JP5515364B2 - Hot metal pretreatment method and system - Google Patents

Hot metal pretreatment method and system Download PDF

Info

Publication number
JP5515364B2
JP5515364B2 JP2009085215A JP2009085215A JP5515364B2 JP 5515364 B2 JP5515364 B2 JP 5515364B2 JP 2009085215 A JP2009085215 A JP 2009085215A JP 2009085215 A JP2009085215 A JP 2009085215A JP 5515364 B2 JP5515364 B2 JP 5515364B2
Authority
JP
Japan
Prior art keywords
dust
iron oxide
hot metal
hopper
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009085215A
Other languages
Japanese (ja)
Other versions
JP2010236017A (en
Inventor
範孝 西口
芳幸 田中
孝憲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009085215A priority Critical patent/JP5515364B2/en
Publication of JP2010236017A publication Critical patent/JP2010236017A/en
Application granted granted Critical
Publication of JP5515364B2 publication Critical patent/JP5515364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W30/54

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、処理容器内の溶銑に粉状の酸化鉄をキャリアガスと共に吹き込み、脱燐や脱珪を行う溶銑予備処理方法及びシステムに関し、特に溶銑予備処理時に発生するダストをリサイクルする溶銑予備処理方法及びシステムに関する。   The present invention relates to a hot metal pretreatment method and system in which powdered iron oxide is blown into a hot metal in a processing vessel together with a carrier gas to perform dephosphorization and desiliconization, and in particular, hot metal pretreatment for recycling dust generated during hot metal pretreatment. It relates to a method and a system.

近年製鋼工程では、転炉吹錬の負荷軽減、製鋼トータルコストのミニマム化を図るため、溶銑が含有する燐、珪素を転炉での酸素吹錬の前に除去する溶銑予備処理が行われている。その溶銑予備処理方法は、使用する処理容器(例えば、混銑車、溶銑鍋、転炉等)に応じて様々である。   In recent years, in the steelmaking process, in order to reduce the load of converter blowing and minimize the total cost of steelmaking, hot metal pretreatment is performed to remove phosphorus and silicon contained in the hot metal before oxygen blowing in the converter. Yes. There are various hot metal pretreatment methods depending on the processing container to be used (for example, a kneading wheel, a hot metal ladle, a converter, etc.).

このうち、混銑車に保持された溶銑に酸化剤をインジェクションする溶銑の脱燐処理は、転炉を用いる処理に比べると、酸化剤の反応効率が高く、また処理コストが安価であるという利点を有する。このインジェクション方式の溶銑の脱燐処理システムにおいて、酸化剤として、焼結鉱を粉砕してなる粉状の酸化鉄が使用される。ホッパに貯留される粉状の酸化鉄は、キャリアガスによって気送され、吹き込みランスから混銑車内の溶銑に吹き込まれる。   Among these, the hot metal dephosphorization process, in which the oxidizing agent is injected into the hot metal held in the kneading car, has the advantages of higher oxidant reaction efficiency and lower processing cost than the processing using the converter. Have. In this injection type hot metal dephosphorization system, powdered iron oxide formed by pulverizing sintered ore is used as an oxidizing agent. The powdered iron oxide stored in the hopper is blown by the carrier gas and blown into the hot metal in the kneading vehicle from the blowing lance.

混銑車内の溶銑に酸化剤をインジェクションする際、ダストが発生する。ダストを含む排ガスは冷却装置によって冷却された後、排ガス中のダストが集塵装置によって回収される。集塵装置には、排ガスに混じった細かい粉塵を布等を透過させることによって捕集するバグフィルタが用いられる。バグフィルタによって回収された集塵ダストは、再利用を図るため再び混銑車内の溶銑に吹き込まれる。   Dust is generated when the oxidant is injected into the hot metal in the chaotic vehicle. After the exhaust gas containing dust is cooled by the cooling device, the dust in the exhaust gas is recovered by the dust collector. A bag filter that collects fine dust mixed in exhaust gas by passing a cloth or the like is used for the dust collector. The dust collected by the bag filter is blown again into the hot metal in the kneading vehicle for reuse.

集塵ダストを再利用する技術として、特許文献1には、石灰系脱硫設備で溶銑を脱硫する際に発生するダストを回収し、回収した石灰系ダストを分級機を用いて細粒ダストと粗粒ダストに分級し、細粒ダストを吹き込みランスを用いて混銑車内の溶銑中に吹き込んで脱硫処理し、粗粒ダストを混銑車内の溶銑に上置法により添加して脱硫処理する集塵ダスト再利用方法が開示されている。   As a technique for reusing dust collection dust, Patent Document 1 discloses that dust generated when hot metal is desulfurized in a lime-based desulfurization facility is recovered, and the recovered lime-based dust is classified into fine dust and coarse dust using a classifier. Dust collection dust reclassified by classifying into fine dust, blowing fine dust into the hot metal in the kneading car using a lance and desulfurizing, and adding coarse dust to the hot metal in the kneading car by the top method. A method of use is disclosed.

特開平6−220514号公報JP-A-6-220514

しかし、実際にバグフィルタによりダストを回収し、再び混銑車内の溶銑に吹き込んだところ、排ガスを吸引する際の集塵風量が低下してしまうという問題が生じた。冷却装置に集塵ダストが詰まることが原因であった。集塵風量の低下は、火炎噴出に起因する設備損傷を発生させる。集塵風量の低下を防止するために、冷却装置を定期的に清掃しても、数日経過しただけでダストの詰りが蓄積し、再び集塵風量が低下してしまった。時間と労力をかけた定期清掃のみではいたちごっこになってしまっている。   However, when dust was actually collected by the bag filter and again blown into the molten iron in the kneading vehicle, there was a problem that the amount of dust collected when the exhaust gas was sucked was reduced. This was caused by dust collecting clogging in the cooling device. A decrease in the amount of dust collected causes equipment damage due to the flame ejection. Even if the cooling device was periodically cleaned in order to prevent a decrease in the amount of collected air, the clogging of dust accumulated only after a few days, and the amount of collected air decreased again. Only regular cleaning with a lot of time and effort has made it a mess.

そこで、本発明は混銑車等の処理容器から発生するダストをリサイクルしても、集塵風量が低下するのを防止できる溶銑予備処理方法及び装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a hot metal preliminary treatment method and apparatus capable of preventing the dust collection air volume from decreasing even when dust generated from a processing container such as a kneading vehicle is recycled.

上記課題を解決するために、本発明の一態様は、処理容器内の溶銑にキャリアガスと共に粉状の酸化鉄を吹き込む溶銑予備処理方法において、前記処理容器から発生する排ガスを冷却装置で冷却し、冷却した排ガス中のダストを集塵装置で回収し、回収した集塵ダストを、固体酸素源を粉砕してなる粉状の酸化鉄を貯留する酸化鉄ホッパに、前記集塵装置と前記酸化鉄ホッパとに接続される集塵ダスト混合ラインを介して前記酸化鉄ホッパに直接的に供給し、前記酸化鉄ホッパにおいて混合された前記粉状の酸化鉄及び前記集塵ダストを前記処理容器内の溶銑に吹き込み、溶銑予備処理時に発生するダストをリサイクルする溶銑予備処理方法である。 In order to solve the above-described problems, an aspect of the present invention provides a hot metal preliminary treatment method in which powdered iron oxide is blown together with a carrier gas into hot metal in a processing container, and exhaust gas generated from the processing container is cooled by a cooling device. the dust in the cooled exhaust gas recovered by the dust collector, the collected dust collecting dust, iron oxide hopper for storing a powdered iron oxide obtained by pulverizing a solid oxygen source, the oxidation and the dust collecting device Directly supplied to the iron oxide hopper via a dust collection line connected to the iron hopper, and the powdered iron oxide and the dust collection dust mixed in the iron oxide hopper are contained in the processing container. only write blown into molten iron, a hot metal pre-treatment methods for recycling the dust generated at the time of hot metal pre-treatment.

本発明の他の態様は、混銑車を含む処理容器内の溶銑にキャリアガスと共に粉状の酸化鉄を吹き込む溶銑予備処理システムにおいて、前記処理容器から発生する排ガスを冷却する冷却装置と、冷却した排ガス中のダストを回収する集塵装置と、固体酸素源を粉砕してなる粉状の酸化鉄を貯留する酸化鉄ホッパと、前記集塵装置と前記酸化鉄ホッパとに接続され、前記集塵装置で回収した集塵ダストを前記酸化鉄ホッパに直接的に供給する集塵ダスト混合ラインと、前記酸化鉄ホッパにおいて混合された前記粉状の酸化鉄及び前記集塵ダストを前記処理容器内の溶銑に吹き込むランスと、を備え、溶銑予備処理時に発生するダストをリサイクルする溶銑予備処理システムである。
Another aspect of the present invention is a hot metal preliminary treatment system in which powdered iron oxide is blown into a hot metal in a processing vessel including a kneading vehicle together with a carrier gas, a cooling device for cooling the exhaust gas generated from the processing vessel, and cooling A dust collector that collects dust in the exhaust gas; an iron oxide hopper that stores powdered iron oxide obtained by pulverizing a solid oxygen source; and the dust collector that is connected to the dust collector and the iron oxide hopper. A dust collection line for supplying the collected dust collected by the apparatus directly to the iron oxide hopper, and the powdered iron oxide and the dust collected mixed in the iron oxide hopper in the processing vessel. A hot metal pretreatment system for recycling dust generated during hot metal pretreatment.

冷却装置でのリサイクルダストの詰りの原因を調査したところ、リサイクルダスト中の低融点物質の濃度が高く、冷却によって低融点物質が析出し、低融点物質が冷却装置入り側で周辺のダスト粒を捕捉しつつエレメントに付着・堆積し、これが原因で冷却装置の圧力損失の増大を招き、ひいては集塵風量の低下につながっていると推定された。従来、リサイクルダストは処理終了直前に処理容器に単独で吹き込まれていた。繰り返しリサイクルすることで系内に低融点物質が濃縮するものと考えられる。   As a result of investigating the cause of clogging of recycle dust in the cooling device, the concentration of low melting point substances in the recycle dust is high. It was presumed that, while trapping, it adhered to and deposited on the element, which caused an increase in the pressure loss of the cooling device, which in turn led to a decrease in the amount of dust collected. Conventionally, the recycled dust has been blown into the processing container alone immediately before the end of the processing. It is considered that low melting point substances are concentrated in the system by repeated recycling.

次に、ダストリサイクル量が少ない予備処理システムBとダストリサイクル量が多い予備処理システムAとで、リサイクルダスト累積使用量と冷却装置の圧力損失との関係を比較した。その結果、予備設備システムBのリサイクルダスト累積使用量が、予備処理システムAの、圧力損失上昇を招いた累積使用量と同レベルに至っても、予備処理システムBでの圧力損失の上昇が認められなかった。このことから、最終のインプット低融点物質が同等であっても、少量ずつ吹き込むことによって、冷却装置の圧力損失の上昇を防止できることがわかった。   Next, the relationship between the accumulated amount of recycled dust and the pressure loss of the cooling device was compared between the pretreatment system B with a small amount of dust recycling and the pretreatment system A with a large amount of dust recycling. As a result, even if the cumulative amount of recycled dust used in the preliminary equipment system B reaches the same level as the cumulative amount used in the preliminary processing system A that caused an increase in pressure loss, an increase in pressure loss in the preliminary processing system B was observed. There wasn't. From this, it was found that even if the final input low-melting-point substance is equivalent, an increase in the pressure loss of the cooling device can be prevented by blowing in small amounts.

本発明によれば、リサイクルダストを溶銑予備処理の終了直前に一気に処理容器に吹き込むのではなく、一旦酸化鉄ホッパに混合し、酸化鉄にリサイクルダストを分散させた状態で処理容器に吹き込むので、リサイクルダストを少量ずつ処理容器に吹き込むことができる。このため、冷却装置の圧力損失の上昇を防止し、ひいては集塵風量の低下を防止できる。   According to the present invention, the recycled dust is not blown into the processing container at a stretch immediately before the end of the hot metal preliminary treatment, but once mixed with the iron oxide hopper and blown into the processing container with the recycled dust dispersed in the iron oxide, Recycled dust can be blown into the processing container little by little. For this reason, an increase in the pressure loss of the cooling device can be prevented, and as a result, a decrease in the amount of collected air can be prevented.

本発明の一実施形態の溶銑予備処理システムの全体図1 is an overall view of a hot metal pretreatment system according to an embodiment of the present invention. 集塵ダスト混合ラインの接続状況の比較図(図中(a)は従来例を示し、図中(b)は本発明例を示す)Comparison diagram of connection status of dust collection line ((a) in the figure shows a conventional example, and (b) in the figure shows an example of the present invention) 冷却装置の構成図Configuration diagram of cooling device 冷却装置の各機器の圧力損失を示すグラフGraph showing the pressure loss of each device of the cooling device 溶銑予備処理システムAとシステムBにおけるガスクーラの圧損状況の比較図Comparison chart of gas cooler pressure loss in hot metal pretreatment system A and system B ガスクーラの差圧と集塵風量の関係を示すグラフGraph showing the relationship between the differential pressure of the gas cooler and the amount of dust collected

以下、添付図面に基づいて本発明の溶銑予備処理システムの一実施形態を説明する。図1は、溶銑予備処理システムの全体図を示す。製鋼工場では、製鋼工程の精練コストミニマム化のためにトピード型の溶銑脱燐処理が実施される。混銑車1内の溶銑2には、脱燐剤として粉状の酸化鉄3がキャリアガスと共に浸漬ランス4の先端からインジェクションされる。酸化鉄3には、生石灰、炭酸カルシウム等の精錬剤が混合される。   Hereinafter, an embodiment of a hot metal pretreatment system of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an overall view of a hot metal pretreatment system. In steelmaking plants, a torpedo type hot metal dephosphorization process is carried out in order to minimize the refining costs in the steelmaking process. Powdered iron oxide 3 as a dephosphorizing agent is injected into the hot metal 2 in the kneading wheel 1 from the tip of the immersion lance 4 together with a carrier gas. The iron oxide 3 is mixed with a refining agent such as quick lime and calcium carbonate.

粉状の酸化鉄3は、焼結鉱を粉砕することにより製造される。焼結工場で製造された焼結鉱は、ダンプトラック6によりトラックホッパ7に投入される。焼結鉱粉砕機であるローラーミル8によって粉状に粉砕される。粉砕された粉状の酸化鉄は、気送され、焼結鉱粉砕ルームの酸化鉄ホッパ9に貯留される。この酸化鉄ホッパ9には、ローリ10で搬送される生石灰、炭酸カルシウム等の精錬剤も投入される。   Powdered iron oxide 3 is produced by pulverizing sintered ore. The sintered ore produced in the sintering plant is put into the truck hopper 7 by the dump truck 6. The powder is pulverized by a roller mill 8 which is a sintered ore pulverizer. The pulverized iron oxide powder is aired and stored in the iron oxide hopper 9 in the sinter ore pulverization room. The iron oxide hopper 9 is also charged with a refining agent such as quick lime and calcium carbonate conveyed by a lorry 10.

焼結鉱以外の固体酸素源としては、鉄鉱石、ミルスケール(鋼材の製造過程において高温に加熱されるとき、空気中の酸素と反応して生成し付着している酸化物被膜)、溶銑予備処理工程以外の工程(例えば製銑工程)で発生するダストを用いることができる。   Solid oxygen sources other than sintered ore include iron ore, mill scale (oxide film that is generated and adhered by reacting with oxygen in the air when heated to a high temperature in the manufacturing process of steel), hot metal reserve Dust generated in a process other than the treatment process (for example, a iron making process) can be used.

酸化鉄ホッパ9に貯留された粉状の酸化鉄3は、吹込ディスペンサ11によってキャリアガスと共に混銑車1に気送される。混銑車1から発生する排ガスは、排風ファン12によって吸引される。排ガス中に含まれるダストは集塵装置としてのバグフィルタ13によって回収される。排ガスはバグフィルタ13に至るまでに冷却装置によって冷却される。冷却装置には、排ガスの熱を蓄熱する蓄熱器14、排ガスと熱交換するエレメントを有するガスクーラ15、排ガスの熱を大気に放出するU字管16から構成される(図3参照)。ガスクーラ15には、エレメントに付着したダストを除去するスートブロワが設けられる。   The powdered iron oxide 3 stored in the iron oxide hopper 9 is aired to the kneading vehicle 1 together with the carrier gas by the blowing dispenser 11. The exhaust gas generated from the chaotic vehicle 1 is sucked by the exhaust fan 12. Dust contained in the exhaust gas is collected by a bag filter 13 as a dust collector. The exhaust gas is cooled by the cooling device before reaching the bag filter 13. The cooling device includes a heat accumulator 14 that stores heat of exhaust gas, a gas cooler 15 having an element that exchanges heat with the exhaust gas, and a U-shaped tube 16 that releases heat of the exhaust gas to the atmosphere (see FIG. 3). The gas cooler 15 is provided with a soot blower for removing dust adhering to the element.

図1に示すように、バグフィルタ13によって回収された集塵ダストは、一旦集塵ダストホッパ17に貯留される。集塵ダストホッパ17と酸化鉄ホッパ9とは、集塵ダスト混合ライン18によって接続されており、一旦集塵ダストホッパ17に貯留された集塵ダストは、酸化鉄ホッパ9に気送される。酸化鉄ホッパ9に投入されたリサイクルダストは、粉状の酸化鉄3に混合される。   As shown in FIG. 1, the dust collected by the bag filter 13 is temporarily stored in a dust collection dust hopper 17. The dust collection dust hopper 17 and the iron oxide hopper 9 are connected by a dust collection dust mixing line 18, and the dust collection dust once stored in the dust collection dust hopper 17 is sent to the iron oxide hopper 9. The recycled dust charged into the iron oxide hopper 9 is mixed with the powdered iron oxide 3.

図2は、集塵ダスト混合ライン18の接続状況を本発明と従来例とで比較したものである。図2(a)に示すように、従来の溶銑予備処理システムにおいては、集塵ダスト混合ライン18は酸化鉄ホッパ9の下流側に接続されていた。そして、集塵ダストを混銑車1に吹き込むときは、粉状の酸化鉄3を吹き込む吹込ディスペンサ11を停止し、溶銑予備処理の終了直前に一気に吹き込んでいた。これに対し、図2(b)に示すように、本発明の溶銑予備処理システムにおいては、集塵ダスト混合ライン18は酸化鉄ホッパ9の上流側に接続される。そして、集塵ダストを一旦酸化鉄ホッパ9に投入し、粉状の酸化鉄3にリサイクルダストを分散させた状態で混銑車1に吹き込む。このため、集塵ダストを混銑車1に少量ずつ吹き込むことができる。   FIG. 2 shows a comparison of the connection status of the dust collection line 18 between the present invention and the conventional example. As shown in FIG. 2 (a), in the conventional hot metal pretreatment system, the dust collection line 18 is connected to the downstream side of the iron oxide hopper 9. And when blowing dust collection dust into the kneading wheel 1, the blowing dispenser 11 which blows in powdered iron oxide 3 was stopped, and it was blowing at a stretch just before the completion of hot metal pretreatment. On the other hand, as shown in FIG. 2 (b), in the hot metal preliminary processing system of the present invention, the dust collection dust mixing line 18 is connected to the upstream side of the iron oxide hopper 9. Then, dust collection dust is once put into the iron oxide hopper 9 and blown into the kneading vehicle 1 in a state where the recycle dust is dispersed in the powdered iron oxide 3. For this reason, dust collection dust can be blown into the chaotic vehicle 1 little by little.

本発明のように混銑車1に集塵ダストを少量ずつ吹き込むことができれば、集塵風量の低下を防止できる。「混銑車に集塵ダストを少量ずつ吹き込むこと」と「集塵風量の低下」との相関関係は、以下の(1)〜(3)のとおりである。
である。
If dust collecting dust can be blown into the chaotic vehicle 1 little by little as in the present invention, it is possible to prevent a reduction in the amount of dust collecting air. The correlations between “injecting dust collection dust into the chaotic vehicle little by little” and “decreasing the amount of dust collection air” are as follows (1) to (3).
It is.

(1)集塵風量の低下の原因は、ガスクーラの圧力損失にある。
図4は、集塵風量の低下を招いた冷却装置の圧力損失を測定した範囲を示す。蓄熱器入口、ガスクーラ入口、U字管入口及びU字管出口の圧力(大気圧との差圧)を測定することで、蓄熱器14、ガスクーラ15、及びU字管16での圧力損失を評価した。その結果、図4に示すように、ガスクーラ15での圧力損失が最大になっていることがわかった。集塵風量の低下を防止するためには、ガスクーラ15での圧力損失の回避が必要である。圧力損失は、ガスクーラ15のエレメントへのダストの付着・堆積を防止することで、低位に抑えることが可能になる。
(1) The cause of the decrease in the amount of collected dust is the pressure loss of the gas cooler.
FIG. 4 shows a range in which the pressure loss of the cooling device that caused a decrease in the amount of dust collected is measured. By measuring the pressure at the regenerator inlet, gas cooler inlet, U-shaped tube inlet, and U-shaped tube outlet (differential pressure from the atmospheric pressure), pressure loss at the regenerator 14, gas cooler 15, and U-shaped tube 16 is evaluated. did. As a result, it was found that the pressure loss in the gas cooler 15 was maximized as shown in FIG. In order to prevent a reduction in the amount of collected air, it is necessary to avoid pressure loss in the gas cooler 15. The pressure loss can be suppressed to a low level by preventing the adhesion and accumulation of dust on the elements of the gas cooler 15.

(2)ガスクーラの詰り物起源
次に、ガスクーラ15のエレメントに付着する付着物の成分を分析した。その分析結果では低融点物質であるFeO、Zn等が検出されており、これらが詰りの原因である可能性が高い。
(2) Origin of clogging of gas cooler Next, components of deposits adhering to the elements of the gas cooler 15 were analyzed. As a result of the analysis, FeO, Zn, and the like, which are low melting point substances, are detected, and these are likely to cause clogging.

推定として、低融点物質が排ガス冷却過程で析出し、通り目が細かくかつ300℃の低温で冷やされた状態のガスクーラ入口側で周辺のダスト粒を捕捉しつつエレメントに付着しているものと考えられる。   Presumably, low melting point substances are deposited in the exhaust gas cooling process and are attached to the element while trapping surrounding dust particles on the gas cooler inlet side where the passage is fine and cooled at a low temperature of 300 ° C. It is done.

リサイクルダストは従来、溶銑予備処理終了直前に混銑車に単独で吹き込まれており、繰り返しリサイクルすることで系内に低融点物質が濃縮していると考えられる。   Recycled dust is conventionally blown alone into a kneading vehicle immediately before the hot metal pretreatment is completed, and it is considered that low melting point substances are concentrated in the system by repeated recycling.

(3)対策
図5の上段に、溶銑予備処理システムAとBにおけるガスクーラの圧損状況の比較を示す。システムBのガスクーラでは顕著な圧力損失は認められず、システムBにおいて集塵風量低下が問題となっていない事実と一致する。表1にガスクーラ詰りに起因すると思われる項目のシステムA,B間の比較を示す。
(3) Countermeasure The upper part of FIG. 5 shows a comparison of gas cooler pressure loss conditions in the hot metal pretreatment systems A and B. In the system B gas cooler, no significant pressure loss is observed, which is consistent with the fact that the reduction in the amount of dust collected in system B is not a problem. Table 1 shows a comparison between the systems A and B for items that appear to be caused by clogging of the gas cooler.

Figure 0005515364
Figure 0005515364

システムBが詰り難い要因としては、スートブロワを設置していて、自動且つ定期的に詰りを除去できている点が考えられる。また、システムBのダストリサイクル量はシステムAの半分以下に留まっており、吹込速度もシステムAの250kg/minに対してシステムBは最大100〜150kg/min程度と低い値となっている。さらに、リサイクル量低位の影響でダスト中低融点物質濃度も低い。   As a factor that makes system B difficult to clog, it can be considered that a soot blower is installed and clogging can be removed automatically and periodically. In addition, the amount of dust recycled in system B is less than half that of system A, and the blowing speed of system B is a low value of about 100 to 150 kg / min at maximum with respect to 250 kg / min of system A. In addition, the low melting point concentration in the dust is low due to the low recycling rate.

図5の下段に、定期清掃後のリサイクルダスト累積使用量とガスクーラ圧力損失状況の対比を示す。リサイクルダスト累積使用量がシステムAで圧力損失上昇を招いた値と同レベルPに至っても、システムBでは圧損の上昇は認められなかった。このことから、最終のインプット低融点物質が同等であっても、少量ずつを吹き込むことで圧力損失はある程度防止できると考えられる。また、リサイクルダストの堆積前に定期的に清掃することによって、さらに圧力損失を防止できると考えられる。   The lower part of FIG. 5 shows a comparison between the amount of accumulated recycled dust used after regular cleaning and the gas cooler pressure loss situation. Even if the cumulative amount of recycled dust used reached the same level P as the value that caused an increase in pressure loss in system A, no increase in pressure loss was observed in system B. From this, it is considered that even if the final input low melting point substance is the same, pressure loss can be prevented to some extent by blowing small amounts. Further, it is considered that pressure loss can be further prevented by periodically cleaning before accumulation of recycled dust.

低融点物質を無害化するためには、(1)ダストから分離、(2)ダストリサイクルの中止、(3)ダスト中低融点物質濃度の低下、(4)1回当たりの使用量抑制(一気に付着するのを防止する)、(5)堆積前に除去する等が考えられる。1300t/月の発生量から考えて、廃棄物処理の問題から(1)〜(3)実現の可能性は明確ではない。一方、図5に示される考察から、リサイクルダストを従来のように処理終了直前で一気に吹き込むのではなく、分散して吹き込むことで詰りを軽減することができる。さらに、スートブロワを設置して早期に微小な詰りを除去していくことで、圧力損失の上昇は十分回避可能であると思われる。   In order to detoxify low melting point substances, (1) separation from dust, (2) discontinuation of dust recycling, (3) reduction in the concentration of low melting point substances in dust, (4) reduction of consumption per use (at once (5) removing before deposition, etc. can be considered. Considering the generation amount of 1300 t / month, the possibility of realizing (1) to (3) is not clear due to the problem of waste disposal. On the other hand, from the consideration shown in FIG. 5, clogging can be reduced by dispersing and blowing recycled dust immediately before the end of processing as in the prior art. Furthermore, it seems that the rise in pressure loss can be sufficiently avoided by installing soot blowers and removing minute clogs at an early stage.

図6は、ガスクーラの差圧と集塵風量の関係を示す。前述したように強い相関が認められる。このことから、上下変動の非常に大きい集塵風量を監視するよりも、ガスクーラ前後の差圧を監視することで、ガスクーラの詰り具合及び集塵風量の危険度合いをオンタイムで知ることが可能になる。差圧に閾値を設け、一定値以上になったタイミングで警報を鳴らすことにより、リサイクルダスト使用禁止、スートブロワ緊急起動、定期清掃タイミング調整等の詰り防止処置等の設備焼損防止措置を取ることができる。   FIG. 6 shows the relationship between the differential pressure of the gas cooler and the dust collection air volume. As mentioned above, a strong correlation is observed. From this, it is possible to know the degree of gas cooler clogging and the amount of dust collection air flow on-time by monitoring the differential pressure before and after the gas cooler, rather than monitoring the amount of dust collection air flow with extremely large fluctuations. Become. By setting a threshold for differential pressure and sounding an alarm when the pressure exceeds a certain value, it is possible to take equipment burnout prevention measures such as clogging prevention measures such as prohibiting the use of recycled dust, emergency soot blower activation, and periodic cleaning timing adjustment. .

1…混銑車(処理容器)
2…溶銑
3…酸化鉄
4…ランス
9…酸化鉄ホッパ
12…排風ファン
13…バグフィルタ(集塵装置)
15…ガスクーラ(冷却装置)
17…集塵ダストホッパ
18…集塵ダスト混合ライン
1 ... Chaotic car (processing container)
2 ... Hot metal 3 ... Iron oxide 4 ... Lance 9 ... Iron oxide hopper 12 ... Exhaust fan 13 ... Bag filter (dust collector)
15 ... Gas cooler (cooling device)
17 ... Dust collection dust hopper 18 ... Dust collection dust mixing line

Claims (5)

処理容器内の溶銑にキャリアガスと共に粉状の酸化鉄を吹き込む溶銑予備処理方法において、
前記処理容器から発生する排ガスを冷却装置で冷却し、冷却した排ガス中のダストを集塵装置で回収し、
回収した集塵ダストを、固体酸素源を粉砕してなる粉状の酸化鉄を貯留する酸化鉄ホッパに、前記集塵装置と前記酸化鉄ホッパとに接続される集塵ダスト混合ラインを介して前記酸化鉄ホッパに直接的に供給し、
前記酸化鉄ホッパにおいて混合された前記粉状の酸化鉄及び前記集塵ダストを前記処理容器内の溶銑に吹き込み、溶銑予備処理時に発生するダストをリサイクルする溶銑予備処理方法。
In the hot metal preliminary treatment method in which powdered iron oxide is blown into the hot metal in the processing vessel together with the carrier gas,
The exhaust gas generated from the treatment container is cooled with a cooling device, and dust in the cooled exhaust gas is recovered with a dust collector,
Collected dust collection dust is collected in an iron oxide hopper that stores powdered iron oxide obtained by pulverizing a solid oxygen source , via a dust collection dust mixing line connected to the dust collector and the iron oxide hopper. Supplying directly to the iron oxide hopper ,
The saw write blown into molten pig iron in the iron oxide mixed with the powder-like iron oxide and the dust collected in the hopper the processing vessel, molten iron pretreatment method of recycling the dust generated during hot metal pretreatment.
前記冷却装置は、排ガスと熱交換するエレメントを有するガスクーラであり、
前記ガスクーラの前記エレメントを定期的に清掃することを特徴とする請求項1に記載の溶銑予備処理方法。
The cooling device is a gas cooler having an element that exchanges heat with exhaust gas,
The hot metal preliminary treatment method according to claim 1, wherein the element of the gas cooler is periodically cleaned.
前記冷却装置は、排ガスと熱交換するエレメントを有するガスクーラであり、
前記ガスクーラの圧力損失を測定することを特徴とする請求項1又は2に記載の溶銑予備処理方法。
The cooling device is a gas cooler having an element that exchanges heat with exhaust gas,
The hot metal pretreatment method according to claim 1, wherein a pressure loss of the gas cooler is measured.
混銑車を含む処理容器内の溶銑にキャリアガスと共に粉状の酸化鉄を吹き込む溶銑予備処理システムにおいて、
前記処理容器から発生する排ガスを冷却する冷却装置と、
冷却した排ガス中のダストを回収する集塵装置と、
固体酸素源を粉砕してなる粉状の酸化鉄を貯留する酸化鉄ホッパと、
前記集塵装置と前記酸化鉄ホッパとに接続され、前記集塵装置で回収した集塵ダストを前記酸化鉄ホッパに直接的に供給する集塵ダスト混合ラインと、
前記酸化鉄ホッパにおいて混合された前記粉状の酸化鉄及び前記集塵ダストを前記処理容器内の溶銑に吹き込むランスと、を備え、溶銑予備処理時に発生するダストをリサイクルする溶銑予備処理システム。
In the hot metal pretreatment system in which powdered iron oxide is blown into the hot metal in the processing vessel including the kneading vehicle together with the carrier gas,
A cooling device for cooling the exhaust gas generated from the processing vessel;
A dust collector for collecting dust in the cooled exhaust gas;
An iron oxide hopper for storing powdered iron oxide obtained by pulverizing a solid oxygen source;
A dust collection line connected to the dust collector and the iron oxide hopper, and supplying dust collection dust collected by the dust collector directly to the iron oxide hopper;
A hot metal pretreatment system comprising: a lance for blowing the powdered iron oxide and the dust collection dust mixed in the iron oxide hopper into the hot metal in the processing container, and recycling dust generated during the hot metal pretreatment.
前記冷却装置は、排ガスと熱交換するエレメントを有するガスクーラであり、
前記ガスクーラには、前記エレメントに付着するダストを除去するスートブロワが設けられることを特徴とする請求項4に記載の溶銑予備処理システム。
The cooling device is a gas cooler having an element that exchanges heat with exhaust gas,
The hot metal pretreatment system according to claim 4, wherein the gas cooler is provided with a soot blower for removing dust adhering to the element.
JP2009085215A 2009-03-31 2009-03-31 Hot metal pretreatment method and system Active JP5515364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085215A JP5515364B2 (en) 2009-03-31 2009-03-31 Hot metal pretreatment method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085215A JP5515364B2 (en) 2009-03-31 2009-03-31 Hot metal pretreatment method and system

Publications (2)

Publication Number Publication Date
JP2010236017A JP2010236017A (en) 2010-10-21
JP5515364B2 true JP5515364B2 (en) 2014-06-11

Family

ID=43090621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085215A Active JP5515364B2 (en) 2009-03-31 2009-03-31 Hot metal pretreatment method and system

Country Status (1)

Country Link
JP (1) JP5515364B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655345B2 (en) * 2010-03-31 2015-01-21 Jfeスチール株式会社 Hot phosphorus dephosphorization method
KR101277666B1 (en) 2011-09-28 2013-06-21 현대제철 주식회사 Operating method for dephosphorization

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227116A (en) * 1985-03-29 1986-10-09 Sumitomo Metal Ind Ltd Method and apparatus for preliminary treatment of molten iron
JPS62299694A (en) * 1986-06-19 1987-12-26 Nippon Oil Co Ltd Thermal conducting block for crossed type heat exchanger
JPH0277512A (en) * 1988-09-12 1990-03-16 Kobe Steel Ltd Raw material for molten iron pre-treating material
JPH0559417A (en) * 1991-08-29 1993-03-09 Kawasaki Steel Corp Method and apparatus for reusing dust in pretreatment of molten iron
JP4599744B2 (en) * 2001-04-02 2010-12-15 Jfeスチール株式会社 Method for producing hot metal pretreatment agent using dust collection dust containing iron oxide

Also Published As

Publication number Publication date
JP2010236017A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US9375667B2 (en) Apparatus and method for treating exhaust gas
JP5612886B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method using the same
WO2010007875A1 (en) Exhaust gas processing facility, and method for collecting dust by exhaust gas processing facility
JP5515364B2 (en) Hot metal pretreatment method and system
KR101895882B1 (en) Method for cleaning a gas flow loaded with dust
JP2008086845A (en) Method and apparatus for treating dust
CN110669921A (en) System and method for resourcefully treating steelmaking secondary dedusting ash
JP5390791B2 (en) Exhaust gas treatment method for rotary hearth furnace
CN102199686B (en) Molten iron dephosphorization agent, and dephosphorization and desilication method for molten iron
JP5271477B2 (en) How to reuse converter dust
CN211570737U (en) System for steelmaking secondary dust removal ash is dealt with to resourceization
CN106999884A (en) Use the gas atomization of the melted material of accessory substance waste gas
JP5572934B2 (en) Vertical melting furnace exhaust gas treatment facility
CN107541575B (en) A kind of blast furnace dedusting ash recyclable device and method
JP6402062B2 (en) Dust recycling method
EP2539041B1 (en) Apparatus and method for treating exhaust gas containing zinc vapors
CN218146786U (en) Concise fly ash cyclic utilization system of LF stove
JPH0559417A (en) Method and apparatus for reusing dust in pretreatment of molten iron
JPH0772289B2 (en) Method and apparatus for recycling hot metal pretreatment dust
JP3996724B2 (en) Operation method of rotary hearth for reduction
CN209178418U (en) A kind of dust-arrest device and dry-dedusting system
JP2023087777A (en) Operation method of refining furnace
JP2008110295A (en) Filtration type dust correction apparatus and filtering type dust collection method
JP4099817B2 (en) Gas replacement method and apparatus for smelting reduction furnace-attached exhaust gas treatment apparatus
JP4430835B2 (en) Manufacturing method of artificial lightweight aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250