JPH0587756B2 - - Google Patents

Info

Publication number
JPH0587756B2
JPH0587756B2 JP14149686A JP14149686A JPH0587756B2 JP H0587756 B2 JPH0587756 B2 JP H0587756B2 JP 14149686 A JP14149686 A JP 14149686A JP 14149686 A JP14149686 A JP 14149686A JP H0587756 B2 JPH0587756 B2 JP H0587756B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer block
corrugated
orthogonal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14149686A
Other languages
Japanese (ja)
Other versions
JPS62299694A (en
Inventor
Naohide Saito
Junichi Tamura
Masaji Kurosawa
Isao Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Eneos Corp
Original Assignee
Nichias Corp
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp, Nippon Oil Corp filed Critical Nichias Corp
Priority to JP14149686A priority Critical patent/JPS62299694A/en
Priority to DE19873720188 priority patent/DE3720188A1/en
Priority to SE8702526A priority patent/SE462764B/en
Publication of JPS62299694A publication Critical patent/JPS62299694A/en
Publication of JPH0587756B2 publication Critical patent/JPH0587756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直交型熱交換器用のコルゲート状セラ
ミツク伝熱ブロツクの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a corrugated ceramic heat transfer block for an orthogonal heat exchanger.

〔従来の技術〕[Conventional technology]

従来より、コルゲート状セラミツク伝熱ブロツ
クを用いた直交型熱交換器は使用されており、こ
れに用いられる伝熱ブロツクでは、例えば、第4
図に示すように無機繊維からなるセラミツク製の
コルゲート板11と、これに当接するセラミツク
製の平板12により伝熱エレメント10が構成さ
れる。第5図に示すように、複数の伝熱エレメン
ト10をコルゲート板11のコルゲートの方向が
直交するように、交互に積層して伝熱ブロツク2
0が形成される。矢印AおよびBで示す方向に温
度の異なつた2種の流体が伝熱ブロツク20内を
通過して互いに熱交換する。
Conventionally, orthogonal heat exchangers using corrugated ceramic heat transfer blocks have been used.
As shown in the figure, a heat transfer element 10 is constituted by a ceramic corrugated plate 11 made of inorganic fibers and a ceramic flat plate 12 in contact with the corrugated plate 11. As shown in FIG. 5, a heat transfer block 2 is constructed by stacking a plurality of heat transfer elements 10 alternately so that the corrugated directions of the corrugated plates 11 are orthogonal to each other.
0 is formed. Two types of fluids having different temperatures pass through the heat transfer block 20 in the directions indicated by arrows A and B and exchange heat with each other.

第6図は、複数の伝熱ブロツク20をこれの内
部を通過する流体の流量と許容圧力損失を勘案の
上組合せ各々を締付けて構成した直交型熱交換器
30の一例を示したものである。ここでは例え
ば、矢印E,E′で示すように高温の燃焼排ガスが
上方から下方に熱交換器30を通過し、一方低温
の空気が、矢印C1,C2,C3,C4で示すように水
平方向に熱交換器30内を通過し両者間で熱交換
が行なわれる。
FIG. 6 shows an example of an orthogonal heat exchanger 30 constructed by combining and tightening a plurality of heat transfer blocks 20 in consideration of the flow rate of fluid passing through the blocks and allowable pressure loss. . Here, for example, high-temperature combustion exhaust gas passes through the heat exchanger 30 from top to bottom as indicated by arrows E and E', while low-temperature air passes as indicated by arrows C 1 , C 2 , C 3 , and C 4 The light passes through the heat exchanger 30 in the horizontal direction, and heat exchange is performed between the two.

この直交型熱交換器用30を用いて、燃焼排ガ
スEと燃焼用空気Cの熱交換を行うと熱交換に伴
い燃焼排ガスEが順次冷却され酸露点以下になる
部分では燃焼排ガスE中の煤が伝熱面に付着す
る。そして、運転時間の経過とともに煤が堆積し
伝熱量を低下させるので、付着した煤を除去する
ため燃焼排ガスEの入口もしくは出口、あるいは
入口・出口両方から煤吹(以下、スーツブローと
称する)を行う。第7図に示すように、スーツブ
ローパイプ21より噴出されるスーツブロー流体
Jには冷水・温水・熱水・水蒸気等が適宜選択さ
れ用いられるが、煤の除去効果はスーツブロー流
体Jと、煤・伝熱面の温度差による剥離作用、そ
して加圧されたスーツブロー流体Jが細孔から噴
出し、煤が衝突したときの衝撃力による剥離作用
の2者によつて得られるもので前者は流体の種
類、後者は流体の元圧と密度によつて剥離効果が
決ると一般に考えられている。
When this orthogonal heat exchanger 30 is used to exchange heat between the combustion exhaust gas E and the combustion air C, the combustion exhaust gas E is sequentially cooled down as a result of the heat exchange, and soot in the combustion exhaust gas E is reduced in the areas below the acid dew point. Adheres to heat transfer surfaces. As soot accumulates over time and reduces the amount of heat transfer, soot blowing (hereinafter referred to as suit blowing) is performed from the inlet or outlet of the combustion exhaust gas E, or from both the inlet and outlet, to remove the attached soot. conduct. As shown in FIG. 7, cold water, hot water, hot water, steam, etc. are appropriately selected and used as the suit blow fluid J ejected from the suit blow pipe 21, but the soot removal effect is different from the suit blow fluid J. This is achieved by two factors; the exfoliation effect due to the temperature difference between the soot and the heat transfer surface, and the exfoliation effect due to the impact force when the pressurized suit blowing fluid J is ejected from the pores and collides with the soot; the former. It is generally believed that the peeling effect is determined by the type of fluid, and the latter by the original pressure and density of the fluid.

第6図において、伝熱ブロツク20をケーシン
グ22に装填する場合、伝熱ブロツク20の隅部
に伝熱ブロツク押え23を使用するが、伝熱ブロ
ツク20と伝熱ブロツク押え23との間にパツキ
ング23aが介挿される。
In FIG. 6, when loading the heat transfer block 20 into the casing 22, a heat transfer block presser 23 is used at the corner of the heat transfer block 20, but there is no packing between the heat transfer block 20 and the heat transfer block presser 23. 23a is inserted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図で説明した伝熱エレメント10のコルゲ
ート板11および平板12は厚さ1mm程度のセラ
ミツクペーパー製であり、第7図に示すように、
スーツブロー流体Jを噴出させ、0.5〜0.7g/cm2
のスーツブロー衝撃力を繰返し加えると、この衝
撃力の繰返しが、400回程度で、コルゲート板1
1の上端部11aに貫通孔11cが生じ、ここか
ら燃焼用空気が漏出し、熱交換ができなくなり、
熱交換器としての機損が損なわれることになる。
The corrugated plate 11 and flat plate 12 of the heat transfer element 10 explained in FIG. 4 are made of ceramic paper with a thickness of about 1 mm, and as shown in FIG.
Squirt out suit blow fluid J, 0.5 to 0.7 g/cm 2
When a suit blow impact force of
A through hole 11c is formed in the upper end 11a of 1, from which combustion air leaks, making it impossible to exchange heat.
The equipment as a heat exchanger will be damaged.

一方第6図において、伝熱ブロツク20は、そ
の端部20aのみがパツキン23aと接触するの
で、ここに締付力が集中し、セラミツクペーパー
端部が折損あるいはコルゲート板が潰れてしまい
シール性が損なわれる。これを防止するために、
パツキン23aとしてグラスウールもしくはセラ
ミツクペーパー等を束ねた柔らかいものを用いる
と、伝熱ブロツク20の端部20aを抱き込む形
となり接触部を広くとれるので、締付力の集中が
緩和され、セラミツクペーパー端部の折損や潰れ
が解消される反面、パツキン材内部を排ガス及び
燃焼用空気が通過するので、結局シール性は損な
われる。
On the other hand, in FIG. 6, only the end 20a of the heat transfer block 20 contacts the packing 23a, so the tightening force is concentrated there, causing the end of the ceramic paper to break or the corrugated plate to be crushed, resulting in poor sealing performance. be damaged. To prevent this,
If a soft material made of bundles of glass wool or ceramic paper is used as the packing 23a, the end 20a of the heat transfer block 20 will be hugged and the contact area will be wide, so the concentration of tightening force will be eased and the end of the ceramic paper Although this solves the problem of breakage and crushing, the sealing performance is eventually impaired because exhaust gas and combustion air pass through the inside of the packing material.

本発明は上記従来の欠点を克服し、スーツブロ
ー衝撃力の繰返しを受けてもコルゲート板が損傷
することのない直交型熱交換器用伝熱ブロツクを
提供することを目的とするものであり、また本発
明では伝熱ブロツクをケーシングへ装填する際、
伝熱ブロツクのパツキンの当る部分の締付力を介
散させパツキン当接の良好な直交型熱交換器用伝
熱ブロツクを提供することを目的とするものであ
る。
An object of the present invention is to overcome the above-mentioned conventional drawbacks and provide a heat transfer block for an orthogonal heat exchanger in which the corrugated plates are not damaged even when subjected to repeated suit blow impact forces. In the present invention, when loading the heat transfer block into the casing,
It is an object of the present invention to provide a heat transfer block for an orthogonal heat exchanger which has good packing contact by dispersing the tightening force at the part of the heat transfer block that comes into contact with the packing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明は、無機繊維ペ
ーパからなるセラミツク製のコルゲート板と平板
とよりなる複数の伝熱エレメントが、互いに前記
コルゲート板のコルゲートの方向が直交するよう
に積層された直交型熱交換器用伝熱ブロツクにお
いて、 該伝熱ブロツクの伝熱面に付着した煤を除去す
るためのスーツブローが行なわれる側の、前記コ
ルゲート板と平板とでなす全ての凹所にセラミツ
クソリツドが充填されていることを特徴とする。
In order to achieve the above object, the present invention provides an orthogonal type heat transfer element in which a plurality of heat transfer elements each consisting of ceramic corrugated plates and flat plates made of inorganic fiber paper are laminated such that the corrugated directions of the corrugated plates are orthogonal to each other. In a heat transfer block for a heat exchanger, ceramic solid is applied to all recesses formed between the corrugated plate and the flat plate on the side where suit blowing is performed to remove soot adhering to the heat transfer surface of the heat transfer block. It is characterized by being filled.

また、無機繊維ペーパからなるセラミツク製の
コルゲート板と平板とよりなる複数の伝熱エレメ
ントが、互いに前記コルゲート板のコルゲートの
方向が直交するように積層された直交型熱交換器
用伝熱ブロツクにおいて、 該伝熱ブロツクの伝熱面に付着した煤を除去す
るためのスーツブローが行なわれる側の、前記コ
ルゲート板と平板とでなす成全ての凹所、および
前記伝熱ブロツクをケーシングへ装填する際に装
着されるパツキンが当接する部位の、前記コルゲ
ート板と平板とでなく凹所にセラミツクソリツド
が充填されていることを特徴とするものであつて
もよい。
Further, in a heat transfer block for an orthogonal heat exchanger, a plurality of heat transfer elements each consisting of ceramic corrugated plates and flat plates made of inorganic fiber paper are laminated such that the directions of the corrugations of the corrugated plates are orthogonal to each other, All the recesses formed by the corrugated plate and the flat plate on the side where suit blowing is performed to remove soot adhering to the heat transfer surface of the heat transfer block, and when loading the heat transfer block into the casing. The structure may be characterized in that a recess, rather than the corrugated plate and the flat plate, which is in contact with the gasket attached to the corrugated plate is filled with ceramic solid.

〔作 用〕[Effect]

上記のとおり構成された本発明では、伝熱ブロ
ツクのスーツブローが行なわれる側の、コルゲー
ト板と平板とでなす全ての凹所にセラミツクソリ
ツドが充填されることにより、無機繊維ペーパか
らなるコルゲート板および平板が強化され、コル
ゲート板および平板がスーツブローの衝撃力から
保護される。また、これに加え、パツキンが当接
する部位の、コルゲート板と平板とでなす凹所に
もセラミツクソリツドが充填されることにより、
伝熱ブロツクをケーシングへ装填し締め付けた際
に締め付け力が分散され、伝熱ブロツクの破損が
防止される。
In the present invention configured as described above, all the recesses formed by the corrugated plate and the flat plate on the side of the heat transfer block where suit blowing is performed are filled with ceramic solid. The plates and flat plates are strengthened and the corrugated plates and flat plates are protected from the impact force of the suit blow. In addition to this, the recess formed by the corrugated plate and the flat plate where the packing comes into contact is also filled with ceramic solid.
When the heat transfer block is loaded into the casing and tightened, the tightening force is dispersed, preventing damage to the heat transfer block.

セラミツクソリツドには次のような性能が要求
される。すなわち耐水性、耐酸性、耐熱性及びス
ーツブローに耐する耐衝撃性、耐熱衝撃性をはじ
め、狭い隙間に充填された場合の伝熱ブロツク本
体との密着性および加熱による耐収縮性等であ
る。
Ceramic solids are required to have the following performance. In other words, it has water resistance, acid resistance, heat resistance, impact resistance against suit blowing, thermal shock resistance, adhesion with the heat transfer block body when filled into a narrow gap, and resistance to shrinkage due to heating. .

本発明においては、セラミツクソリツドとして
前記要求性能を満足するものであれば特別限定さ
れるものではないが、例えば結合材、骨材、補強
繊維および増粘材の混合物が好ましい。
In the present invention, the ceramic solid is not particularly limited as long as it satisfies the above-mentioned required performance, but for example, a mixture of a binder, an aggregate, a reinforcing fiber, and a thickener is preferable.

すなわち、結合材は他の材料の結合および壁と
の密着のために使用され、シリカゲル、エチレン
シリケート、ケイ酸アルカリ等のケイ酸質結合
材、アルミナゾル、リン酸アルムミニウム等が好
ましい。
That is, the binder is used for bonding other materials and for adhesion to the wall, and preferred are silica binders such as silica gel, ethylene silicate, and alkali silicate, alumina sol, aluminum phosphate, and the like.

骨材は耐スーツブロー性、シール性等のために
添加され、炭酸カルシウム、クレー等の通常使用
される無機質粉末が使用できるが、特に耐酸性が
要求される場合にはケイ石、非晶質シリカ等のケ
イ酸質粉末、Cガラスフレーク、マイカ、酸化チ
タン、ジルコニア粉末等が好ましい。
Aggregate is added for suit blow resistance, sealing properties, etc., and commonly used inorganic powders such as calcium carbonate and clay can be used, but if acid resistance is particularly required, silica and amorphous powders can be used. Preferable examples include silicic acid powder such as silica, C glass flakes, mica, titanium oxide, and zirconia powder.

補強繊維は耐熱収縮性、耐熱衝撃性のために使
用され、Eガラス繊維、チタン酸カリウム繊維、
ワラストナイトの無機質繊維が使用可能で、特に
耐酸性が要求される場合にはCガラス繊維、シリ
カガラス繊維、耐アルカリガラス質繊維が好まし
い。
Reinforcing fibers are used for heat shrinkage resistance and thermal shock resistance, such as E-glass fibers, potassium titanate fibers,
Inorganic fibers of wollastonite can be used, and in particular when acid resistance is required, C glass fibers, silica glass fibers, and alkali-resistant glass fibers are preferred.

また、増粘材は結合材と骨材の分離防止、充填
後のダレ防止等を目的として添加されるもので、
メチルセルロース、カルボキシメチルセルロー
ス、ポリエチレンオキサイド、アルギン酸ソーダ
等の有機質のもの又はベントナイト、クレー等の
無機質のものが好ましい。
In addition, thickeners are added for the purpose of preventing separation of binder and aggregate, and preventing sagging after filling.
Organic materials such as methyl cellulose, carboxymethyl cellulose, polyethylene oxide, and sodium alginate, and inorganic materials such as bentonite and clay are preferred.

〔実施例〕〔Example〕

つぎに本発明を実施例により図面を参照して説
明する。第1図は本発明の一実施例の斜視図であ
つて、本発明における伝熱エレメント10のセラ
ミツク製のコルゲート板1と、平板12と第4図
で説明したものと略同様であり、伝熱ブロツク2
0における伝熱エレメント10の配置も第5図で
説明したものと略同様であるので、その説明は省
略する。本発明においては、スーツブローが行な
われる側である、伝熱エレメント10の上部にあ
るコルゲート板11と平板12とでなす全ての凹
所にセラミツクソリツド13が充填される。この
場合、伝熱エレメント10の製作時にセラミツク
ソリツド13を充填し焼成される。この構成によ
りスーツブロー時に発生するスーツブロー衝撃力
からコルゲート板11が保護される。これによ
り、例えば、0.5〜0.7g/cm2の衝撃力を2000回加
えても衝撃に対面するコルゲート板11にはなん
ら損傷がなくなつた。この結果、流体の元圧を高
めたより強力なスーツブローを行うことが可能と
なつた。なお、セラミツクソリツド13の充填部
分は蒲鉾屋根状のゆるやかな凸状、もしくは高さ
の低い二等辺三角形状で、伝熱エレメント10端
部よりはみ出させることが望ましい。
Next, the present invention will be described by way of examples with reference to the drawings. FIG. 1 is a perspective view of an embodiment of the present invention, in which a ceramic corrugated plate 1 and a flat plate 12 of a heat transfer element 10 in the present invention are substantially the same as those explained in FIG. heat block 2
The arrangement of the heat transfer elements 10 at 0 is also substantially the same as that explained in FIG. 5, so its explanation is omitted. In the present invention, all the recesses formed by the corrugated plate 11 and the flat plate 12 in the upper part of the heat transfer element 10, which is the side where soot blowing is performed, are filled with ceramic solid 13. In this case, when the heat transfer element 10 is manufactured, the ceramic solid 13 is filled and fired. This configuration protects the corrugate plate 11 from the suit blowing impact force generated during suit blowing. As a result, even if an impact force of 0.5 to 0.7 g/cm 2 was applied 2000 times, there was no damage to the corrugated board 11 facing the impact. As a result, it has become possible to perform a more powerful suit blow by increasing the original pressure of the fluid. It is preferable that the filled portion of the ceramic solid 13 has a gently convex shape with a semi-cylindrical roof or an isosceles triangular shape with a low height, and protrudes from the end of the heat transfer element 10.

第2図および第3図は本発明の他の実施例の斜
視図である。この実施例における伝熱ブロツク2
0、伝熱エレメント10、コルゲート板11、平
板12の構造は第1図および第5図で説明したも
のと略同様であるので説明は省略する。また第6
図で説明したものと同様な伝熱ブロツク押え23
が伝熱ブロツク20の隅部にパツキン23aを介
して装着され、複数の伝熱ブロツク20はケーシ
ングに第6図と同様に装填される。本実施例にお
いては、第1図に示した凹所に加え、さらに伝熱
ブロツク20の各伝熱エレメント10のパツキン
23aに接触する範囲内でコルゲート板11と平
板12とでなす凹所にセラミツクソリツド14が
充填される。この場合セラミツクソリツド14は
伝熱エレメント10の製作時に充填し焼成され
る。この事により、スーツブローによるコルゲー
ト板11の損傷の防止に加え、セラミツクペーパ
ー端部への締付力の集中を排除、同一締付力での
コルゲート板11および平板12の端部の折損を
解消した。
2 and 3 are perspective views of other embodiments of the invention. Heat transfer block 2 in this example
0. The structures of the heat transfer element 10, the corrugated plate 11, and the flat plate 12 are substantially the same as those explained in FIGS. 1 and 5, so the explanation will be omitted. Also the 6th
Heat transfer block holder 23 similar to that explained in the figure
are attached to the corners of the heat transfer blocks 20 via packings 23a, and the plurality of heat transfer blocks 20 are loaded into the casing in the same manner as shown in FIG. In this embodiment, in addition to the recesses shown in FIG. Solid 14 is filled. In this case, the ceramic solid 14 is filled and fired when the heat transfer element 10 is manufactured. This prevents damage to the corrugated plate 11 due to suit blowing, eliminates concentration of tightening force on the edges of the ceramic paper, and eliminates breakage of the edges of the corrugated plate 11 and flat plate 12 with the same tightening force. did.

なお、ここに用いるパツキング23aは充填し
たセラミツクソリツド14の表面粗さをカバーす
るため、気孔率60〜70%の単独気泡を有する発泡
フツ素ゴムシート等を締付力1.5Kgf/cm2で用い
るのが望ましい。
In order to cover the surface roughness of the filled ceramic solid 14, the packing 23a used here is made of a foamed fluoro rubber sheet or the like having single cells with a porosity of 60 to 70% with a tightening force of 1.5 kgf/cm 2 . It is desirable to use

つぎに、本発明の伝熱ブロツクの更に具体的な
実施例について説明する。
Next, more specific examples of the heat transfer block of the present invention will be described.

ジルコニウム含有ガラス(一般には、耐アルカ
リガラス、ARGとして知られている)繊維及び
ポリビニルアルコール樹脂系の結合材より常法に
よつて120g/m2、厚さ1mmの無機繊維ペーパを
抄造し、これにケイ石粉末を300g/cm2塗工した。
この無機繊維ペーパを用いて通常のコルゲート加
工を行い、コルゲートの方向(流体の通路方向)
を90度交互に替えて積層・接着したのち、硬化材
液(結合材:コロイダルシリカ、骨材:ケイ石粉
末、Cガラスフレーク)を含浸そして乾燥硬化・
焼成する工程を3回繰返し、300mm角(300×300
×300mm)の直交型セラミツク伝熱ブロツクを作
製した。
An inorganic fiber paper with a weight of 120 g/m 2 and a thickness of 1 mm is made by a conventional method from zirconium-containing glass (generally known as alkali-resistant glass, ARG) fibers and a polyvinyl alcohol resin binder. 300g/cm 2 of silica powder was applied to the surface.
This inorganic fiber paper is used to perform normal corrugation processing, and the direction of the corrugation (fluid passage direction) is
After laminating and adhering by alternating 90 degrees, impregnating with hardening material liquid (binder: colloidal silica, aggregate: silica powder, C glass flakes), drying and hardening.
Repeat the firing process 3 times to make a 300mm square (300 x 300
×300mm) orthogonal ceramic heat transfer blocks were fabricated.

このブロツクは、壁厚1.1mm、フレート高さ9
mm、ピツチ15mm、密度400Kg/m3であつた。
This block has a wall thickness of 1.1 mm and a plate height of 9
mm, pitch 15mm, and density 400Kg/ m3 .

次にこのブロツクの4面の相手側コルゲートの
凹部(非流路)にセラミツクソリツド(結合材:
コロイダルシリカ、骨材:ケイ石粉末、ホワイト
カーボン、増粘材:メチルセルロース)を蒲鉾屋
根状のゆるやかな凸状になるように充填して乾燥
硬化・焼成した。
Next, ceramic solid (binding material:
Colloidal silica, aggregate: silica powder, white carbon, thickener: methyl cellulose) were filled into a gently convex shape similar to the roof of a kamaboko, then dried, hardened, and fired.

このようにして複数個のブロツクを作製し、パ
ツキン材として巾20mm、厚み5mmの発泡フツ素ゴ
ムシート(密度0.4g/cm3)で各ブロツクの角部に
あてがいケーシングに装填した。パツキン材には
1Kgf/cm2の面圧がかかるようケーシング外部か
らブロツクを締めつけた。
A plurality of blocks were prepared in this way, and a foamed fluoro rubber sheet (density 0.4 g/cm 3 ) having a width of 20 mm and a thickness of 5 mm was applied as a packing material to the corner of each block, and the blocks were loaded into a casing. The block was tightened from the outside of the casing so that a surface pressure of 1 kgf/cm 2 was applied to the packing material.

この伝熱ブロツクにおけるスーツブローテスト
およびリーフテストの結果は従来のものより格段
に優れていた。また伝熱ブロツクの作製には次の
事も実施可能である。
The suit blow test and leaf test results of this heat transfer block were significantly superior to conventional ones. In addition, the following can also be carried out to produce a heat transfer block.

すなわち、 (a) ジルコニア含有ガラス繊維をCガラス繊維に
すると。
That is, (a) When the zirconia-containing glass fiber is used as C glass fiber.

(b) 実施例のブロツクに更に、テトラフルオロエ
チレン―ヘキサフルオロプロピレン共重合体
(FEP)樹脂に処理する(ダスト付着防止のた
め)ことである。
(b) The block of the example was further treated with a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin (to prevent dust adhesion).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、伝熱ブロツクのスーツブロー
が行なわれる側の、コルゲート板と平板とでなす
全ての凹所にセラミツクソリツドを充填すること
で、無機繊維ペーパからなるコルゲート板および
平板をスーツブローの衝撃力から保護することが
できる。さらに、パツキンが当接する部位の、コ
ルゲート板と平板とでなす凹所にもセラミツクソ
リツドを充填することで、伝熱ブロツクをケーシ
ングへ装填し締め付けた際に締め付け力が分散さ
れるので、伝熱ブロツクの破損も防止できる。
According to the present invention, by filling all the recesses formed by the corrugated plate and flat plate on the side of the heat transfer block where suit blowing is performed with ceramic solid, the corrugated plate and flat plate made of inorganic fiber paper can be suit-blown. Can be protected from blow impact force. Furthermore, by filling the recess formed by the corrugated plate and the flat plate where the packing comes into contact with ceramic solid, the tightening force is dispersed when the heat transfer block is loaded into the casing and tightened. Damage to the thermal block can also be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の斜視図、第2図は
本発明の他の実施例の斜視図、第3図は第2図の
部分除去斜視図、第4図はコルゲート状セラミツ
ク伝熱エレメントの斜視図、第5図は従来の伝熱
ブロツクの斜視図、第6図は直交型熱交換器の正
面図、第7図は従来の伝熱ブロツクのスーツブロ
ー作業説明のための斜視図である。 10…伝熱エレメント、11…コルゲート板、
12…平板、13,14…セラミツクソリツド、
20…伝熱ブロツク、23…パツキン押え、23
a…パツキン。
Fig. 1 is a perspective view of one embodiment of the present invention, Fig. 2 is a perspective view of another embodiment of the invention, Fig. 3 is a partially removed perspective view of Fig. 2, and Fig. 4 is a corrugated ceramic structure. A perspective view of a thermal element, FIG. 5 is a perspective view of a conventional heat transfer block, FIG. 6 is a front view of an orthogonal heat exchanger, and FIG. 7 is a perspective view of a conventional heat transfer block for explaining the suit blowing operation. It is a diagram. 10... Heat transfer element, 11... Corrugated plate,
12... Flat plate, 13, 14... Ceramic solid,
20...Heat transfer block, 23...Packing holder, 23
a...Patsukin.

Claims (1)

【特許請求の範囲】 1 無機繊維ペーパからなるセラミツク製のコル
ゲート板と平板とよりなる複数の伝熱エレメント
が、互いに前記コルゲート板のコルゲートの方向
が直交するように積層された直交型熱交換器用伝
熱ブロツクにおいて、 該伝熱ブロツクの伝熱面に付着した煤を除去す
るためのスーツブローが行なわれる側の、前記コ
ルゲート板と平板とでなす全ての凹所にセラミツ
クソリツドが充填されていることを特徴とする直
交型熱交換器用伝熱ブロツク。 2 無機繊維ペーパからなるセラミツク製のコル
ゲート板と平板とよりなる複数の伝熱エレメント
が、互いに前記コルゲート板のコルゲートの方向
が直交するように積層された直交型熱交換器用伝
熱ブロツクにおいて、 該伝熱ブロツクの伝熱面に付着した煤を除去す
るためのスーツブローが行なわれる側の、前記コ
ルゲート板と平板とでなす全ての凹所、および前
記伝熱ブロツクをケーーシングへ装填する際に装
着されるパツキンが当接する部位の、前記コルゲ
ート板と平板とでなす凹所にセラミツクソリツド
が充填されていることを特徴とする直交型熱交換
器用伝熱ブロツク。
[Claims] 1. For an orthogonal heat exchanger in which a plurality of heat transfer elements each consisting of ceramic corrugated plates and flat plates made of inorganic fiber paper are stacked such that the directions of the corrugations of the corrugated plates are orthogonal to each other. In the heat transfer block, all the recesses formed by the corrugated plate and the flat plate on the side where suit blowing is performed to remove soot adhering to the heat transfer surface of the heat transfer block are filled with ceramic solid. A heat transfer block for an orthogonal heat exchanger. 2. A heat transfer block for an orthogonal heat exchanger in which a plurality of heat transfer elements each consisting of ceramic corrugated plates and flat plates made of inorganic fiber paper are laminated such that the directions of the corrugations of the corrugated plates are orthogonal to each other, All the recesses formed by the corrugated plate and the flat plate on the side where suit blowing is performed to remove soot adhering to the heat transfer surface of the heat transfer block, and when the heat transfer block is loaded into the casing. 1. A heat transfer block for an orthogonal heat exchanger, characterized in that a recess formed by the corrugated plate and the flat plate is filled with ceramic solid at a portion where the packing comes into contact.
JP14149686A 1986-06-19 1986-06-19 Thermal conducting block for crossed type heat exchanger Granted JPS62299694A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14149686A JPS62299694A (en) 1986-06-19 1986-06-19 Thermal conducting block for crossed type heat exchanger
DE19873720188 DE3720188A1 (en) 1986-06-19 1987-06-16 Heat transfer block for cross-current heat exchanger
SE8702526A SE462764B (en) 1986-06-19 1987-06-17 CORRUGATED CERAMIC HEAT EXCHANGER BLOCK FOR TRANSFORM, WHERE THE CONDUCTIVE PARTS OF THE ENDYTORN ARE FILLED WITH CERAMIC SOLID TOPICS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14149686A JPS62299694A (en) 1986-06-19 1986-06-19 Thermal conducting block for crossed type heat exchanger

Publications (2)

Publication Number Publication Date
JPS62299694A JPS62299694A (en) 1987-12-26
JPH0587756B2 true JPH0587756B2 (en) 1993-12-17

Family

ID=15293286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14149686A Granted JPS62299694A (en) 1986-06-19 1986-06-19 Thermal conducting block for crossed type heat exchanger

Country Status (3)

Country Link
JP (1) JPS62299694A (en)
DE (1) DE3720188A1 (en)
SE (1) SE462764B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630299Y2 (en) * 1988-11-30 1994-08-17 トリニティ工業株式会社 Heat exchanger for paint drying oven
DE3926283A1 (en) * 1989-08-09 1991-02-14 Menerga Apparatebau Gmbh Heat exchanger with reduced flow resistance - has rounded inlets and outlets to internal chambers to reduce flow resistance
EP0637727A3 (en) * 1993-08-05 1997-11-26 Corning Incorporated Cross-flow heat exchanger and method of forming
JP5755828B2 (en) * 2008-09-30 2015-07-29 Jfeスチール株式会社 Exhaust gas cooling device
JP5515364B2 (en) * 2009-03-31 2014-06-11 Jfeスチール株式会社 Hot metal pretreatment method and system
JP2014134324A (en) * 2013-01-09 2014-07-24 Daikin Ind Ltd Total enthalpy heat exchanger
CN105806109B (en) * 2016-03-24 2020-01-07 南京工业大学 Counter-flow finned plate heat exchanger for gas-gas heat exchange

Also Published As

Publication number Publication date
SE8702526D0 (en) 1987-06-17
SE462764B (en) 1990-08-27
DE3720188A1 (en) 1987-12-23
JPS62299694A (en) 1987-12-26
SE8702526L (en) 1987-12-20

Similar Documents

Publication Publication Date Title
US4746570A (en) Heat-resistant, highly expansible sheet material for supporting catalyst carrier and process for the preparation thereof
US4789585A (en) Heat transfer block for cross flow heat exchanger
EP1036590A3 (en) Corrugated structured packing
JPH0587756B2 (en)
US20140352912A1 (en) Regenerator
CA1142507A (en) Ceramic heat recuperative apparatus
CA1121332A (en) Ceramic heat recuperative structure and assembly
EP2180114A1 (en) System for a building envelope with improved insulation properties and cassette for use in the building
EP0093612B1 (en) Method for the production of a tube heat exchangerunit
JPH06305847A (en) Heat-resistant composite member and its formed body
JPH0741192U (en) Metal coated heat insulating material
CZ319094A3 (en) Fiber-free heat-insulating composite board
JPH0979774A (en) Corrugated ceramic plate laminated heat storage body
CN217574331U (en) Ceramic fiber heat-insulating layer structure
CN85205635U (en) Improved crisscross ceramic heat exchanger
CN113954460B (en) Heat-resistant composite board
CN217330861U (en) High temperature environment does not have phase transition shell and tube type heat exchanger insulation construction
JPH0618222Y2 (en) Insulation structure of furnace
CN216409756U (en) Heat insulation lining structure and petrochemical heating furnace
WO1986002718A1 (en) Crossflow heat exchanger
JPS6360319B2 (en)
JPS61213497A (en) Heat exchanging body applied with coating
CN101081744A (en) Aluminium oxide fibre overlaying modular and preparation method thereof (dry method)
CN208269661U (en) Refractory heat-insulating modular tile
CN116103018A (en) Metal oxide heat storage unit and forming method