JPH0587351B2 - - Google Patents

Info

Publication number
JPH0587351B2
JPH0587351B2 JP12290389A JP12290389A JPH0587351B2 JP H0587351 B2 JPH0587351 B2 JP H0587351B2 JP 12290389 A JP12290389 A JP 12290389A JP 12290389 A JP12290389 A JP 12290389A JP H0587351 B2 JPH0587351 B2 JP H0587351B2
Authority
JP
Japan
Prior art keywords
function
pid
mold
level
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12290389A
Other languages
Japanese (ja)
Other versions
JPH02303664A (en
Inventor
Tetsuaki Kurokawa
Masanao Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12290389A priority Critical patent/JPH02303664A/en
Publication of JPH02303664A publication Critical patent/JPH02303664A/en
Publication of JPH0587351B2 publication Critical patent/JPH0587351B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、連続鋳造プロセスにおける湯面レベ
ルを適切に制御するための湯面レベル制御装置に
関する。 〔従来の技術〕 鉄鋼、アルミ合金等の連続鋳造においては、溶
融金属よりなる湯を上下が開放されたモールドの
上方から注入し、モールド側面から冷却してその
表面から一部を固化せしめ、下方からロールでは
さんで引き出しながら冷却することによつて連続
的に鋳造が行われる。 この連続鋳造プロセスにおいて、モールド内の
湯面レベルの制御状態が鋳片の品質を左右する重
要な要因であることは良く知られており、特に湯
面の変動量と変動速度とを低く抑えることが肝要
である(例えば特公昭63−16218号公報参照)。 制御の方式は一般にPID演算による定値制御に
よつており、特に比例動作(P)および積分動作
(I)を主体とした制御が行なわれている。 〔発明が解決しようとする課題〕 製品の品質および歩留りへの要求は年々厳しく
なつてきており、最近では安定時において発生す
る細かい持続振動が問題とされる様になつてき
た。 また、しばしば湯面の急上昇が発生するが、こ
の原因はノズル部分に付着したアルミナが剥離し
て開口面積が拡がるために流入量が急上昇するこ
とによつて起こる現象とされている。従来の制御
装置は湯面レベルを目標とするレベルに偏差無く
一致させることに主眼を置いて設計されており、
前述した様にP動作およびI動作を主体とした制
御となつているので、外乱が入るたびに湯面の急
上昇、下降が起こり、湯面変動速度の観点からは
好ましい制御とは言えない。 したがつて本発明の目的は、安定時の持続振動
がなく、かつアルミナ剥離等を原因とする外乱に
対して、湯面の変動量および変動速度が最小であ
る湯面レベル制御装置を提案することにある。 〔課題を解決するための手段〕 第1図は本発明に係る湯面レベル制御装置の原
理構成を表わす図である。図において、本発明の
連続鋳造プロセスの湯面レベル制御装置は、連続
鋳造用モールド50内の湯面レベルを検知する湯
面レベル検知手段10と、該湯面レベルと目標レ
ベル16との偏差にPID定数に基いてPID演算を
行なつて演算結果を操作量として出力するPID演
算手段12と、該操作量に応じて該モールド50
内へ注入される湯の量を増減する注入量増減手段
14とを具備する連続鋳造プロセスの湯面レベル
制御装置において、該モールド50、該湯面レベ
ル検知手段10、該PID演算手段12、および該
注入量増減手段14を含んで構成される制御ルー
プ内の線形要素の特性値と任意に定められたPID
定数とから該線形要素の特性を表現する関数Lを
算出する関数L算出手段20と、該制御ループ内
の非線形要素の特性を記述関数で表現する関数N
を算出する関数N算出手段22と、該関数Lと該
関数Nとから条件NL+1=0を常に満足しない
PID定数の領域を見い出す領域決定手段24と、
該PID定数の領域内各値の組において、所定の外
乱を与えたときの湯面変化のシミユレーシヨン演
算を行ない、湯面変動速度および湯面変動幅の最
も小さいPID定数の組を見い出す定数決定手段2
6とを具備することを特徴とするものである。 〔作用〕 後に詳述する様に、本発明者等は、安定時の持
続振動は制御ループ内の非線形要素が原因である
と推定し、記述関数の手法を用いてこの現象を説
明できることを見い出した。 この手法によれば、非線形要素の特性は記述関
数Nで近似され、一方、他の線形要素の特性を関
数Lとすれば持続振動の条件は NL+1=0 (1) で与えられる。つまり、(1)式を満足する振動数と
振幅が持続振動の振動数と振幅となる。逆に言え
ば領域決定手段24の定めるPID定数の組の領域
は持続振動を起こさないPID定数の組の領域とな
る。定数決定手段26は、さらにその中から外乱
に対する湯面変動速度および湯面変動幅が最小と
なるPID定数の組を見い出すので、持続振動を起
こさず、かつ外乱に対する湯面変動速度と湯面変
動幅が最小となるPID定数が見い出される。 〔実施例〕 第2図は本発明が適用される装置の概略を表わ
す図である。 モールド500上方にはTDカー504に支持
されてタンデイツシユ502が設けられている。
タンデイツシユ502内の溶鋼はその底部に設け
られた浸漬ノズル508を経てモールド500へ
供給される。浸漬ノズル508上方の開口部50
6はストツパー140で塞がれる様になつてお
り、ストツパー140を上下することによつてモ
ールド500への流入量が増減される。ストツパ
ー140は接続部146を介してステツピングシ
リンダ142のピストン144に接続されてお
り、コントローラ120からの制御信号に基いて
ピストン144が上下することによりストツパー
140が上下し、流入量が調節される。モールド
500内の湯面の上方には電磁誘導を利用して湯
面を検知する湯面センサ100が設けられてお
り、検知された湯面レベルの信号はコントローラ
120へ入力される。コントローラ120は周知
のPIDコントローラである。計算機200は周知
のプロセス制御用コンピユータであり、最適な
PID値を計算してオンラインでコントローラ12
0へその値を供給するかまたは計算された結果が
オフラインでコントローラ120へ与えられる。 第3図は第2図の制御系をブロツク線図で表わ
したものである。ブロツク1200,1202,
1204内にはそれぞれコントローラ120の積
分動作、比例動作、微分動作の伝達関数が示され
ている。ブロツク1400内にはステツピングシ
リンダ142における時定数Tsの一次遅れの伝
達関数が示されており、ブロツク1402は接続
部146におけるヒステリシス性のガタを表わし
ている。ブロツク5000内のKはストツパー1
40の位置に対する流入量を表わす曲線の微係数
すなわち流量係数であり、ブロツク5002内は
モールド500の有効断面積をAとしたときのモ
ールド500の伝達関数である。ブロツク100
0内にはレベル計1000の伝達関数が示されて
いる。 したがつて、モールド500、湯面センサ10
0、コントローラ120、ステツピングシリンダ
142、ストツパー140を含んで構成される制
御ループ内の線形要素の一巡伝達関数L(s)は L(s)= Kp(1+1/TIs+TDs)・1/1+TSs・
K・1/As・1/1+TLs(2) で与えられる。したがつてこの式にs=jwを代
入して得られるwの関数L(w)が線形要素の周波数
特性を表わす複素関数となる。 記述関数法によれば、ブロツク1402で表わ
されるヒステリシスを有する摩擦負荷の場合の記
述関数は
[Industrial Application Field] The present invention relates to a molten metal level control device for appropriately controlling the molten metal level in a continuous casting process. [Prior art] In continuous casting of steel, aluminum alloys, etc., hot water made of molten metal is poured from above into a mold that is open at the top and bottom, cooled from the side of the mold to solidify part of the surface, and then poured into a mold from below. Casting is performed continuously by cooling the material while drawing it between rolls. In this continuous casting process, it is well known that the control state of the level of the molten metal in the mold is an important factor that affects the quality of the slab, and in particular, it is important to keep the amount and rate of fluctuation of the molten metal level low. is essential (see, for example, Japanese Patent Publication No. 16218/1983). The control method is generally fixed value control using PID calculation, and in particular, control based on proportional action (P) and integral action (I) is performed. [Problems to be Solved by the Invention] Requirements for product quality and yield are becoming stricter year by year, and recently, fine sustained vibrations that occur during stable conditions have become a problem. In addition, a sudden rise in the level of the hot water often occurs, but this phenomenon is said to be caused by the alumina adhering to the nozzle being peeled off and the opening area expanding, resulting in a sudden rise in the amount of inflow. Conventional control devices are designed with the main focus on matching the hot water level to the target level without any deviation.
As described above, since the control is mainly based on the P operation and the I operation, the hot water level rapidly rises and falls every time a disturbance occurs, which is not a desirable control from the viewpoint of the hot water level fluctuation speed. Therefore, an object of the present invention is to propose a hot water level control device that does not cause sustained vibration when stable, and minimizes the amount and speed of fluctuation in the hot water level against disturbances caused by alumina peeling, etc. There is a particular thing. [Means for Solving the Problems] FIG. 1 is a diagram showing the principle configuration of a hot water level control device according to the present invention. In the figure, the molten metal level control device for the continuous casting process of the present invention includes a molten metal level detection means 10 for detecting the molten metal level in a continuous casting mold 50, and a molten metal level detection means 10 for detecting the molten metal level in a continuous casting mold 50, and a molten metal level detection means 10 for detecting the molten metal level in a continuous casting mold 50, and PID calculation means 12 that performs PID calculation based on a PID constant and outputs the calculation result as a manipulated variable;
A continuous casting process hot water level control device comprising injection amount increasing/decreasing means 14 for increasing/decreasing the amount of hot water injected into the mold 50, the hot water level detecting means 10, the PID calculating means 12, and The characteristic value of the linear element in the control loop including the injection amount increase/decrease means 14 and the arbitrarily determined PID
a function L calculation means 20 that calculates a function L that expresses the characteristics of the linear element from a constant; and a function N that expresses the characteristics of the nonlinear element in the control loop with a descriptive function.
The function N calculation means 22 that calculates the function L and the function N do not always satisfy the condition NL+1=0.
region determining means 24 for finding the region of the PID constant;
A constant determining means for performing a simulation calculation of the change in the hot water level when a predetermined disturbance is applied to each set of values in the region of the PID constant, and finding a set of PID constants with the smallest hot water level fluctuation speed and the smallest hot water level fluctuation width. 2
6. [Effect] As will be detailed later, the present inventors estimated that the sustained vibration during stability is caused by a nonlinear element in the control loop, and found that this phenomenon could be explained using the descriptive function method. Ta. According to this method, the characteristics of a nonlinear element are approximated by a descriptive function N, while if the characteristics of other linear elements are a function L, the condition for sustained vibration is given by NL+1=0 (1). In other words, the frequency and amplitude that satisfy equation (1) are the frequency and amplitude of sustained vibration. Conversely, the region of the set of PID constants determined by the region determining means 24 becomes the region of the set of PID constants that does not cause sustained vibration. The constant determining means 26 further finds a set of PID constants that minimize the rate of fluctuation in the hot water level and the width of the fluctuation in the hot water level in response to disturbances, so that the constant vibration does not occur and the rate of fluctuation in the hot water level and the width of the hot water level change in response to disturbances are minimized. The PID constant with the minimum width is found. [Embodiment] FIG. 2 is a diagram schematically showing an apparatus to which the present invention is applied. A tandem tray 502 is provided above the mold 500 and supported by a TD car 504.
Molten steel in the tundish 502 is supplied to the mold 500 through a submerged nozzle 508 provided at the bottom thereof. Opening 50 above immersion nozzle 508
6 is closed by a stopper 140, and by moving the stopper 140 up and down, the amount of water flowing into the mold 500 can be increased or decreased. The stopper 140 is connected to a piston 144 of the stepping cylinder 142 via a connecting portion 146, and as the piston 144 moves up and down based on a control signal from the controller 120, the stopper 140 moves up and down, and the inflow amount is adjusted. . A hot water level sensor 100 that detects the hot water level using electromagnetic induction is provided above the hot water level in the mold 500, and a signal of the detected hot water level is input to the controller 120. Controller 120 is a well-known PID controller. The computer 200 is a well-known process control computer, and is
Calculate the PID value and use the controller 12 online
0 or the calculated result is provided offline to the controller 120. FIG. 3 is a block diagram representing the control system of FIG. 2. Block 1200, 1202,
1204 shows the transfer functions of the integral action, proportional action, and differential action of the controller 120, respectively. Block 1400 shows the first-order lag transfer function of time constant Ts in stepping cylinder 142, and block 1402 represents hysteretic play in connection 146. K in block 5000 is stopper 1
This is the differential coefficient of the curve representing the inflow amount with respect to the position 40, that is, the flow rate coefficient, and the block 5002 is the transfer function of the mold 500 when the effective cross-sectional area of the mold 500 is set to A. block 100
0 indicates the transfer function of the level meter 1000. Therefore, the mold 500 and the hot water level sensor 10
0, the loop transfer function L(s) of the linear element in the control loop including the controller 120, stepping cylinder 142, and stopper 140 is L(s)=Kp(1+1/T I s+T D s)・1 /1+T S s・
It is given by K・1/As・1/1+T L s(2). Therefore, the function L(w) of w obtained by substituting s=jw into this equation becomes a complex function representing the frequency characteristic of the linear element. According to the descriptive function method, the descriptive function for the friction load with hysteresis represented by block 1402 is

【化】 となる(「自動制御」(丸善)伊藤正美著p205〜
209参照)。ただし、Xは入力信号の振幅であり、
2βはガタの幅である。 記述関数法におけるナイキスト線図の手法に従
つて、第2図に表わした装置についてこのL(w)と
−1/N(X)を複素平面上に表わすと第4図の
様になる。この2つの曲線の交点におけるwとX
の値がそれぞれ持続振動の周波数と振幅に相当す
る。次表はこの様な解析で得られた値と実際に観
測された持続振動の周期と振幅を表わしている。
[ ] (“Automatic Control” (Maruzen) by Masami Ito p205~
209). However, X is the amplitude of the input signal,
2β is the width of the play. If L(w) and -1/N(X) for the device shown in FIG. 2 are expressed on a complex plane according to the Nyquist diagram method in the descriptive function method, the result will be as shown in FIG. 4. w and X at the intersection of these two curves
The values correspond to the frequency and amplitude of sustained vibration, respectively. The following table shows the values obtained from such analysis and the periods and amplitudes of sustained vibrations actually observed.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、非線形
要素を原因とする持続振動の問題が解決され、か
つアルミナ剥離等を原因とする外乱に対して湯面
変動速度および変動幅を最小限にとどめることが
可能となり、製品の品質および歩留りが向上す
る。
As described above, according to the present invention, the problem of sustained vibration caused by nonlinear elements is solved, and the speed and range of fluctuations in the melt level can be minimized in response to disturbances caused by alumina peeling, etc. This makes it possible to improve product quality and yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成を表わす図、第2図
は本発明の一実施例を表わす図、第3図は第2図
の制御系のブロツク線図、第4図は記述関数法に
よる解析を表わす図、第5図は持続振動を起こさ
ないPID定数の領域を表わす図、第6図は評価関
数Eを説明するための図。 図において、100……湯面センサ、140…
…ストツパー、142……ステツピングシリン
ダ、146……接続部、500……モールド、5
02……タンデイツシユ、508……浸漬ノズ
ル。
Figure 1 is a diagram representing the principle configuration of the present invention, Figure 2 is a diagram representing an embodiment of the present invention, Figure 3 is a block diagram of the control system in Figure 2, and Figure 4 is based on the descriptive function method. A diagram showing the analysis, FIG. 5 is a diagram showing the region of the PID constant that does not cause sustained oscillation, and FIG. 6 is a diagram for explaining the evaluation function E. In the figure, 100... hot water level sensor, 140...
... Stopper, 142 ... Stepping cylinder, 146 ... Connection section, 500 ... Mold, 5
02...Tandaitsuyu, 508...Immersion nozzle.

Claims (1)

【特許請求の範囲】 1 連続鋳造用モールド50内の湯面レベルを検
知する湯面レベル検知手段10と、該湯面レベル
と目標レベル16との偏差にPID定数に基いて
PID演算を行なつて演算結果を操作量として出力
するPID演算手段12と、該操作量に応じて該モ
ールド50内へ注入される湯の量を増減する注入
量増減手段14とを具備する連続鋳造プロセスの
湯面レベル制御装置において、 該モールド50、該湯面レベル検知手段10、
該PID演算手段12、および該注入量増減手段1
4を含んで構成される制御ループ内の線形要素の
特性値と任意に定められたPID定数とから該線形
要素の特性を表現する関数Lを算出する関数L算
出手段20と、 該制御ループ内の非線形要素の特性を記述関数
で表現する関数Nを算出する関数N算出手段22
と、 該関数Lと該関数Nとから条件NL+1=0を
常に満足しないPID定数の領域を見い出す領域決
定手段24と、 該PID定数の領域内各値の組において、所定の
外乱を与えたときの湯面変化のシミユレーシヨン
演算を行ない、湯面変動速度および湯面変動幅の
最も小さいPID定数の組を見い出す定数決定手段
26とを具備することを特徴とする連続鋳造プロ
セスの湯面レベル制御装置。
[Scope of Claims] 1. A liquid level detection means 10 for detecting the liquid level in the continuous casting mold 50, and a deviation between the liquid liquid level and a target level 16 based on a PID constant.
A continuous system comprising a PID calculation means 12 that performs PID calculation and outputs the calculation result as a manipulated variable, and an injection amount increase/decrease means 14 that increases or decreases the amount of hot water injected into the mold 50 according to the manipulated variable. In a mold level control device for a casting process, the mold 50, the level detection means 10,
The PID calculation means 12 and the injection amount increase/decrease means 1
4, a function L calculation means 20 for calculating a function L expressing the characteristics of the linear element from the characteristic value of the linear element in the control loop and an arbitrarily determined PID constant; function N calculation means 22 for calculating a function N that expresses the characteristics of the nonlinear element of by a descriptive function;
and a region determining means 24 for finding a region of the PID constant that does not always satisfy the condition NL+1=0 from the function L and the function N; and when a predetermined disturbance is applied to each value set within the region of the PID constant. a constant determining means 26 for performing simulation calculations of changes in the melt level and finding a set of PID constants with the smallest melt level fluctuation rate and the smallest melt level fluctuation width. .
JP12290389A 1989-05-18 1989-05-18 Apparatus for controlling molten metal surface level in continuous casting process Granted JPH02303664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12290389A JPH02303664A (en) 1989-05-18 1989-05-18 Apparatus for controlling molten metal surface level in continuous casting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12290389A JPH02303664A (en) 1989-05-18 1989-05-18 Apparatus for controlling molten metal surface level in continuous casting process

Publications (2)

Publication Number Publication Date
JPH02303664A JPH02303664A (en) 1990-12-17
JPH0587351B2 true JPH0587351B2 (en) 1993-12-16

Family

ID=14847466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12290389A Granted JPH02303664A (en) 1989-05-18 1989-05-18 Apparatus for controlling molten metal surface level in continuous casting process

Country Status (1)

Country Link
JP (1) JPH02303664A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004803A1 (en) * 1991-09-12 1993-03-18 Kawasaki Steel Corporation Method of and device for controlling level of molten metal in continuous casting
CA2094029C (en) * 1991-09-12 1997-04-29 Kazuya Asano Molten metal level control method and device for continuous casting
JP3085766B2 (en) * 1992-01-06 2000-09-11 新日本製鐵株式会社 Mold level control device
JPH05189009A (en) * 1992-01-09 1993-07-30 Nippon Steel Corp Controller
JP6447336B2 (en) * 2015-04-15 2019-01-09 新日鐵住金株式会社 Controller parameter deriving method, controller parameter deriving apparatus, and program

Also Published As

Publication number Publication date
JPH02303664A (en) 1990-12-17

Similar Documents

Publication Publication Date Title
JP3318742B2 (en) Mold level control device for continuous casting equipment
US5311924A (en) Molten metal level control method and device for continuous casting
Kitada et al. H/sup/spl infin//control of molten steel level in continuous caster
JPH0587351B2 (en)
JP4893068B2 (en) Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab
JPH06264B2 (en) Level control method in continuous casting
JP2634106B2 (en) Metal surface level control method in continuous casting
JP3309809B2 (en) Metal surface level control method in continuous casting machine
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JP2598201B2 (en) Level control device in mold of continuous casting machine
JP2634108B2 (en) Metal surface level control method in continuous casting
JP3160805B2 (en) Mold level controller for continuous casting equipment
Jabri et al. Suppression of periodic disturbances in the continuous casting process
JP3085766B2 (en) Mold level control device
JP2000322106A (en) Control of molten metal level in mold of continuous casting machine
JPH04105759A (en) Method for controlling molten steel surface level in continuous casting for complex cast billet
JP2665260B2 (en) Estimation method of flow rate into mold in continuous casting
KR20020037402A (en) Control method of mold level for fast continuous casting process
JPH03174961A (en) Method and apparatus for controlling molten metal surface in continuous casting
JPH07108441B2 (en) Injection amount control method in continuous casting of multi-layer slab
JP2984171B2 (en) Mold level control device
JPH05189009A (en) Controller
JPH0679423A (en) Method for controlling molten metal surface level in continuous casting
JP2835190B2 (en) Level control device for mold level in continuous casting machine
JP2835191B2 (en) Level control device for mold level in continuous casting machine