JPH0587757B2 - - Google Patents

Info

Publication number
JPH0587757B2
JPH0587757B2 JP61114661A JP11466186A JPH0587757B2 JP H0587757 B2 JPH0587757 B2 JP H0587757B2 JP 61114661 A JP61114661 A JP 61114661A JP 11466186 A JP11466186 A JP 11466186A JP H0587757 B2 JPH0587757 B2 JP H0587757B2
Authority
JP
Japan
Prior art keywords
heat recovery
section
fluidized
combustion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61114661A
Other languages
Japanese (ja)
Other versions
JPS62272089A (en
Inventor
Tsutomu Higo
Naoki Inumaru
Shigeru Kosugi
Takahiro Ooshita
Hajime Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP11466186A priority Critical patent/JPS62272089A/en
Publication of JPS62272089A publication Critical patent/JPS62272089A/en
Publication of JPH0587757B2 publication Critical patent/JPH0587757B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市ごみ、産業廃棄物、石炭その他
の燃焼物を流動層により燃焼すると同時に、その
熱エネルギーを回収するための流動層からの熱回
収方法及びその装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for burning municipal waste, industrial waste, coal and other combustible materials in a fluidized bed, and at the same time recovering thermal energy from the fluidized bed. The present invention relates to a heat recovery method and apparatus.

〔従来の技術〕[Conventional technology]

従来、流動層ボイラなどの流動層からの熱回収
は、例えば第6図に示すように、炉31内床面に
設けられた分散板32下部の空気室34に供給さ
れる流動化ガス33により流動化される流動媒体
からなるベツド35内に伝熱管36が配備され、
投入された燃焼物37が流動燃焼し、その流動媒
体から熱を回収するようになつている。
Conventionally, heat recovery from a fluidized bed such as a fluidized bed boiler is carried out by fluidizing gas 33 supplied to an air chamber 34 below a distribution plate 32 provided on the floor surface of a furnace 31, as shown in FIG. 6, for example. A heat transfer tube 36 is disposed within a bed 35 made of a fluidized medium to be fluidized,
The input combustion material 37 is fluidized and combusted, and heat is recovered from the fluidized medium.

ところで、この種の流動層ボイラは、ベツド3
5内の発熱と吸熱のバランンスが設計時に想定し
た燃焼物37の特性特に発熱量に大きく依存する
ため、燃焼物を変更する場合は特性に応じてベツ
ド35内の伝熱面積を変更する必要があつた。ま
た、一つのベツド35のボイラ負荷は、流動層を
冷しながら流動状態と流動層温度を維持する関係
上、約80%程度しか下げられないために、幅広い
ターンダウン比を必要とする場合には、マルチベ
ツド式とする必要があり、制御が複雑になると共
に高価なものとなる。一方、燃焼物として石炭な
どを用いる場合には、粉砕を必要とし、その投入
はベツド35内へ均一に分散させるためにスプレ
ツダ等が必要となつていた。さらに、ベツド35
内の伝熱管36は、高い流動速度の流動媒体によ
る摩耗と燃焼による還元雰囲気中での激しい腐食
を生じ易いという多くの問題点を抱えていた。
By the way, this type of fluidized bed boiler has a bed of 3
The balance between heat generation and heat absorption in the bed 35 greatly depends on the characteristics, especially the calorific value, of the combustion object 37 assumed at the time of design, so when changing the combustion object, it is necessary to change the heat transfer area in the bed 35 according to the characteristics. It was hot. In addition, the boiler load of one bed 35 can only be reduced by about 80% due to the need to maintain the fluidized state and fluidized bed temperature while cooling the fluidized bed, so when a wide turndown ratio is required, The system needs to be of a multi-bed type, making control complicated and expensive. On the other hand, when coal or the like is used as the combustion material, it must be pulverized, and a spreader or the like is required to uniformly disperse the coal into the bed 35. In addition, bed 35
The inner heat transfer tubes 36 have had many problems in that they are susceptible to severe corrosion in a reducing atmosphere due to abrasion and combustion caused by the fluidized medium at a high flow rate.

これらの問題点を解決する目的で、第7図に示
すような伝熱管36を外部別置とする噴流層循環
型流動層ボイラでは、流動媒体の一部は燃焼ガス
と共に炉31内上部のフリーボード部38を出てサ
イクロン39に入り、分離されてサイクロン39
の底部に集められ、排ガスは煙道40を経て次の
設備へ送られる。サイクロン39で分離された流
動媒体等は熱交換器室41へ導かれる。熱交換器
室41の床面には分散板42が設けられ、この下
部に形成された空気室44に供給される流動化ガ
ス33によつて流動層45が形成される。この流
動層45の部分には、伝熱管36が配備されて流
動媒体等の有する熱が回収され、冷却された流動
媒体は再び炉31に循環され、再度加熱されるよ
うになつている。しかしながら、この噴流層循環
型流動層ボイラにおいても、設備が増加して大型
化すると共にトラブルも多くなり勝ちであるとい
う問題点を有していた。
In order to solve these problems, in a spouted bed circulation type fluidized bed boiler in which heat exchanger tubes 36 are separately placed externally as shown in FIG. It exits the board section 38 and enters the cyclone 39, and is separated into the cyclone 39.
The exhaust gas is collected at the bottom of the pipe and sent to the next equipment via the flue 40. The fluidized medium and the like separated by the cyclone 39 are guided to the heat exchanger chamber 41. A distribution plate 42 is provided on the floor of the heat exchanger chamber 41, and a fluidized bed 45 is formed by the fluidizing gas 33 supplied to an air chamber 44 formed at the bottom of the distribution plate 42. A heat transfer tube 36 is provided in the fluidized bed 45 to recover the heat of the fluidized medium, and the cooled fluidized medium is circulated to the furnace 31 again and heated again. However, this spouted bed circulation type fluidized bed boiler also has the problem that as the equipment increases and becomes larger, troubles tend to increase.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような問題点を解決し、燃焼物
の燃焼部と流動媒体から熱回収を行う熱回収部と
に流動層を区分し、流動媒体を燃焼部から熱回収
部を経て還流、循環させるようにして全体をコン
パクト化し、燃焼物に対する許容度が大きく、さ
らにターンダウン比を大幅に広くとり、維持管理
を容易にすることを可能とする流動層からの熱回
収方法及びその装置を提供することを目的とする
ものである。
The present invention solves these problems by dividing the fluidized bed into a combustion part for the combustible material and a heat recovery part for recovering heat from the fluidized medium, and refluxing the fluidized medium from the combustion part through the heat recovery part. A method and device for recovering heat from a fluidized bed that makes the whole body compact by circulating it, has a large tolerance for combustible materials, has a significantly wide turndown ratio, and facilitates maintenance. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記問題点を解決するための手段と
して、底部から上方に向けて吹き込む流動化ガス
により流動媒体を流動化せしめる流動層を、上端
が流動層内に没入し下部に連通口が形成された仕
切壁によつて熱回収部と燃焼物を供給する燃焼部
とに上部空間を共有させて区分し、該燃焼部の少
なくとも前記仕切壁近傍における単位面積あたり
の流動化ガス吹込風量を前記熱回収部の単位面積
あたりの流動化ガス吹込風量よりも大きくなるこ
とにより、該燃焼部の流動媒体を前記仕切壁を越
えて前記熱回収部に流入せしめ、前記仕切壁下部
から前記熱回収部の流動媒体を燃焼部に還流せし
めることを特徴とする流動層からの熱回収方法を
提供し、さらにこの方法を実施するための好適な
装置を提供するものである。
As a means for solving the above-mentioned problems, the present invention provides a fluidized bed in which a fluidized medium is fluidized by fluidizing gas blown upward from the bottom, the upper end of which is submerged into the fluidized bed, and a communication port formed at the lower part. A heat recovery section and a combustion section that supplies combustible materials are divided by sharing an upper space by a partition wall, and the flow rate of fluidizing gas blown per unit area at least near the partition wall of the combustion section is set as above. By making the fluidizing gas flow rate larger than the flow rate per unit area of the heat recovery section, the fluidized medium of the combustion section is caused to flow into the heat recovery section over the partition wall, and the flow rate of the fluidized gas blows into the heat recovery section from the lower part of the partition wall. The present invention provides a method for recovering heat from a fluidized bed, characterized in that the fluidized medium of the present invention is returned to a combustion section, and also provides a suitable apparatus for carrying out this method.

〔実施例〕〔Example〕

本発明の実施例を図面を参照しながら説明すれ
ば、第1図示例において、炉1内で底部から上方
に向けて吹き込まれる空気等の流動化ガス3によ
り流動化される流動媒体からなる流動層5は、仕
切壁7によつて熱回収部8と燃焼部9とに自由空
間を共有するように区分されている。仕切壁7
は、上端が流動層5表面よりも下側に位置、すな
わち、上端が流動層5内に没入し、また、下部に
連通口6が形成されている。この仕切壁7として
は、燃焼部からの熱回収を抑え、燃焼部の激しい
流動媒体の動きや燃焼ガスに耐えるために燃焼部
9側は耐火物を使用し、また熱回収部8の内壁は
水冷壁10として熱回収面の一部とし、かつ仕切
壁耐火物の保護を行うことが好ましい。
Embodiments of the present invention will be described with reference to the drawings. In the first illustrated example, a fluidized medium made of a fluidized medium is fluidized by a fluidized gas 3 such as air that is blown upward from the bottom in a furnace 1. The layer 5 is divided by a partition wall 7 so that a heat recovery section 8 and a combustion section 9 share a free space. Partition wall 7
The upper end is located below the surface of the fluidized bed 5, that is, the upper end is submerged into the fluidized bed 5, and the communication port 6 is formed at the lower part. For this partition wall 7, a refractory material is used on the side of the combustion section 9 to suppress heat recovery from the combustion section and to withstand the intense movement of the fluidized medium and combustion gas in the combustion section, and the inner wall of the heat recovery section 8 is made of refractory material. It is preferable that the water cooling wall 10 be a part of the heat recovery surface and that the partition wall refractory be protected.

熱回収部8と燃焼部9における流動化ガス3の
吹込みは、それぞれ独立的に行われるようになつ
ており、熱回収部8では床面の分散板2の下部の
空気室4に流動調節弁11をもつた流動化ガス3
の導入配管が接続、開口され、燃焼部9では床面
の分散板2′の下部の空気室4′に流量調節弁1
1′をもつた流動化ガス3の導入配管が接続、開
口されている。
The fluidizing gas 3 is injected into the heat recovery section 8 and the combustion section 9 independently, and in the heat recovery section 8, the fluidizing gas 3 is injected into the air chamber 4 under the distribution plate 2 on the floor for flow adjustment. Fluidizing gas 3 with valve 11
In the combustion section 9, a flow control valve 1 is installed in the air chamber 4' below the distribution plate 2' on the floor.
An inlet pipe for the fluidizing gas 3 having a number 1' is connected and opened.

また、熱回収部8には受熱流体を通じた伝熱管
12が配備され、燃焼部9には燃焼物13の供給
装置14に連なる投入口15が設けられている。
Further, the heat recovery section 8 is provided with a heat transfer tube 12 through which heat-receiving fluid is passed, and the combustion section 9 is provided with an input port 15 connected to a supply device 14 for a combustible material 13.

図中、16は燃焼部9の分散板2′の最低位置
に設けられた不燃物の排出口、17は燃焼排ガス
18の通路に設けられその排熱を利用する排ガス
ボイラ、19は流動層5内の吹き込まれた流動化
ガス3の気泡を示す。
In the figure, 16 is an incombustible material discharge port provided at the lowest position of the dispersion plate 2' of the combustion section 9, 17 is an exhaust gas boiler provided in the passage of the combustion exhaust gas 18 and utilizes its exhaust heat, and 19 is the fluidized bed 5. 3 shows bubbles of fluidized gas 3 blown into the interior.

しかして、供給装置14により投入口15を経
て炉1内の燃焼部9に投入された燃焼物13は、
底部の空気室4′から分散板2′を経て吹き込まれ
た流動化ガス3により、流動媒体と共に流動層5
を形成しながら燃焼、発熱する。このとき、流量
調節弁11′によつて単位面積あたりの流動化ガ
ス吹込風量を多くし、燃焼部9内の流動層5内に
大きな気泡19を多数発生させて激しい流動状態
とし、流動層5の表面を激しく波立たせ、かつ気
泡により平均表面レベルを高めた状態とする。一
方、熱回収部8では、流量調節弁11によつて単
位面積あたりの流動化ガス吹込風量を少なくし、
大きな気泡も生じにくい流動状態、あるいは単に
層上部の流入する流動媒体の分だけ流動媒体が移
動することが可能な程度の弱い流動状態とし、熱
回収部8の流動層表面レベルを燃焼部9のそれよ
りも相対的に低いものとする。
The combustible material 13 fed into the combustion section 9 in the furnace 1 by the feeding device 14 through the inlet 15 is
The fluidizing gas 3 blown from the bottom air chamber 4' through the distribution plate 2' causes the fluidized bed 5 to flow together with the fluidized medium.
It burns and generates heat while forming. At this time, the flow rate regulating valve 11' increases the flow rate of the fluidizing gas per unit area to generate a large number of large bubbles 19 in the fluidized bed 5 in the combustion section 9 to create an intense fluidized state. The surface of the surface is violently rippled, and the average surface level is raised by air bubbles. On the other hand, in the heat recovery section 8, the flow rate control valve 11 reduces the flow rate of fluidizing gas per unit area.
The fluidized bed surface level of the heat recovery section 8 should be set to a fluidized state in which large bubbles do not easily occur, or a weak fluidized state in which the fluidized medium can simply move by the amount of the fluidized medium flowing into the upper part of the bed, and the surface level of the fluidized bed in the heat recovery section 8 should be set to the level of the combustion section 9. It shall be relatively lower than that.

このため、表面レベル差によつて流動媒体レベ
ルは燃焼部9から熱回収部8に矢印Aの様に仕切
壁7を越えて流入する。その外にも、燃焼部9に
生じた気泡19が層内を上昇して表面に至つて破
裂する際に多量の流動媒体が流動層5の表面より
噴出するが、そのかなりの部分がそのまま矢印B
の如く熱回収部8に流入してくる。この熱回収部
8に流入してくる流動媒体の有する熱は、熱回収
部8で伝熱管12との熱交換によつて熱回収が行
われる。そして、仕切壁7下部の連通口6におい
て、熱回収部8の上部に流入した流動媒体により
燃焼部9に対して熱回収部8の圧力が高まり、そ
の差圧が流動媒体を移動させる力となつて働き、
熱が回収されて下方に至つた流動媒体は矢印Cの
様に連通口6から燃焼部9に還流する。従つて、
連通口6の部分は、特に底面から流動化ガスを吹
き込まなくても確実に還流される。
Therefore, due to the surface level difference, the fluidized medium level flows from the combustion section 9 into the heat recovery section 8 over the partition wall 7 as shown by arrow A. In addition, when the bubbles 19 generated in the combustion zone 9 rise within the layer, reach the surface, and burst, a large amount of fluidized medium is ejected from the surface of the fluidized bed 5, but a considerable portion of it remains as it is as shown in the arrow. B
The heat flows into the heat recovery section 8 as shown in FIG. The heat possessed by the fluidized medium flowing into the heat recovery section 8 is recovered by heat exchange with the heat transfer tube 12 in the heat recovery section 8 . Then, at the communication port 6 at the bottom of the partition wall 7, the fluidized medium that has flowed into the upper part of the heat recovery section 8 increases the pressure of the heat recovery section 8 against the combustion section 9, and the differential pressure acts as a force to move the fluidized medium. Working hard,
The fluidized medium whose heat has been recovered and has reached the lower part flows back to the combustion section 9 from the communication port 6 as shown by arrow C. Therefore,
The portion of the communication port 6 is reliably refluxed even without blowing fluidizing gas from the bottom.

その結果、流動媒体は、燃焼部9では全体とし
て下から上に、熱回収部8では上から下に移動す
るが、その量は燃焼部9の流動空気の吹込風量と
流動層高に大きく依存し、本発明者達の実験によ
れば、第2図の様な関係にあつた。この結果か
ら、燃焼部9における流動空気量は熱回収部8に
砂状不燃物や脱硫剤を兼ねた石灰岩砕石、ドロマ
イト砕石などの流動媒体を循環させて熱回収しよ
うとすれば、最低流動化速度(Gmf)の少なく
とも2〜3倍程度以上必要であることが分かる。
なお、流動層高(流動媒体の流動時層高)は仕切
壁7の上端程度まで必要で、少なくともL2の流
動状態での仕切壁上端程度までの層高よりも低く
なると、急激に流動媒体循環量が低下し、実際上
の流動層からの熱回収はできなくなるといつてさ
しつかえない。
As a result, the fluidized medium as a whole moves from bottom to top in the combustion section 9 and from top to bottom in the heat recovery section 8, but the amount greatly depends on the flow rate of fluidized air blown into the combustion section 9 and the height of the fluidized bed. However, according to the experiments conducted by the present inventors, a relationship as shown in FIG. 2 was obtained. From this result, the amount of fluidized air in the combustion section 9 can be minimized if heat is recovered by circulating a fluidized medium such as sand-like incombustibles or crushed limestone or crushed dolomite that also serves as a desulfurization agent in the heat recovery section 8. It can be seen that at least 2 to 3 times the speed (Gmf) is required.
Note that the fluidized bed height (the bed height when the fluidized medium is flowing) is required to reach the top of the partition wall 7, and if it becomes lower than the bed height to the top of the partition wall in the flow state of at least L 2 , the height of the fluidized bed suddenly increases. There is no problem if the circulation rate decreases and it becomes impossible to actually recover heat from the fluidized bed.

これは、流動空気量を最低流動化速度の2倍程
度以下とすれば熱回収部9に流動媒体がほとんど
循環しなくなることを示すものであつて、これは
流動層表面は静かになり、矢印A,B,Dのいず
れの流入も極端に減少することによつて説明でき
る。しかしながら、これはそれにより熱回収量を
極端に抑えることが可能なことを示す。また、流
動空気量が大きくなり、Gmfの約3倍以上とな
ると、流動媒体循環量も流動空気量に比例して増
加するようになるため、燃焼物13の燃焼用空気
は同時に流動空気でもあることから、燃焼物燃焼
量にほぼ比例して循環量を増加させることがで
き、さらに熱回収部8への流動空気吹込風量を調
節して受熱流体と流動媒体との熱交換率を変化さ
せる(後述する第3図及びその説明参照)ことを
併用すれば、流動層温度が過冷却や過熱に至るこ
となく、かつ回収熱の需要に応じて燃焼物を適切
な空気比を守りながら増減することが可能とな
る。
This shows that if the amount of fluidized air is set to about twice the minimum fluidization speed or less, almost no fluidized medium will circulate in the heat recovery section 9, and this means that the surface of the fluidized bed will become quiet, as shown by the arrow This can be explained by the fact that the inflows of A, B, and D all decrease drastically. However, this shows that it is possible to extremely suppress the amount of heat recovery thereby. In addition, when the amount of fluidized air increases and becomes more than three times Gmf, the amount of fluidized medium circulating also increases in proportion to the amount of fluidized air, so the combustion air for the combustion material 13 is also fluidized air at the same time. Therefore, the amount of circulation can be increased almost in proportion to the amount of combustion of the combustible material, and the heat exchange rate between the heat receiving fluid and the fluidizing medium can be changed by adjusting the amount of flowing air blown into the heat recovery section 8 ( (See Figure 3 and its explanation below), the temperature of the fluidized bed will not reach supercooling or overheating, and the combustion material can be increased or decreased according to the demand for recovered heat while maintaining an appropriate air ratio. becomes possible.

従つて、大きなターンダウン比とすることがで
き、熱回収部8内の伝熱管12による熱回収量は
ほぼ0まで、また接続する排ガスボイラ17を含
めた熱回収量でも、流動層からの熱回収をやめる
ことにより流動層温度上昇を流動空気量による空
気冷却の形で抑えることになり、流動状態や流動
層温度の保持が少ない燃料で可能となるため、1/
10程度まで最大回収熱量に対して最小回収熱量を
削減可能である。同時に、熱回収部8では燃焼に
必要な空気とは無関係に流動空気を伝熱だけを考
えて与えることが可能となり、Gmfの2倍程度
の弱い流動状態に抑えることができるため、流動
層ボイラで避けられなかつた伝熱面の摩耗を大巾
に軽減するという効果もある。
Therefore, a large turndown ratio can be achieved, and the amount of heat recovered by the heat transfer tubes 12 in the heat recovery section 8 can be reduced to almost 0, and even the amount of heat recovered including the connected exhaust gas boiler 17, the amount of heat recovered from the fluidized bed is small. By discontinuing recovery, the increase in fluidized bed temperature can be suppressed by air cooling using the amount of fluidized air, and it is possible to maintain the fluidized state and fluidized bed temperature with less fuel, so the increase in fluidized bed temperature can be reduced by 1/
It is possible to reduce the minimum amount of heat to be recovered relative to the maximum amount of heat to be recovered by about 10%. At the same time, in the heat recovery section 8, it is possible to provide fluidized air with only heat transfer in mind, regardless of the air required for combustion, and it is possible to suppress the fluidized state to a weak fluid state of about twice Gmf, so that the fluidized bed boiler It also has the effect of greatly reducing the wear on the heat transfer surface that would otherwise be unavoidable.

即ち、熱回収部8における熱伝達率と流動空気
量の関係は、第3図の様になることが知られてお
り、また本発明者達も確認している。これによれ
ば、熱伝達上Gmfの2倍以上とすることは不要
であり、いたずらに伝熱面の流動媒体による摩耗
を増大することになるが、燃焼空気の増減は燃焼
部への流動空気量により調整することですむため
に伝熱量に応じて変化させるだけでよく、従つて
Gmfの2倍を越えないですむ。これはまた、前
述したように、流動媒体循環のためには燃焼部9
に対し、熱回収部8での流動空気量を相対的に小
さくとる必要があることからも好ましい。
That is, it is known that the relationship between the heat transfer coefficient and the amount of flowing air in the heat recovery section 8 is as shown in FIG. 3, and the inventors of the present invention have also confirmed this. According to this, it is unnecessary to set the Gmf to more than twice the Gmf for heat transfer purposes, and it will unnecessarily increase the abrasion caused by the fluidized medium on the heat transfer surface. Since it only needs to be adjusted according to the amount of heat transfer, it is only necessary to change it according to the amount of heat transfer.
It does not need to exceed twice the GMF. This also applies to the combustion section 9 for fluidized medium circulation, as mentioned above.
On the other hand, it is preferable because the amount of flowing air in the heat recovery section 8 needs to be relatively small.

さらに、燃焼物13が燃焼部9に投入されるこ
とから、伝熱面の燃焼ガスによる腐食や燃焼に伴
う酸化還元の変化による腐食などが軽減され、熱
回収部8での流動媒体の流動もゆるやかであるか
ら伝熱面の摩耗も少なく、伝熱面寿命は従来に比
較して著しく改善される。また、燃焼部9は大き
な気泡19が絶えず発生するために十分に撹拌さ
れた状態となり、たとえ燃焼物13の投入がある
程度集中したりあるいは塊状で投入されたりして
も、層内の流動媒体の動きによつて撹拌され、ば
らされて分散してしまうので、伝熱面保護のため
にGmfの2〜3倍前後に弱めた流動状態としか
つ炉床負荷を小さく抑えた従来のものに比較し
て、クリンカも生じにくくかつ燃焼率も格段に向
上する。例えば、石炭などでも単に燃焼部9に投
入するだけで90%以上の燃焼率を得ることができ
る。
Furthermore, since the combustible material 13 is introduced into the combustion section 9, corrosion caused by the combustion gas on the heat transfer surface and corrosion caused by changes in oxidation-reduction accompanying combustion are reduced, and the flow of the fluidized medium in the heat recovery section 8 is also reduced. Since it is gentle, there is less wear on the heat transfer surface, and the life of the heat transfer surface is significantly improved compared to conventional methods. In addition, the combustion part 9 is in a sufficiently agitated state due to the constant generation of large bubbles 19, and even if the combustion material 13 is concentrated to some extent or is introduced in lumps, the fluidized medium in the bed is Since it is agitated by movement, broken up and dispersed, it is in a weakened fluid state to around 2 to 3 times the Gmf to protect the heat transfer surface, and compared to the conventional one, which keeps the hearth load small. As a result, clinker is less likely to occur and the combustion rate is significantly improved. For example, a combustion rate of 90% or more can be obtained by simply charging coal into the combustion section 9.

なお、熱回収部8の分散板2を燃焼部9に向か
つて下り勾配とすれば、定期点検等における流動
媒体の炉外排出操作に有利であり、また燃焼部9
の分散板2′を不燃物の排出口16に向けて下り
勾配とすれば、不燃物や定期点検等の流動媒体排
出が容易になる。
Note that if the dispersion plate 2 of the heat recovery section 8 is sloped downward toward the combustion section 9, it is advantageous for discharging the fluidized medium out of the furnace during periodic inspections, etc.
If the dispersion plate 2' is sloped downward toward the incombustible material discharge port 16, it becomes easy to discharge noncombustible materials and a fluid medium for periodic inspection.

さらに本発明としては、燃焼部9の上方でかつ
流動層5に近接した位置に、第1図に示すような
上昇ガス流を熱回収部8方向へ偏向せしめる反射
壁20を備えたものとし、その他は変るところが
なくする。この反射壁20は、第1図示例の様に
炉壁の一部を利用することができるが、炉1の構
造によつては、第4図示例の様に炉壁とは別個に
独立したものとすることもできる。
Furthermore, the present invention is provided with a reflecting wall 20 above the combustion section 9 and close to the fluidized bed 5 for deflecting the rising gas flow toward the heat recovery section 8 as shown in FIG. Nothing else will change. This reflecting wall 20 can be a part of the furnace wall as in the first illustrated example, but depending on the structure of the furnace 1, it may be formed separately from the furnace wall as in the fourth illustrated example. It can also be taken as a thing.

この反射壁20を備えた場合、流動層5表面よ
り噴出する流動媒体は反射壁20に衝突し、偏向
されて矢印Dの様に熱回収部8に導かれ、流動媒
体の循環が極めて円滑化される。
When this reflecting wall 20 is provided, the fluidized medium ejected from the surface of the fluidized bed 5 collides with the reflecting wall 20, is deflected and guided to the heat recovery section 8 as shown by arrow D, and the circulation of the fluidized medium becomes extremely smooth. be done.

第4図は、本発明の他の実施例を示し、第1図
示例を炉1内に中心線に対してほぼ対称的に並設
したものである。即ち、燃焼部9を炉1内中央部
に位置させ、その両側に仕切壁7を介して熱回収
部8を設けたもので、燃焼部9は燃焼物13に含
まれる不燃物が中央に集まり、かつ燃焼部9にお
ける流動媒体の動きを円滑にするために、空気室
4′を2分して空気室4′−1と4′−2とし、そ
れぞれ流量調節弁11,11′−1,11′−2に
よつて各空気室4,4′−1,4′−2の流動化ガ
ス吹込量を調節し、単位面積あたりの流動化ガス
吹込量を空気室4′−1よりも空気室4′−2の方
を大とする。もちろん、この場合でも空気室4′
−1よりも空気室4の方を小とする。この流動化
ガス3の流動層5への吹込みは、本第4図示例で
は第1図示例の分散板2,2′に代えて散気ノズ
ル21を使用している。また、反射壁20を設け
る場合には、炉壁から独立したものとし、燃焼物
13を燃焼部9内に投入するために中央部に開口
を設けてある。
FIG. 4 shows another embodiment of the present invention, in which the first embodiment is arranged in the furnace 1 almost symmetrically with respect to the center line. That is, the combustion section 9 is located in the center of the furnace 1, and the heat recovery section 8 is provided on both sides with a partition wall 7 interposed therebetween. , and in order to smooth the movement of the fluidized medium in the combustion section 9, the air chamber 4' is divided into two air chambers 4'-1 and 4'-2, which are equipped with flow rate control valves 11, 11'-1, and 4'-2, respectively. 11'-2 to adjust the amount of fluidizing gas blown into each air chamber 4, 4'-1, 4'-2, so that the amount of fluidizing gas blown per unit area is lower than that of air chamber 4'-1. The chamber 4'-2 is made larger. Of course, even in this case, the air chamber 4'
Air chamber 4 is made smaller than -1. In order to blow the fluidizing gas 3 into the fluidized bed 5, a diffuser nozzle 21 is used in place of the dispersion plates 2, 2' of the first illustrated example in the fourth illustrated example. Further, when the reflective wall 20 is provided, it is independent from the furnace wall, and an opening is provided in the center for introducing the combustion material 13 into the combustion section 9.

そして、この第4図示例では、前記第1図示例
の場合と同様の作用が行われるが、処理量が大き
く熱負荷が増大したり、燃焼物の発熱量が高く、
伝熱面積をさらに必要とするような、大型又は高
負荷たらしめる必要がある場合に有利である。
In this fourth illustrated example, the same effect as in the first illustrated example is performed, but the throughput is large, the heat load increases, the calorific value of the combustible material is high,
This is advantageous when large-sized or high-load applications are required that require additional heat transfer area.

なお、前記各実施例共に、燃焼物の低位発熱量
が2000〜4000kcal/Kg程度と比較的低い場合に
は、流動媒体より回収せねばならない熱量があま
り多くはないため、必要な流動媒体循環量も少な
くてよい。その場合、反射壁をなくしても循環量
をまかなうことができる。
In addition, in each of the above examples, when the lower calorific value of the combustible material is relatively low, about 2000 to 4000 kcal/Kg, the amount of heat that must be recovered from the fluidized medium is not very large, so the required fluidized medium circulation amount is It may be less. In that case, the amount of circulation can be covered even if the reflective wall is eliminated.

仕切壁7の高さは、燃焼部9の流動媒体が熱回
収部8に流入しやすい様にある程度低いことが必
要であるが、あまり低すぎるのは次の理由から好
ましくない。例えば、熱回収部8にまで燃焼部9
の気泡が進入したり、せつかく熱回収部8へ流入
した流動媒体が熱回収部8を通過せずに仕切壁7
の上側で燃焼部9にもどつてしまうなど、熱回収
部8の流動状態が燃焼部9の影響を受けて伝熱摩
耗や熱回収量制御の劣化が起こるからである。即
ち、層内伝熱面の一番燃焼部9側にある最も高い
位置から燃焼部9側にほぼ45゜下方にのばした仕
切壁高規定面22(第1図)よりも上まであるこ
とが必要である。また、燃焼物13の熱回収部8
へのまわり込み量を抑えるために、燃焼物13の
投入位置を仕切壁7より離れた位置とすることが
望ましい。
The height of the partition wall 7 needs to be low to some extent so that the fluidized medium in the combustion section 9 can easily flow into the heat recovery section 8, but it is not preferable that the height is too low for the following reasons. For example, the heat recovery section 8 includes the combustion section 9.
Air bubbles may enter the heat recovery section 8, or the fluidized medium that has flowed into the heat recovery section 8 may not pass through the heat recovery section 8 and may be blocked by the partition wall 7.
This is because the flow state of the heat recovery section 8 is influenced by the combustion section 9, such as when the heat returns to the combustion section 9 on the upper side of the heat transfer section 9, resulting in heat transfer wear and deterioration of heat recovery amount control. In other words, it must be above the partition wall height defining surface 22 (Fig. 1) extending approximately 45 degrees downward toward the combustion section 9 from the highest position of the intralayer heat transfer surface on the combustion section 9 side. is necessary. In addition, the heat recovery section 8 of the combustion material 13
In order to suppress the amount of the combustible material 13 going around, it is desirable to set the input position of the combustible material 13 at a position away from the partition wall 7.

さらに、大型化の一形態として第5図に示すよう
にすることができる。即ち、第5図示例では、熱
回収部8及び燃焼部9をそれぞれ複数に形成し、
燃焼物13を各燃焼部9の下部から空気輸送等に
よつて供給し、また反射壁20を各燃焼室9上に
備え、反射壁20中に冷却風を通風し外面を耐火
物にて保護するようにしたもので、その作用も前
記実施例と変るところはない。なお、燃焼物13
の発熱量によつては、この反射壁20を省略する
こともでき、またこれらの熱回収部8及び燃焼部
9の数はスケールアツプ時にはさらに増やすこと
ができる。
Furthermore, as one form of increasing the size, it is possible to make it as shown in FIG. 5. That is, in the fifth illustrated example, a plurality of heat recovery sections 8 and a plurality of combustion sections 9 are formed,
The combustion material 13 is supplied from the lower part of each combustion section 9 by air transport, etc., and a reflecting wall 20 is provided above each combustion chamber 9, cooling air is passed through the reflecting wall 20, and the outer surface is protected with a refractory material. The operation is the same as that of the previous embodiment. In addition, combustion material 13
Depending on the amount of heat generated, the reflecting wall 20 may be omitted, and the number of heat recovery sections 8 and combustion sections 9 may be further increased when scaled up.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば次のような
極めて有益なる効果を得ることができ、本発明の
意義は極めて大きい。
As described above, according to the present invention, the following extremely beneficial effects can be obtained, and the significance of the present invention is extremely large.

ターンダウン比を極めて大幅に広くとること
ができる。
The turndown ratio can be made extremely wide.

熱回収部と燃焼部とを区分してそれぞれ独立し
て流動化ガス吹込みを行い、燃焼部では燃焼部か
ら熱回収部を経る流動媒体循環量を燃焼物燃焼量
にほぼ比例して変化させることができ、さらに熱
回収部では流動化ガス吹込量調節による受熱流体
と流動媒体との熱交換率を変化させることもでき
るから、流動層よりの熱回収をやめることにより
極端に燃料使用量と蒸発量を削減でき、ターンダ
ウン比を幅広くとることができ、しかも追従性が
よい。そのためには単に流動化ガス吹込量の調節
と燃焼物投入量の調節だけですむために、自動化
も極めて容易となる。しかも、熱回収部での回収
熱調節は瞬時であり、その変化は多量の流動媒体
の顕熱変化、即ちわずかずつ流動温度が変化する
が、同時に行われる燃焼物投入量調節は流動層燃
焼の特徴から数分以内の応答時間であり、熱回収
部での調節によつて起こされる流動層温度変化を
わずかな範囲内に保つことができる。このよう
に、燃料と発生熱を余さず利用できる。
The heat recovery section and the combustion section are separated and fluidized gas is injected into each section independently, and in the combustion section, the amount of fluidized medium circulating from the combustion section through the heat recovery section is changed approximately in proportion to the amount of combustion material. Furthermore, in the heat recovery section, the heat exchange rate between the heat receiving fluid and the fluidized medium can be changed by adjusting the amount of fluidized gas blown into the fluidized bed, so by stopping heat recovery from the fluidized bed, the amount of fuel used can be drastically reduced. The amount of evaporation can be reduced, the turndown ratio can be set over a wide range, and the followability is good. For this purpose, it is only necessary to adjust the amount of fluidizing gas blown in and the amount of combustible material input, making automation extremely easy. Moreover, the recovery heat adjustment in the heat recovery section is instantaneous, and the change is caused by a change in the sensible heat of a large amount of fluidized medium, that is, the fluidization temperature changes little by little. Characteristically, the response time is within a few minutes, and fluidized bed temperature changes caused by adjustments in the heat recovery section can be kept within a small range. In this way, the fuel and generated heat can be fully utilized.

燃焼物に対して許容度が大きい。 High tolerance for combustible materials.

従来の流動層ボイラと異なり、粗大不燃物が混
入していてもよく、通常の都市ごみなどは無破砕
で受け入れることでき、しかも円滑にそれら不燃
物を排出することができる。なお、燃焼部は強い
撹拌効果により、スプレツダ等を用いて分散させ
る必要なく、焼き付き等のおそれなしに雑多なご
みを投入できるし、粒度調整の必要もない。ま
た、石炭なども、特に粒径を細かくそろえること
は不要である。さらに、炭質を選ばず、大きな不
燃物を含んだものでもよく、揮発分の多少も支障
なく、選炭くずから泥炭まですべて燃焼物とする
ことができる。もちろん、都市ごみ、産業廃棄
物、石炭、汚泥等の混焼もでき、廃棄物燃焼炉と
しての利用が可能である。
Unlike conventional fluidized bed boilers, it may contain coarse noncombustibles, and can accept ordinary municipal waste without crushing it, and can smoothly discharge the noncombustibles. In addition, due to the strong stirring effect in the combustion section, miscellaneous waste can be thrown in without the need for dispersion using a spreader or the like, without fear of burning, etc., and there is no need to adjust the particle size. In addition, it is not necessary to make the particle size of coal particularly fine. Furthermore, any type of coal may be used, and any type of coal containing large incombustible substances may be used, and everything from coal waste to peat can be combustible, regardless of the amount of volatile content. Of course, it can also co-combust municipal waste, industrial waste, coal, sludge, etc., and can be used as a waste combustion furnace.

維持管理が容易である。 Maintenance is easy.

熱回収部と燃焼部とが別であることから、熱回
収部の伝熱面は反応性の高い燃焼ガス等に接する
ことなく、激しい運動の流動媒体にもさらされ
ず、伝熱面の腐食、摩耗、あるいはスケーリング
を極めて小さなものに抑えることができる。ま
た、流動媒体の循環は流動化ガスにより行われ、
流動媒体の炉外循環に伴うトラブルや放熱、発塵
等は皆無であり、周囲の作業環境を劣化させる必
配もない。
Since the heat recovery section and combustion section are separate, the heat transfer surface of the heat recovery section does not come into contact with highly reactive combustion gas, etc., and is not exposed to violently moving fluid media, preventing corrosion of the heat transfer surface. Wear or scaling can be kept to an extremely small level. In addition, the circulation of the fluidizing medium is performed by fluidizing gas,
There is no trouble, heat radiation, dust generation, etc. associated with the circulation of the fluidized medium outside the furnace, and there is no need to deteriorate the surrounding working environment.

装置全体が極めてコンパクトになる。 The entire device becomes extremely compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の縦断面
図、第2図は流動媒体の循環量と流動空気量との
関係を示す線図、第3図は熱伝達率と流動空気量
との関係を示す線図、第4図及び第5図はそれぞ
れ本発明の他の実施例を示す装置の縦断面図、第
6図及び第7図はそれぞれ従来例を示す説明断面
図である。 1…炉、2,2′…分散板、3…流動化ガス、
4,4′,4′−1,4′−2…空気室、5…流動
層、6…連通口、7…仕切壁、8…熱回収部、9
…燃焼部、10…水冷壁、11,11′,11゜
−1,11′−2…流量調節弁、12…伝熱管、
13…燃焼物、14…供給装置、15…投入口、
16…排出口、17…排ガスボイラ、18…燃焼
排ガス、19…気泡、20…反射壁、21…散気
ノズル、22…仕切壁高規定面、31…炉、32
…分散板、33…流動化ガス、34…空気室、3
5…ベツド、36…伝熱管、37…燃焼物、38
…フリーボード部、39…サイクロン、40…煙
道、41…熱交換器室、42…分散板、44…空
気室、45…流動層。
Figure 1 is a longitudinal cross-sectional view of a device showing an embodiment of the present invention, Figure 2 is a diagram showing the relationship between the circulation amount of fluidized medium and the amount of fluidized air, and Figure 3 is a diagram showing the relationship between the heat transfer coefficient and the amount of fluidized air. FIGS. 4 and 5 are longitudinal cross-sectional views of devices showing other embodiments of the present invention, and FIGS. 6 and 7 are explanatory cross-sectional views showing conventional examples, respectively. . 1...Furnace, 2, 2'...Distribution plate, 3...Fluidization gas,
4, 4', 4'-1, 4'-2...Air chamber, 5...Fluidized bed, 6...Communication port, 7...Partition wall, 8...Heat recovery section, 9
...Combustion part, 10...Water cooling wall, 11, 11', 11°-1, 11'-2...Flow rate control valve, 12...Heat transfer tube,
13... Combustible material, 14... Supply device, 15... Inlet,
16...Discharge port, 17...Exhaust gas boiler, 18...Combustion exhaust gas, 19...Bubble, 20...Reflecting wall, 21...Diffusion nozzle, 22...Partition wall height regulation surface, 31...Furnace, 32
...Distribution plate, 33...Fluidization gas, 34...Air chamber, 3
5...bed, 36...heat exchanger tube, 37...combustible material, 38
...freeboard section, 39...cyclone, 40...flue duct, 41...heat exchanger chamber, 42...dispersion plate, 44...air chamber, 45...fluidized bed.

Claims (1)

【特許請求の範囲】 1 底部から上方に向けて吹き込まれ上部空間か
ら排出される流動化ガスにより流動媒体を流動化
せしめる流動層を、上端が前記流動層内に没入し
下部に連通口を有する仕切壁によつて熱回収部と
燃焼物が供給される燃焼部とに区分し、該燃焼部
の少なくとも前記仕切壁近傍における単位面積当
たりの流動化ガス吹込風量を前記熱回収部の単位
面積当たりの流動化ガス吹込風量よりも大きくと
ることにより、該燃焼部の流動媒体を前記仕切壁
を越えて前記熱回収部に流入せしめ、前記仕切壁
下部から前記熱回収部の流動媒体を燃焼部に還流
せしめることを特徴とする流動層からの熱回収方
法。 2 前記燃焼部の少なくとも前記仕切壁近傍にお
ける流動化ガス吹込風量を流動媒体の最低流動化
速度の3倍以上とし、前記熱回収部への流動化ガ
ス吹込風量を流動媒体の最低流動化速度の2倍以
下としたものである特許請求の範囲第1項記載の
流動層からの熱回収方法。 3 上部空間に排ガス通路が開口し底部から上方
に向けて吹き込む流動化ガスにより流動媒体を流
化せしめる流動層を、上端が前記流動層内に没入
し下部に連通口を有する仕切壁によつて熱回収部
と燃焼部とに区分し、これらの熱回収部と燃焼部
とにそれぞれ独立した流動化ガス吹込風量調節機
構を設け、前記熱回収部に受熱流体を通じた伝熱
面を配備し、前記燃焼部に燃焼物供給装置を設
け、前記燃焼部から前記熱回収部上部に流動媒体
を流入せしめると同時に前記熱回収部下部の流動
媒体を燃焼部に還流せしめるようにしたことを特
徴とする流動層からの熱回収装置。 4 上部空間に排ガス通路が開口し底部から上方
に向けて吹き込む流動化ガスにより流動媒体を流
動化せしめる流動層を、上端が前記流動層内に没
入し下部に連通口を有する仕切壁によつて熱回収
部と燃焼部とに上部空間を共有するように区分
し、これらの熱回収部と燃焼部とにそれぞれ独立
した流動化ガス吹込風量調節機構を設け、前記熱
回収部に受熱流体を通じた伝熱面を配備し、前記
燃焼部に燃焼物供給装置を設けると共に、燃焼部
の上方でかつ形成される流動層に近接した位置に
上昇ガス流を前記熱回収部方向へ偏向せしめる反
射壁を設け、前記燃焼部から前記熱回収部上部に
流動媒体を流入せしめると同時に前記熱回収部下
部の流動媒体を燃焼部に還流せしめるようにした
ことを特徴とする流動層からの熱回収装置。
[Claims] 1. A fluidized bed in which a fluidized medium is fluidized by fluidizing gas blown upward from the bottom and discharged from the upper space, the upper end of which is immersed in the fluidized bed, and the lower end of which has a communication port. The combustion section is divided into a heat recovery section and a combustion section to which combustion materials are supplied by a partition wall, and the flow rate of fluidizing gas blown per unit area of the combustion section at least near the partition wall is determined per unit area of the heat recovery section. By setting the flow rate to be larger than the fluidizing gas blowing air volume, the fluidized medium in the combustion section is allowed to flow into the heat recovery section over the partition wall, and the fluidized medium in the heat recovery section is flowed into the combustion section from the lower part of the partition wall. A method for recovering heat from a fluidized bed, characterized by refluxing it. 2. The flow rate of the fluidizing gas blown into the combustion section at least near the partition wall is set to be three times or more the minimum fluidization speed of the fluidized medium, and the flow rate of the fluidized gas blown into the heat recovery section is set to be at least 3 times the minimum fluidization speed of the fluidized medium. A method for recovering heat from a fluidized bed according to claim 1, wherein the heat recovery method is made twice or less. 3 A fluidized bed in which an exhaust gas passage opens in the upper space and fluidizes the fluidized medium by fluidizing gas blown upward from the bottom is formed by a partition wall whose upper end is submerged into the fluidized bed and has a communication port at the lower part. It is divided into a heat recovery section and a combustion section, each of the heat recovery section and the combustion section is provided with an independent fluidizing gas blowing air volume adjustment mechanism, and the heat recovery section is provided with a heat transfer surface through a heat receiving fluid, A combustion material supply device is provided in the combustion section, and a fluidized medium is caused to flow from the combustion section into the upper part of the heat recovery section, and at the same time, a fluidized medium in the lower part of the heat recovery section is made to flow back to the combustion section. Heat recovery device from fluidized bed. 4 A fluidized bed in which an exhaust gas passage opens in the upper space and fluidizes the fluidized medium by fluidizing gas blown upward from the bottom is provided by a partition wall whose upper end is submerged into the fluidized bed and has a communication port at the lower part. The heat recovery section and the combustion section are divided so as to share an upper space, and each of the heat recovery section and the combustion section is provided with an independent fluidizing gas blowing air volume adjustment mechanism, and the heat receiving fluid is passed through the heat recovery section. A heat transfer surface is provided, a combustion material supply device is provided in the combustion section, and a reflecting wall is provided above the combustion section and close to the fluidized bed to deflect the rising gas flow toward the heat recovery section. A heat recovery device from a fluidized bed, characterized in that the fluidized medium is caused to flow from the combustion section to the upper part of the heat recovery section, and at the same time, the fluidized medium in the lower part of the heat recovery section is made to flow back to the combustion section.
JP11466186A 1986-05-21 1986-05-21 Method and apparatus for retrieving heat from fluidized bed Granted JPS62272089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11466186A JPS62272089A (en) 1986-05-21 1986-05-21 Method and apparatus for retrieving heat from fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11466186A JPS62272089A (en) 1986-05-21 1986-05-21 Method and apparatus for retrieving heat from fluidized bed

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9147041A Division JP2989783B2 (en) 1997-05-22 1997-05-22 Heat recovery device from fluidized bed

Publications (2)

Publication Number Publication Date
JPS62272089A JPS62272089A (en) 1987-11-26
JPH0587757B2 true JPH0587757B2 (en) 1993-12-17

Family

ID=14643403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11466186A Granted JPS62272089A (en) 1986-05-21 1986-05-21 Method and apparatus for retrieving heat from fluidized bed

Country Status (1)

Country Link
JP (1) JPS62272089A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244291A (en) * 1988-03-25 1989-09-28 Mitsui Eng & Shipbuild Co Ltd Fluidized layer heat exchanger in circulation type fluidized layer boiler
JP2775586B2 (en) * 1994-03-30 1998-07-16 川崎重工業株式会社 Method and apparatus for promoting mixing of fluid substances
JP2775588B2 (en) * 1994-04-11 1998-07-16 川崎重工業株式会社 Fluidized bed combustion method and apparatus with partial combustion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246683A (en) * 1975-10-09 1977-04-13 Babcock Hitachi Kk Device for controlling a fluidized bed
JPS52118858A (en) * 1976-03-12 1977-10-05 Dagurasu Arisun Mitsuchieru Thermal reactor
JPS5611989A (en) * 1979-07-12 1981-02-05 Mitsubishi Heavy Ind Ltd Temperature control of jet layer heat exchanger
JPS5616846A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Mask for microcell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246683A (en) * 1975-10-09 1977-04-13 Babcock Hitachi Kk Device for controlling a fluidized bed
JPS52118858A (en) * 1976-03-12 1977-10-05 Dagurasu Arisun Mitsuchieru Thermal reactor
JPS5611989A (en) * 1979-07-12 1981-02-05 Mitsubishi Heavy Ind Ltd Temperature control of jet layer heat exchanger
JPS5616846A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Mask for microcell

Also Published As

Publication number Publication date
JPS62272089A (en) 1987-11-26

Similar Documents

Publication Publication Date Title
KR100306026B1 (en) Method and apparatus for driving a circulating fluidized bed system
US5156099A (en) Composite recycling type fluidized bed boiler
US4279207A (en) Fluid bed combustion
FI92157B (en) Fluidized Device
CA1328345C (en) Fluid-bed combustion reactor and a method for the operation of such fluid-bed combustion reactor
EP0247798B1 (en) Fluidised bed reactor and method of operating such a reactor
CN100438967C (en) A method of and an apparatus for recovering heat in a fluidized bed reactor
CA2345695C (en) Method and apparatus in a fluidized bed heat exchanger
US5005528A (en) Bubbling fluid bed boiler with recycle
EP0682760B1 (en) Method and apparatus for operating a circulating fluidized bed reactor system
KR101898077B1 (en) Circulating fluidized bed boiler
CA1332685C (en) Composite circulating fluidized bed boiler
EP2668444B1 (en) Method to enhance operation of circulating mass reactor and reactor to carry out such method
US4809623A (en) Fluidized bed reactor and method of operating same
CN101883629A (en) Fluidized beds and methods of fluidizing
CA1316413C (en) Internal circulating fluidized bed type boiler and method of controlling the same
JPH0587757B2 (en)
GB2074890A (en) Fluidized Bed Combustors
JP2989783B2 (en) Heat recovery device from fluidized bed
JPS63187001A (en) Fluidized-bed heat recovery device
CN100353116C (en) Cinder cooler for regulating hearth temperature of circulating fluidized bed boiler and its regulation method
JPH0370124B2 (en)
JP2905082B2 (en) Fluid material circulation method and apparatus
CN1204391A (en) Method and apparatus for controlling temp. of bed of bubbling bed boiler
JPH0399106A (en) Fuel supply for fluidized bed burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees