JPH0587308B2 - - Google Patents

Info

Publication number
JPH0587308B2
JPH0587308B2 JP62025928A JP2592887A JPH0587308B2 JP H0587308 B2 JPH0587308 B2 JP H0587308B2 JP 62025928 A JP62025928 A JP 62025928A JP 2592887 A JP2592887 A JP 2592887A JP H0587308 B2 JPH0587308 B2 JP H0587308B2
Authority
JP
Japan
Prior art keywords
separation section
sedimentation separation
sludge
guide tube
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62025928A
Other languages
Japanese (ja)
Other versions
JPS63194760A (en
Inventor
Shigeaki Ishihara
Akio Nishino
Suehiro Sakota
Hideo Saito
Akihiko Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP62025928A priority Critical patent/JPS63194760A/en
Publication of JPS63194760A publication Critical patent/JPS63194760A/en
Publication of JPH0587308B2 publication Critical patent/JPH0587308B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は上水および下水汚泥の処理に用いられ
る遠心脱水装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a centrifugal dewatering device used for treating clean water and sewage sludge.

従来の技術 従来、産業排水や都市下水などから排出される
汚泥の処理において、固液を分離するために遠心
脱水装置が用いられている。遠心脱水装置は、た
とえば第4図に示すようなものであり、凝集剤を
添加された汚泥Aを給泥管1より噴射させ、給泥
管1の開口前方に設けた高速回転するインペラ2
によつて、インペラ2と同軸心まわりに高速回転
する筒状の沈降分離部3に案内し、沈降分離部3
において、凝集剤の作用によりフロツク化された
汚泥中の固貞粒子と液体とに遠心力を作用させ
て、その比重差によつて比重の大きい固体Bを沈
降分離部3の内壁に堆積させて、汚泥を固体Bと
液体Cの二相に分離していた。そして、インペラ
2と一体に高速回転する内胴4の周囲に設けたス
クリユーコンベア部5により、沈降分離部3の内
壁に堆積した固体Bを沈降分離部3の外へ搬送し
ていた。ただし、沈降分離部3と内胴4とは所定
の回転差をもつて回転させていた。
BACKGROUND ART Conventionally, centrifugal dewatering equipment has been used to separate solid and liquid in the treatment of sludge discharged from industrial wastewater, urban sewage, and the like. The centrifugal dewatering device is, for example, as shown in FIG. 4, in which sludge A to which a flocculant has been added is injected from a sludge feed pipe 1, and an impeller 2 that rotates at high speed is provided in front of the opening of the sludge feed pipe 1.
, it is guided to the cylindrical sedimentation separation section 3 which rotates at high speed around the coaxial center with the impeller 2, and the sedimentation separation section 3
In this step, a centrifugal force is applied to the solid particles in the sludge and the liquid that have been flocculated by the action of the flocculant, and the solid B having a large specific gravity is deposited on the inner wall of the settling section 3 due to the difference in specific gravity. , sludge was separated into two phases, solid B and liquid C. The solid B accumulated on the inner wall of the sedimentation separation section 3 was conveyed to the outside of the sedimentation separation section 3 by a screw conveyor section 5 provided around the inner shell 4 which rotated at high speed together with the impeller 2. However, the sedimentation separation section 3 and the inner shell 4 were rotated with a predetermined rotational difference.

発明が解決しようとする問題点 しかし、従来の構成によれば、給泥管1内にお
いて凝集剤の作用によつて形成された固体粒子フ
ロツクは、給泥管1から噴出した後に、インペラ
2に衝突し、さらにインペラ2に遠心力を付与さ
れて沈降分離部3の内壁もしくは沈降分離部3内
に形成される液体Cの水面に衝突するために、形
成されたフロツクが破壊されてしまうことがあつ
た。このために、フロツク化によつて粒子径を増
大させて固体粒子の沈降分離を促進することが出
来なくなり、フロツクの粒径が小さくなつて沈降
効率が低下する問題があつた。また、このことに
よつて凝集剤の作用効率も低下することとなり、
凝集剤の投入量の増大を来す結果となり、問題点
とされていた。
Problems to be Solved by the Invention However, according to the conventional configuration, solid particle flocs formed in the mud supply pipe 1 by the action of the coagulant are ejected from the mud supply pipe 1 and then flow into the impeller 2. The flocs that have been formed may be destroyed because they collide and further collide with the inner wall of the sedimentation separation section 3 or the water surface of the liquid C formed within the sedimentation separation section 3 due to the centrifugal force applied to the impeller 2. It was hot. For this reason, it is no longer possible to increase the particle size through flocculation to promote sedimentation and separation of solid particles, resulting in a problem in that the particle size of the floc becomes smaller and the sedimentation efficiency decreases. This also reduces the effectiveness of the flocculant,
This resulted in an increase in the amount of flocculant input, which was considered a problem.

本発明は上記の問題点を解決するもので給泥管
1内で形成される固体粒子のフロツクを破壊する
ことなく沈降分離部3に噴入させる遠心脱水装置
を提供することを目的とする。
The present invention solves the above-mentioned problems, and aims to provide a centrifugal dewatering device that injects the solid particles formed in the slurry supply pipe 1 into the settling section 3 without destroying them.

問題点を解決するための手段 上記問題点を解決するため、本発明は、軸心を
水平方向にして配置される筒状体を成して前記軸
心まわりに回転する沈降分離部と、この沈降分離
部内に同心状に配置されて一端側を閉塞されると
ともに他端側に向けて拡径して開口され、開口近
傍の内周面が水平方向に沿つた面に形成されて前
記沈降分離部と同軸心まわりに回転する案内筒
と、この案内筒の開口に対応して配置されるフラ
ンジと、前記案内筒の内部に向けて開口して配置
される給泥管と、前記案内筒の内周の開口近傍に
向け、かつ前記フランジの壁面に沿う方向に向け
て開口して配置される薬注管とを備えた構成とし
たものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a sedimentation separation section that is a cylindrical body arranged with its axis in the horizontal direction and rotates around the axis; They are arranged concentrically within the sedimentation separation section, one end is closed, and the diameter is expanded toward the other end and the inner circumferential surface near the opening is formed into a horizontal surface to form the sedimentation separation section. a guide tube that rotates about the same axis as the guide tube; a flange disposed corresponding to the opening of the guide tube; a slurry supply tube opened toward the inside of the guide tube; The medicine injection pipe is arranged to open toward the vicinity of the opening on the inner periphery and toward the direction along the wall surface of the flange.

作 用 上記の構成において、給泥管の開口より案内筒
内に噴射された汚泥は、案内筒の回転による遠心
力を受けて、案内筒の拡径する周側に沿つて他端
側の開口に向けて流動する。一方、薬注管より案
内筒内に噴射される凝集剤は、薬注管の開口が案
内筒の内周の開口近傍に向けて開口されているの
で、案内筒の開口近傍に達した汚泥、すなわち案
内筒の開口より沈降分離部に向けて噴出間際の汚
泥に対してのみ添加される。このことによつて、
凝集剤の作用による汚泥中の固体粒子のフロツク
の形成を、汚泥の沈降分離部への噴出と同時に、
行なわせることが出来る。そして、固体粒子をフ
ロツク化されながら案内筒の開口から沈降分離部
に噴出する汚泥は、案内筒の開口近傍の内周面が
水平方向に沿つているので、沈降分離部内に水平
方向で噴出する。したがつて、フロツクが沈降分
離部の内壁もしは、沈降分離部内に形成される液
体の水面に衝突して破壊されることがない。そし
て、沈降分離部に噴入した汚泥は、沈降分離部の
回転による遠心力を受けて、フロツク化されて粒
子径の大きくなつた固体粒子を沈降分離部の内周
壁に堆積させて、固体と液体の二相に分離され
る。
Effect In the above configuration, the sludge injected into the guide cylinder from the opening of the sludge supply pipe receives centrifugal force due to the rotation of the guide cylinder, and flows along the expanding diameter of the guide cylinder to the opening at the other end. flow towards. On the other hand, since the opening of the chemical injection tube is directed toward the inner circumference of the guide tube, the flocculant injected into the guide tube from the chemical injection tube is removed from the sludge that reaches the vicinity of the opening of the guide tube. That is, it is added only to the sludge that is just about to be ejected from the opening of the guide tube toward the sedimentation separation section. By this,
The formation of flocs of solid particles in sludge due to the action of the flocculant is simultaneously ejected into the sludge settling and separation section.
I can make you do it. The sludge that is spouted from the opening of the guide tube into the sedimentation separation section while solid particles are being flocculated is ejected horizontally into the sedimentation separation section because the inner peripheral surface near the opening of the guide tube is along the horizontal direction. . Therefore, the flocs will not be destroyed by colliding with the inner wall of the sedimentation separation section or the water surface of the liquid formed within the sedimentation separation section. Then, the sludge injected into the sedimentation separation section is subjected to centrifugal force due to the rotation of the sedimentation separation section, and the solid particles, which have become flocs and have increased in particle size, are deposited on the inner peripheral wall of the sedimentation separation section, and become solids. Separated into two liquid phases.

実施例 以下、本発明の一実施例を図面に基づいて説明
する。第1図〜第3図において、ベツド11に
は、一対の軸受12a,12bが配置されてお
り、この軸受12a,12bに回転自在に支承さ
れて筒状体を成す内胴13および外胴14が軸心
を水平にして配置されている。そして、内胴13
および外胴14は、減速機15およびびプーリ1
5aを介して駆動装置(図示せず)に連動連結さ
れている。減速機15は内胴13と外胴14とに
わずかの回転差を与えるものであり、本実施例に
おいては、内胴13は約2500回転/分し、外胴1
4は内胴13より約10回転/分少なく回転する。
外胴14は沈降分離部14aと脱液部14bとに
形成されており、先端側に向つて縮径された脱液
部14bの端部には、固形物排出穴16が設けら
れ、沈降分離部14aの端部には堰板17および
分離液排出穴18が設けられている。内胴13に
は、外胴14の脱液部14bおよび沈降分離部1
4aに沿つた形状に形成されるとともに、沈降分
離部14aに対応する内胴13の一部は、案内筒
19に形成されている。案内筒19は一端側を仕
切壁20によつて閉塞されるとともに、他端側に
向けて拡径して開口され、開口近傍の内周は、水
平方向に沿つた面に形成されている。そして、案
内筒19の開口縁部はフランジ21を介して、脱
液部14bに対応する部分の内胴13に固定され
ている。フランジ21は、案内筒19の開口に対
応する内胴13の内部を閉じるとともに周縁部に
周方向適当間隔ごとに切欠き部を有しており、こ
の切欠き部が案内筒19の沈降分離部14aへの
突出口22として形成されている。また、内胴1
3の外周面には全長にわたつて螺線状のスクリユ
ーコンベア部23が形成されている。そして、給
泥管24と薬注管25が、給泥管24に薬注管2
5が外嵌する二重管構造に形成されて、内胴13
および外胴14の回転軸26を貫通して内胴13
と同心状に配置されている。そして、給泥管24
および薬注管25の先端側は、フランジ21を貫
通して案内筒19の内部に達しており、給泥管2
4の先端は案内筒19の内部で水平方向に向けて
開口され、薬注管25の先端は案内筒19の内周
の開口近傍に向けて開口する薬注ノズル27に形
成されている。また、給泥管24および薬注管2
5の基端側は固定されるとともに、それぞれ汚泥
供給源および凝集剤供給源に連結されている。そ
して、外胴14の周囲は、ベツド11に支持され
たカバー28で覆われており、カバー28には、
外胴14の固形物排出穴16および分離液排出穴
18に、それぞれ対応して固形物排出口29およ
び分離液排出口30が形成されている。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the drawings. In FIGS. 1 to 3, a pair of bearings 12a and 12b are arranged on the bed 11, and an inner shell 13 and an outer shell 14 that are rotatably supported by the bearings 12a and 12b and form a cylindrical body. is placed with its axis horizontal. And the inner body 13
The outer shell 14 includes a reducer 15 and a pulley 1.
It is operatively connected to a drive device (not shown) via 5a. The speed reducer 15 provides a slight difference in rotation between the inner shell 13 and the outer shell 14. In this embodiment, the inner shell 13 rotates at approximately 2500 revolutions per minute, and the outer shell 1
4 rotates about 10 revolutions per minute less than the inner cylinder 13.
The outer shell 14 is formed with a sedimentation separation section 14a and a liquid removal section 14b, and a solid matter discharge hole 16 is provided at the end of the liquid removal section 14b whose diameter is reduced toward the tip side. A weir plate 17 and a separated liquid discharge hole 18 are provided at the end of the portion 14a. The inner shell 13 includes a liquid removal section 14b and a sedimentation separation section 1 of the outer shell 14.
4a, and a part of the inner shell 13 corresponding to the sedimentation separation section 14a is formed into a guide cylinder 19. The guide cylinder 19 is closed at one end by a partition wall 20 and opened with an enlarged diameter toward the other end, and the inner periphery near the opening is formed into a surface along the horizontal direction. The opening edge of the guide tube 19 is fixed via a flange 21 to the inner shell 13 at a portion corresponding to the draining section 14b. The flange 21 closes the inside of the inner body 13 corresponding to the opening of the guide tube 19 and has notches at appropriate intervals in the circumferential direction on the periphery. It is formed as a protrusion 22 to 14a. In addition, inner body 1
A spiral screw conveyor portion 23 is formed on the outer circumferential surface of 3 over the entire length. Then, the slurry supply pipe 24 and the chemical injection pipe 25 are connected to the slurry supply pipe 24 and the chemical injection pipe 25.
The inner shell 13 is formed into a double tube structure in which the inner shell 13 is fitted onto the outside.
and the inner shell 13 through the rotation shaft 26 of the outer shell 14.
are arranged concentrically. And the mud supply pipe 24
The tip side of the chemical feed pipe 25 passes through the flange 21 and reaches the inside of the guide tube 19.
The distal end of the chemical injection tube 25 is formed into a chemical injection nozzle 27 that opens toward the inner periphery of the guide cylinder 19 in the vicinity of the opening. In addition, the mud supply pipe 24 and the chemical injection pipe 2
The base end sides of 5 are fixed and connected to a sludge supply source and a flocculant supply source, respectively. The periphery of the outer body 14 is covered with a cover 28 supported by the bed 11, and the cover 28 includes:
A solid matter discharge port 29 and a separated liquid discharge port 30 are formed in correspondence to the solid matter discharge hole 16 and the separated liquid discharge hole 18 of the outer shell 14, respectively.

上記の構成における作用について説明する。先
ず、駆動装置により、プーリ15aおよび減速機
15を介して内胴13と外胴14を高速回転させ
る。そして、内胴13とともに案内筒19が高速
回転している状態において、汚泥Dを給泥管24
より案内筒19内へ噴射する。案内筒19内に噴
射された汚泥Dは、案内筒19の回転による遠心
力を受けて、案内筒19の拡径する周側に沿つ
て、他端側の開口に向けて流動する。一方、薬注
管25より案内筒19内に噴射される凝集剤E
は、薬注管25の薬注ノズル27が案内筒の内周
の開口近傍に向けて開口されているので、案内筒
19の開口近傍に達した汚泥D、すなわち案内筒
19の吐出口22より沈降分離部14aに向けて
噴出間際の汚泥Dに対してのみ添加される。すな
わち、薬注ノズル27から出た凝集剤Eは、フラ
ンジ21に付着して、フランジ21の回転により
周方向に広がり、フランジ21の周囲の汚泥Dに
対して、全周にわたつて均一に供給される。この
ことによつて、凝集剤Eの作用による汚泥中の固
体粒子のフロツクの形成を、汚泥Dの沈降分離部
14aへの噴出と同時に行なわせることが出来る
ので、従来のように、フロツクが沈降分離部に噴
入する以前に破壊されてしまうことが防止され
る。そして、凝集剤Eを添加された汚泥Dは固体
粒子をフロツク化されながら吐出口22より沈降
分離部14aに噴出する。この時、案内筒19の
開口近傍の内周面は水平方向に沿つているので、
汚泥Dは沈降分離部14a内に水平方向で噴出す
る。したがつて、フロツクが沈降分離部14aの
内壁もしくは、沈降分離部14a内に形成される
液体Fの水面に衝突して破壊されることがない。
そして、沈降分離部14aに噴入した汚泥Dは、
沈降分離部14aの回転による遠心力を受けて、
フロツク化されて粒子径の大きくなつた固体粒子
を沈降分離部14aの内周壁に堆積させて、固体
Gと液体Fの二相に分離される。この時、フロツ
クが沈降分離部14aへの噴入と同時に形成され
るので、沈降分離部114a内において大きな粒
径のフロツクを確保して、沈降効率の向上を図る
ことが出来る。しかも、このことによつて凝集剤
Eの作用に無駄がなくなり、凝集剤Eの作用効率
を向上させて、凝集剤Eの投入量を減少させるこ
とが出来る。次に、分離されて沈降分離部14a
の内周壁に堆積する固体Gに対して、内胴13と
外胴14の回転差によつてスクリユーコンベア部
23が作用し、固体Gは脱液部14bを通つて固
形物排出穴16よりカバー28内に排出される。
カバー28内に排出された固体Gは固形物排出口
より外部へ排出される。一方、分離された液体F
は、堰板17を溢流して分離排出穴18よりカバ
ー28内に排出され、カバー28の分離液排出口
30より外部に排出される。
The operation of the above configuration will be explained. First, the inner shell 13 and the outer shell 14 are rotated at high speed by the drive device via the pulley 15a and the reducer 15. Then, while the guide cylinder 19 and the inner shell 13 are rotating at high speed, the sludge D is transferred to the sludge supply pipe 24.
The liquid is injected into the guide cylinder 19. The sludge D injected into the guide tube 19 receives centrifugal force due to the rotation of the guide tube 19 and flows along the circumferential side of the guide tube 19 whose diameter increases toward the opening at the other end. On the other hand, the flocculant E injected into the guide cylinder 19 from the chemical injection pipe 25
Since the chemical injection nozzle 27 of the chemical injection pipe 25 is opened toward the vicinity of the opening on the inner circumference of the guide tube, the sludge D that has reached the vicinity of the opening of the guide tube 19 is removed from the discharge port 22 of the guide tube 19. It is added only to the sludge D that is about to be ejected toward the sedimentation separation section 14a. That is, the flocculant E discharged from the chemical injection nozzle 27 adheres to the flange 21 and spreads in the circumferential direction due to the rotation of the flange 21, and is uniformly supplied to the sludge D around the flange 21 over the entire circumference. be done. By this, the formation of flocs of solid particles in the sludge due to the action of the flocculant E can be made to occur simultaneously with the ejection of the sludge D to the sedimentation separation section 14a, so that the flocs are not settled as in the conventional case. This prevents it from being destroyed before it is injected into the separation section. Then, the sludge D to which the flocculant E has been added is ejected from the discharge port 22 to the settling section 14a while the solid particles are flocculated. At this time, since the inner peripheral surface near the opening of the guide tube 19 is along the horizontal direction,
The sludge D is ejected horizontally into the settling section 14a. Therefore, the flocs will not be destroyed by colliding with the inner wall of the settling section 14a or the water surface of the liquid F formed within the settling section 14a.
The sludge D injected into the sedimentation separation section 14a is
Under the centrifugal force caused by the rotation of the sedimentation separation section 14a,
The solid particles, which have been turned into flocs and have increased in particle size, are deposited on the inner circumferential wall of the sedimentation/separation section 14a, and are separated into two phases, solid G and liquid F. At this time, since the flocs are formed at the same time as the flocs are injected into the sedimentation separation section 14a, it is possible to secure flocs with a large particle size in the sedimentation separation section 114a, thereby improving the sedimentation efficiency. Moreover, this eliminates waste in the action of the flocculant E, improves the efficiency of the action of the flocculant E, and reduces the amount of flocculant E to be fed. Next, it is separated and sedimented in the separation section 14a.
The screw conveyor section 23 acts on the solid G deposited on the inner circumferential wall of the inner shell due to the rotation difference between the inner shell 13 and the outer shell 14, and the solid G passes through the liquid removal section 14b and is discharged from the solid discharge hole 16. It is discharged into the cover 28.
The solid G discharged into the cover 28 is discharged to the outside from the solid discharge port. On the other hand, the separated liquid F
The liquid overflows the weir plate 17, is discharged into the cover 28 through the separation discharge hole 18, and is discharged to the outside through the separated liquid discharge port 30 of the cover 28.

発明の効果 以上述べたごとく本発明によれば、凝集剤を、
案内筒より沈降分離部に噴出する間際の汚泥に添
加することによつて、フロツクの形成を、汚泥の
沈降分離部への噴入と同時行なわせることが出来
るので、沈降分離部内において大きな粒径のフロ
ツクを形成することが出来、沈降分離をより促進
するとともに、凝集剤の作用効率を向上させて凝
集剤の投入量の削減を図れる。
Effects of the Invention As described above, according to the present invention, the flocculant is
By adding it to the sludge that is just about to be ejected from the guide tube into the sedimentation separation section, it is possible to form flocs at the same time as the sludge is injected into the sedimentation separation section. It is possible to form a floc, which further promotes sedimentation separation, improves the efficiency of the flocculant, and reduces the amount of flocculant input.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す一部破截全体
断面図、第2図は第1図の案内筒の拡大断面図、
第3図は第2図のa−a矢視図、第4図は従来の
遠心脱水機の構成を示す図である。 11…ベツド、12a,12b…軸受、13…
内胴、14…外胴、15…減速機、17…堰板、
19…案内筒、20…仕切壁、22…吐出口、2
3…スクリユーコンベア部、24…給泥管、25
…薬注管、27…薬注ノズル、D…汚泥、E…凝
集剤、F…液体、G…固体。
FIG. 1 is a partially cutaway overall sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the guide tube shown in FIG. 1,
FIG. 3 is a view taken along the line aa in FIG. 2, and FIG. 4 is a diagram showing the configuration of a conventional centrifugal dehydrator. 11...Bed, 12a, 12b...Bearing, 13...
Inner shell, 14...Outer shell, 15...Reducer, 17...Weir plate,
19... Guide tube, 20... Partition wall, 22... Discharge port, 2
3... Screw conveyor part, 24... Sludge supply pipe, 25
...Chemical injection pipe, 27...Chemical injection nozzle, D...Sludge, E...Flocculant, F...Liquid, G...Solid.

Claims (1)

【特許請求の範囲】[Claims] 1 軸心を水平方向にして配置される筒状体を成
して前記軸心まわりに回転する沈降分離部と、こ
の沈降分離部内に同心状に配置されて一端側を閉
塞されるとともに他端側に向けて拡径して開口さ
れ、開口近傍の内周面が水平方向に沿つた面に形
成されて前記沈降分離部と同軸心まわりに回転す
る案内筒と、この案内筒の開口に対応して配置さ
れるフランジと、前記案内筒の内部に向けて開口
して配置される給泥管と、前記案内筒の内周の開
口近傍に向け、かつ前記フランジの壁面に沿う方
向に向けて開口して配置される薬注管とを備えた
遠心脱水装置。
1. A sedimentation separation section which is a cylindrical body arranged with its axis in the horizontal direction and rotates around the axis, and a sedimentation separation section which is arranged concentrically within this sedimentation separation section and has one end closed and the other end. A guide cylinder whose diameter expands toward the side and whose inner circumferential surface near the opening is formed in a horizontal plane and rotates around the same axis as the sedimentation/separation section, and corresponds to the opening of this guide cylinder. a flange disposed so as to open toward the inside of the guide tube; a slurry supply pipe disposed so as to open toward the inside of the guide tube; A centrifugal dehydration device equipped with a chemical injection tube that is arranged in an open manner.
JP62025928A 1987-02-05 1987-02-05 Centrifugal dehydrator Granted JPS63194760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62025928A JPS63194760A (en) 1987-02-05 1987-02-05 Centrifugal dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62025928A JPS63194760A (en) 1987-02-05 1987-02-05 Centrifugal dehydrator

Publications (2)

Publication Number Publication Date
JPS63194760A JPS63194760A (en) 1988-08-11
JPH0587308B2 true JPH0587308B2 (en) 1993-12-16

Family

ID=12179436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62025928A Granted JPS63194760A (en) 1987-02-05 1987-02-05 Centrifugal dehydrator

Country Status (1)

Country Link
JP (1) JPS63194760A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9225067D0 (en) * 1992-12-01 1993-01-20 Broadbent & Sons Ltd Thomas Decanting-type centrifuges
EP2321057B1 (en) * 2008-06-06 2020-01-01 M-I L.L.C. Dual feed centrifuge
JP4978636B2 (en) * 2009-02-12 2012-07-18 株式会社石垣 Concentrator
US8881648B2 (en) * 2009-03-19 2014-11-11 Ishigaki Company Limited Concentrator-integrated screw press
CN107081223A (en) * 2017-05-26 2017-08-22 安徽普源分离机械制造有限公司 A kind of horizontal spiral automatic discharging sedimentation centrifuge of fluid high-speed separation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111963B2 (en) * 1976-11-24 1986-04-05 Hitachi Cable
JPS6190760A (en) * 1984-10-10 1986-05-08 クレツクネル‐フムボルト‐ドイツ・アクチエンゲゼルシヤフト Device for introducing coherent medium into sludge in inflowchamber for centrifugal separator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111963U (en) * 1984-06-25 1986-01-24 石川島播磨重工業株式会社 centrifuge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111963B2 (en) * 1976-11-24 1986-04-05 Hitachi Cable
JPS6190760A (en) * 1984-10-10 1986-05-08 クレツクネル‐フムボルト‐ドイツ・アクチエンゲゼルシヤフト Device for introducing coherent medium into sludge in inflowchamber for centrifugal separator

Also Published As

Publication number Publication date
JPS63194760A (en) 1988-08-11

Similar Documents

Publication Publication Date Title
JP2540198B2 (en) Sludge dewatering method and apparatus using decanter type centrifuge
JP2005125138A (en) Concentrator
JP3032283B2 (en) Decanter centrifuge
US4298159A (en) Solid sleeve worm centrifuge
JPH0587308B2 (en)
JPS63194759A (en) Centrifugal dehydrator
US5586966A (en) Apparatus and method for separating solid/fluid mixtures
JP2540180B2 (en) Sludge dewatering method and apparatus using decanter type centrifuge
JPH10216411A (en) Flocculator
JPH0217990A (en) Centrifugal dehydrator
KR101735748B1 (en) High-efficient refinable three-leverl centrifugal dehydrator
JPH01151958A (en) Centrifugal dewatering device
JP2001170697A (en) Granulating, thickening and dehydrating device for sludge
JPH031077Y2 (en)
RU2185892C2 (en) Suspension separating centrifuge
KR100343113B1 (en) Composition equipment and method to remove waste water including micellaneous things
JPS63185466A (en) Centrifugal dehydrator
JPH0226655A (en) Method and apparatus for centrifugal dehydration
JPH0217956A (en) Thickening dewatering apparatus
JPH0716630B2 (en) Screen-decanter centrifuge
JP2002331395A (en) Screw press type dehydration device
JPH0615116B2 (en) Sludge treatment equipment
JP2002126579A (en) Apparatus for solid-liquid separation and dewatering
JP4163050B2 (en) Upper solids reflux type screw conveyor centrifugal dehydrator
US3658182A (en) Sludge centrifuge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees