph showing the relationship between the angle of view and the aberration of the conventional reflection surface that does not correct the off-axis aberration, (b) is a view angle and the aberration of the reflective surface in the case of correcting the off-axis aberrations graph showing the relationship.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…主鏡、2…通孔、3…凹状反射面、4…副鏡、5… 1 ... main mirror, 2 ... hole, 3 ... concave reflecting surface, 4 ... secondary mirror, 5 ...
凸状反射面。 Convex reflecting surface.

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 中心部に光線が通る通孔が形成された凹状反射面を有する主鏡と、上記通孔に対向して配置された凸状反射面を有する副鏡とから構成され、上記主鏡と副鏡との反射面は回転放物面を基本とし、下記式によって定められる高次非球面からなるとともに、光軸に対して傾いた所定の範囲内の画角における軸外収差が所定値以下となるよう、下記式中におけるk、A nのパラメ− And 1. A primary mirror having a concave reflecting surface passing hole through which light beam is formed in the center, is composed of a secondary mirror having a convex reflecting surface arranged to face the through hole, the the reflecting surface of the primary mirror and the secondary mirror is basically a rotation paraboloid, together consisting of high order aspheric surface is defined by the following equation, off-axis aberrations in angle within a predetermined range which is inclined relative to the optical axis to be a predetermined value or less, k in the formula, the a n parameters -
    タのうち、少なくともkが最適化されることを特徴とするアフォ−カル光学装置。 Of data, afocal and at least k is optimized - local optical device. 【数1】 [Number 1] ただし、Xは上記光軸方向に沿う座標、hは上記光軸と直交する方向の座標、kは円錐定数、A nは高次非球面係数、cは中心曲率である。 However, X is the coordinate along the optical axis direction, h is the direction of the coordinate perpendicular to the optical axis, k is a conic constant, the A n higher-order aspheric coefficient, c is the center of curvature.
  2. 【請求項2】 画角が0のときと、最大使用画角とにおける収差がほぼ等しく設定されることを特徴とする請求項1記載のアフォ−カル光学装置。 Wherein the time field angle is zero, according to claim 1, wherein the aberrations in the maximum use angle is set substantially equal afocal - local optical device.
JP23505091A 1991-09-13 1991-09-13 Afocal optical device Pending JPH0572477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23505091A JPH0572477A (en) 1991-09-13 1991-09-13 Afocal optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23505091A JPH0572477A (en) 1991-09-13 1991-09-13 Afocal optical device

Publications (1)

Publication Number Publication Date
JPH0572477A true JPH0572477A (en) 1993-03-26

Family

ID=16980347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23505091A Pending JPH0572477A (en) 1991-09-13 1991-09-13 Afocal optical device

Country Status (1)

Country Link
JP (1) JPH0572477A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022114A (en) * 1998-05-01 2000-02-08 Nikon Corporation Anamorphic afocal beam shaping assembly
WO2008076710A1 (en) * 2006-12-13 2008-06-26 General Electric Company Optical imaging system and method for high speed and high resolution
JP2013508693A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Equipment for optically scanning and measuring the environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219515A (en) * 1982-06-01 1983-12-21 Texas Instruments Inc Reflex type infinite focus optical system
JPS62164010A (en) * 1986-01-16 1987-07-20 Ricoh Co Ltd Infrared ray camera
JPH0210282A (en) * 1988-06-29 1990-01-16 Oki Electric Ind Co Ltd Laser radar system
JPH0210283A (en) * 1988-06-29 1990-01-16 Oki Electric Ind Co Ltd Laser radar system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219515A (en) * 1982-06-01 1983-12-21 Texas Instruments Inc Reflex type infinite focus optical system
JPS62164010A (en) * 1986-01-16 1987-07-20 Ricoh Co Ltd Infrared ray camera
JPH0210282A (en) * 1988-06-29 1990-01-16 Oki Electric Ind Co Ltd Laser radar system
JPH0210283A (en) * 1988-06-29 1990-01-16 Oki Electric Ind Co Ltd Laser radar system

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022114A (en) * 1998-05-01 2000-02-08 Nikon Corporation Anamorphic afocal beam shaping assembly
WO2008076710A1 (en) * 2006-12-13 2008-06-26 General Electric Company Optical imaging system and method for high speed and high resolution
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2013508693A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Equipment for optically scanning and measuring the environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Similar Documents

Publication Publication Date Title
US3476463A (en) Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface
Wynne Ritchey-Chretien telescopes and extended field systems
US4812028A (en) Reflection type reduction projection optical system
KR920001122B1 (en) Laser scanning device and aspherical scanning lens
US5168386A (en) Flat field telecentric scanner
US5971551A (en) Nonimaging optical concentrators and illuminators
JP3072061B2 (en) Optical scanning device
JP2716211B2 (en) Grating tuned laser
JP3535710B2 (en) Optical element and an optical system using the same
JP3614294B2 (en) Light intensity conversion element and the optical device and the information storage device
CN1196953C (en) Luminous intensity distribution converter and optical data-storage system
US4240707A (en) All-reflective three element objective
JP3435311B2 (en) Information reading device
JP3153890B2 (en) Optical system for focusing and collected using a concave toroidal reflector
US5309276A (en) Catoptric optical system including concave and convex reflectors
US5285318A (en) Illumination system having an aspherical lens
EP0507344A1 (en) Post-objective type optical scanner
US5153778A (en) Powerless field-corrective lens
Agrawal et al. Preliminary design of large reflectors with flat facets
US5031976A (en) Catadioptric imaging system
US4737021A (en) Wide-field three-mirror collimator
US4205902A (en) Laser beam expander
KR960013802B1 (en) Lens
US5640283A (en) Wide field, long focal length, four mirror telescope
JPH0749450A (en) Projection lens system with little spherical chromatic aberration