JPH031077Y2 - - Google Patents

Info

Publication number
JPH031077Y2
JPH031077Y2 JP10646485U JP10646485U JPH031077Y2 JP H031077 Y2 JPH031077 Y2 JP H031077Y2 JP 10646485 U JP10646485 U JP 10646485U JP 10646485 U JP10646485 U JP 10646485U JP H031077 Y2 JPH031077 Y2 JP H031077Y2
Authority
JP
Japan
Prior art keywords
screw
sludge
discharge port
outer shell
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10646485U
Other languages
Japanese (ja)
Other versions
JPS6213551U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10646485U priority Critical patent/JPH031077Y2/ja
Publication of JPS6213551U publication Critical patent/JPS6213551U/ja
Application granted granted Critical
Publication of JPH031077Y2 publication Critical patent/JPH031077Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Treatment Of Sludge (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は、下水・し尿・各種産業廃水処理工程
を発生する有機性汚泥を脱水するためのスクリユ
ーデカンタ型遠心分離機に関するものである。 〔従来の技術〕 下水・し尿・各種産業廃水処理工程で発生する
有機性汚泥を脱水するため、従来から使用されて
いるスクリユーデカンタ型遠心分離機の一例を第
2図について説明すると、内胴aの外側には、内
胴aと同心に外胴bが設けてあつて、外胴bは軸
受cに支持されて高速で回転するようになつてい
る。内胴aの外周にはスクリユーdが取付けられ
ており、内胴aの中心軸線上には、フイードパイ
プeが設けられている。 フイードパイプeの第2図における右端から
は、汚泥スラリーにカチオン系有機高分子凝縮剤
を添加して生成した凝集フロツクが送られて来
て、内胴aの室fに落下するようになつている。
室f内に落下した凝集フロツクは、室fから吐出
口gを通つて外胴bの内部に入り、外胴bの高速
回転による遠心力で汚泥堆積物hと分離液iとに
分離される。汚泥堆積物hはスクリユーdによつ
て分離液iからかき上げられた後、吐出口jから
外胴bの外に排出され、分離液iはオリフイスk
から外胴bの外に排出される。 上述した第2図のスクリユーデカンタ型遠心分
離機では、スクリユーdによつて分離液iからか
き上げられた汚泥堆積物hは、遠心力による圧密
作用で、粒子表面あるいは粒子間空隙内にある水
分は或程度除去されるものの、かなり高い含水率
のまま排出され、次に行なわれる埋立、乾燥、焼
却の処理コストを大きくしている欠点があつた。 そこで従来は、さらに第3図に示すスクリユー
デカンタ型遠心分離機が開発され、汚泥堆積物の
含水率を低くする工夫がなされている。 第3図に示す従来のスクリユーデカンタ型遠心
分離機は、大径のスクリユーdの内径部に所々切
欠き穴lをあけてある。内胴aの外周にはスクリ
ユーdのほかに、小径の補助スクリユーmが取付
けられている。補助スクリユーmは、大径のスク
リユーdの切欠き穴lを通り、スクリユーdとは
逆巻きのらせんになつているものである。その他
の部分は第2図に示したものと同じ構造になつて
いて、第2図と同一部分には同一符号を付してあ
る。 この第3図に示した従来のスクリユーデカンタ
型遠心分離機においても、汚泥堆積物hはスクリ
ユーdによつて外胴b内を第3図の右方に送られ
ながら圧密脱水されるが、汚泥堆積物h中の水分
は、汚泥堆積物h内側の表層部nに滲出するた
め、内側ほど含水率は高くなつている。この内側
の表層部nは補助スクリユーmによつて吐出口j
とは反対の方向に送られ、含水率の低い外周部o
の汚泥堆積物のみがスクリユーdによつて吐出口
jの方に送られて外胴bから排出されるため、低
含水率の汚泥堆積物を得ることができる。補助ス
クリユーmによつて掻き取られた表層部nの汚泥
堆積物は、外胴b内に滞留する間に脱水され、十
分脱水された状態で外周部oに入り、スクリユー
dによつて吐出口jの方に送られ、外胴bから排
出される。 〔考案が解決しようとする問題点〕 第3図に示したスクリユーデカンタ型遠心分離
機においても、汚泥に有機高分子凝集剤を添加
し、汚泥堆積物を脱水するという前添加の方法を
採用しているが、この方法では残留水分を抱き込
んだままとなるので、やはり十分に脱水すること
はできなかつた。 本考案は、スクリユーデカンタ型遠心分離機か
ら排出される汚泥堆積物の含水率を大幅に低減
し、汚泥処理コストを少なくしようとするもので
ある。 〔問題点を解決するための手段〕 本考案は、内胴の外側に同心に設けられ一端側
に吐出口を有し高速回転する外胴と、汚泥を外胴
内部に送る内管と、内胴の外周に取付けられ外胴
内部で沈降分離した汚泥堆積物を汚泥の分離液か
らかき上げ吐出口の方向に送る大径のスクリユー
と、内管の外側に同心に設けられ分離液からかき
上げられた汚泥堆積物に無機凝集剤を添加する外
管と、内胴の外周に大径のスクリユーとは逆巻き
のらせんとして取付けられ分離液からかき上げら
れた汚泥堆積物の表層を吐出口とは反対の方向に
送る小径の補助スクリユーと、を備えたスクリユ
ーデカンタ型遠心分離機としたものである。 〔作用〕 分離液からかき上げられた汚泥堆積物に無機凝
集剤が添加され、スクリユーの混合作用により汚
泥堆積物と十分に反応して汚泥堆積物に抱き込ま
れた残留水分を除去し、分離した水分は表層部に
押し出され、この表層部は補助スクリユーにより
かき取られて吐出口とは反対の方向に送られ、吐
出口からは含水率の低い汚泥堆積物が排出され
る。 〔実施例〕 以下、本考案の一実施例を、図面に基づいて説
明する。 第1図において、1は外胴であつて、軸受2に
支持されて高速で回転するようになつていて、第
1図における右端側は縮径されてその端には吐出
口3が設けられており、外胴1の第1図における
左端にはオリフイス4が設けられている。外胴1
の内部には、同心に内胴5が設けてあつて、内胴
5の外周には大径のスクリユー6が取付けられて
いる。スクリユー6の所々には切欠き穴7があけ
てあつて、この切欠き穴7を通つてスクリユー6
とは逆巻きのらせんになつている小径の補助スク
リユー8も、内胴5の外周に取付けられている。
内胴5の内部には室9,10が形成されていて、
室9,10はそれぞれ吐出口11,12によつて
外胴1の内部に連通されている。吐出口11は外
胴1の大径部に対向し、吐出口12は、吐出口3
に近い外胴1の縮径部に対向している。 内胴5の中心軸線上に内管13が設けてあつ
て、室9に臨んでいる。この内管13の第1図に
おける右端からは、汚泥スラリーにカチオン系有
機高分子凝集剤を添加して生成した凝集フロツク
14が送られて来るようになつている。内管13
の外側には、内管13と同心に外管15が設けて
あつて、外管15の第1図における左端近くは、
排出口16によつて室10に連通している。外管
15には、枝管17を介して無機凝集剤18が供
給されるようになつている。無機凝集剤18とし
ては、主に鉄塩が適しており、ポリ硫酸鉄、塩化
第二鉄、硫酸第一鉄、硫酸第二鉄などを使用す
る。 第1図に示したスクリユーデカンタ型遠心分離
機において、汚泥に有機高分子凝集剤を添加して
生成された凝集フロツク14は、内管13を通つ
て室9に入り、吐出口11から外胴1の内部に落
下する。そして外胴1の高速回転による遠心力に
よつて、分離液19と汚泥堆積物20とに分離さ
れる。そして分離液19はオリフイス4から外胴
1の外に排出され、汚泥堆積物20はスクリユー
6によつて分離液19からかき上げられ、外胴1
内を吐出口3の方に送られる。 枝管17を介して外管15内に供給された無機
凝集剤18は、排出口16より室10内に入り、
さらに吐出口12を通つて、分離液19からかき
上げられた汚泥堆積物20に添加される。分離液
19からかき上げられた汚泥堆積物20は既に或
程度水分が除去された状態になつており、これに
無機凝集剤18が添加されてスクリユー6により
混合されながら吐出口3の方に送られる。これに
よつて汚泥堆積物20は、無機凝集剤18の化学
作用によつて残留水分除去作用と、遠心力による
圧密作用によつてさらに脱水され、水分は汚泥堆
積物20の内側の表層21に滲出するため、表層
21側が含水率が高くなり、外周部22は含水率
は低くなる。 含水率の低い外周部22の汚泥堆積物20はス
クリユー6によつて吐出口3の方に送られて外胴
1から低含水率の汚泥堆積物として吐出される。
含水率の高い表層21側の汚泥堆積物20は、補
助スクリユー8によつて吐出口3とは反対の方向
に送られ、外胴1内に滞留する間に脱水され、最
終的には十分脱水された状態で外周部22に入
り、外胴1から吐出される。 第2図、第3図に示した従来の装置と、第1図
に示した本考案の装置とによる汚泥堆積物の含水
率は、次の表に示すようになる。
[Industrial Application Field] The present invention relates to a screw decanter type centrifuge for dewatering organic sludge generated in sewage, human waste, and various industrial wastewater treatment processes. [Prior Art] An example of a screw decanter type centrifuge conventionally used for dewatering organic sludge generated in sewage, human waste, and various industrial wastewater treatment processes is explained with reference to Figure 2. On the outside of a, an outer shell b is provided concentrically with the inner shell a, and the outer shell b is supported by a bearing c so as to rotate at high speed. A screw d is attached to the outer periphery of the inner shell a, and a feed pipe e is provided on the central axis of the inner shell a. From the right end of the feed pipe e in Figure 2, flocs produced by adding a cationic organic polymer condensing agent to the sludge slurry are sent and fall into the chamber f of the inner shell a. .
The flocs that have fallen into the chamber f enter the outer shell b from the chamber f through the discharge port g, and are separated into sludge deposits h and separated liquid i by the centrifugal force caused by the high speed rotation of the outer shell b. . After the sludge deposit h is scraped up from the separated liquid i by the screw d, it is discharged to the outside of the outer shell b from the discharge port j, and the separated liquid i is passed through the orifice k.
is discharged from the outer shell b. In the screw decanter type centrifugal separator shown in Fig. 2 described above, the sludge deposit h scraped up from the separated liquid i by the screw d is concentrated on the particle surface or in the interparticle voids due to the compaction effect caused by the centrifugal force. Although a certain amount of moisture is removed, the waste is discharged with a fairly high moisture content, which has the disadvantage of increasing the cost of subsequent landfilling, drying, and incineration. Therefore, in the past, a screw decanter type centrifugal separator as shown in FIG. 3 was developed to reduce the water content of the sludge deposit. In the conventional screw decanter type centrifuge shown in FIG. 3, notches l are made here and there in the inner diameter of a large diameter screw d. In addition to the screw d, a small-diameter auxiliary screw m is attached to the outer periphery of the inner shell a. The auxiliary screw m passes through the cutout hole l of the large-diameter screw d, and forms a spiral wound in the opposite direction to that of the screw d. The other parts have the same structure as shown in FIG. 2, and the same parts as in FIG. 2 are given the same reference numerals. In the conventional screw decanter type centrifugal separator shown in FIG. 3, the sludge deposit h is dehydrated by consolidation while being sent to the right side in FIG. 3 inside the outer shell b by the screw d. Since the water in the sludge deposit h leaks into the surface layer n inside the sludge deposit h, the moisture content becomes higher toward the inside. This inner surface layer n is connected to a discharge port j by an auxiliary screw m.
The outer peripheral part o with low moisture content is sent in the opposite direction.
Since only the sludge deposit is sent to the discharge port j by the screw d and discharged from the outer shell b, it is possible to obtain a sludge deposit with a low water content. The sludge deposits in the surface layer n scraped off by the auxiliary screw m are dehydrated while staying in the outer shell b, enter the outer peripheral part o in a sufficiently dehydrated state, and are passed through the discharge port by the screw d. j, and is discharged from the outer shell b. [Problems that the invention aims to solve] The screw decanter centrifuge shown in Figure 3 also uses a pre-addition method in which an organic polymer flocculant is added to the sludge and the sludge deposits are dehydrated. However, with this method, residual water remains trapped, so it was still not possible to dehydrate sufficiently. The present invention aims to significantly reduce the water content of sludge deposits discharged from a screw decanter centrifuge, thereby reducing sludge treatment costs. [Means for solving the problem] The present invention consists of an outer shell that is provided concentrically on the outside of the inner shell and has a discharge port on one end and rotates at high speed, an inner pipe that sends sludge into the outer shell, and an inner pipe that rotates at high speed. A large-diameter screw is attached to the outer circumference of the shell to scrape up the sludge deposits that have settled and separated inside the outer shell from the separated sludge liquid and send it toward the discharge port, and a large-diameter screw is installed concentrically on the outside of the inner pipe to scrape up the sludge deposits that have settled and separated inside the outer shell from the separated liquid. The outer tube adds an inorganic flocculant to the sludge deposits, and a large-diameter screw is attached to the outer periphery of the inner cylinder as a reversely wound spiral. This is a screw decanter type centrifuge equipped with a small-diameter auxiliary screw that sends in the opposite direction. [Operation] An inorganic flocculant is added to the sludge deposits scraped up from the separated liquid, and due to the mixing action of the screw, it fully reacts with the sludge deposits to remove residual moisture trapped in the sludge deposits and separate them. The water is pushed out to the surface layer, and this surface layer is scraped off by an auxiliary screw and sent in the opposite direction to the discharge port, from which sludge deposits with a low moisture content are discharged. [Example] Hereinafter, an example of the present invention will be described based on the drawings. In Fig. 1, reference numeral 1 denotes an outer shell, which is supported by a bearing 2 and rotates at high speed, and the right end side in Fig. 1 has a reduced diameter and a discharge port 3 is provided at the end. An orifice 4 is provided at the left end of the outer shell 1 in FIG. Outer body 1
An inner shell 5 is provided concentrically inside the body, and a large-diameter screw 6 is attached to the outer periphery of the inner shell 5. The screw 6 is provided with notch holes 7 in some places, and the screw 6 is inserted through these notch holes 7.
A small-diameter auxiliary screw 8, which is spirally wound in the opposite direction, is also attached to the outer periphery of the inner shell 5.
Chambers 9 and 10 are formed inside the inner shell 5,
The chambers 9 and 10 are communicated with the inside of the outer shell 1 through discharge ports 11 and 12, respectively. The discharge port 11 faces the large diameter portion of the outer shell 1, and the discharge port 12 faces the discharge port 3.
It faces the reduced diameter part of the outer shell 1 that is close to . An inner tube 13 is provided on the central axis of the inner shell 5 and faces the chamber 9. From the right end of this inner tube 13 in FIG. 1, a flocculation floc 14 produced by adding a cationic organic polymer flocculant to the sludge slurry is sent. Inner tube 13
An outer tube 15 is provided concentrically with the inner tube 13, and near the left end of the outer tube 15 in FIG.
It communicates with the chamber 10 by an outlet 16 . An inorganic flocculant 18 is supplied to the outer pipe 15 via a branch pipe 17. Iron salts are mainly suitable as the inorganic flocculant 18, and polyferrous sulfate, ferric chloride, ferrous sulfate, ferric sulfate, and the like are used. In the screw decanter type centrifugal separator shown in FIG. It falls into the inside of body 1. The centrifugal force caused by the high speed rotation of the outer shell 1 separates the liquid into a separated liquid 19 and a sludge deposit 20. The separated liquid 19 is then discharged from the orifice 4 to the outside of the outer shell 1, and the sludge deposits 20 are scraped up from the separated liquid 19 by the screw 6, and
The inside is sent toward the discharge port 3. The inorganic flocculant 18 supplied into the outer tube 15 via the branch pipe 17 enters the chamber 10 through the outlet 16,
Furthermore, it is added to the sludge deposit 20 scraped up from the separated liquid 19 through the discharge port 12 . The sludge deposit 20 scraped up from the separated liquid 19 has already had some moisture removed, and an inorganic flocculant 18 is added to it and mixed by the screw 6 while being sent to the discharge port 3. It will be done. As a result, the sludge deposit 20 is further dehydrated by the chemical action of the inorganic flocculant 18 to remove residual water and the compaction action by centrifugal force, and the water is transferred to the inner surface layer 21 of the sludge deposit 20. Because of the exudation, the surface layer 21 side has a high water content, and the outer peripheral part 22 has a low water content. The sludge deposit 20 in the outer peripheral portion 22 having a low moisture content is sent toward the discharge port 3 by the screw 6 and is discharged from the outer shell 1 as a sludge deposit having a low moisture content.
The sludge deposit 20 on the surface layer 21 side with a high water content is sent in the direction opposite to the discharge port 3 by the auxiliary screw 8, and is dehydrated while remaining in the outer shell 1, and finally is sufficiently dehydrated. The liquid enters the outer circumferential portion 22 in a state in which the liquid is absorbed, and is discharged from the outer shell 1. The water content of sludge deposits obtained by the conventional apparatus shown in FIGS. 2 and 3 and the apparatus of the present invention shown in FIG. 1 is as shown in the following table.

〔考案の効果〕[Effect of idea]

本考案は無機凝集剤で汚泥堆積物中の残留水分
を除去し、さらに補助スクリユーによつて含水率
の高い表層の汚泥堆積物を外胴の吐出口とは反対
の方向に送るので、含水率の極めて低い汚泥堆積
物を得ることができる。
This invention uses an inorganic flocculant to remove residual moisture in sludge deposits, and uses an auxiliary screw to send the sludge deposits in the surface layer, which has a high moisture content, in the opposite direction from the discharge port of the outer shell. extremely low sludge deposits can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例の縦断面図、第2
図、第3図は従来装置の縦断面図である。 図中、1は外胴、3は吐出口、5は内胴、6は
スクリユー、8は補助スクリユー、13は内管、
15は外管、18は無機凝集剤、19は分離液、
20は汚泥堆積物、21は表層、22は外周部を
示す。
Fig. 1 is a vertical cross-sectional view of one embodiment of the present invention;
3 are longitudinal sectional views of the conventional device. In the figure, 1 is an outer shell, 3 is a discharge port, 5 is an inner shell, 6 is a screw, 8 is an auxiliary screw, 13 is an inner pipe,
15 is an outer tube, 18 is an inorganic flocculant, 19 is a separation liquid,
20 is the sludge deposit, 21 is the surface layer, and 22 is the outer periphery.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内胴の外側に同心に設けられ一端側に吐出口を
有し高速回転する外胴と、汚泥を前記外胴内部に
送る内管と、前記内胴の外周に取付けられ外胴内
部で沈降分離した汚泥堆積物を汚泥の分離液から
かき上げ吐出口の方向に送る大径のスクリユー
と、前記内管の外側に同心に設けられ前記分離液
からかき上げられた汚泥堆積物に無機凝集剤を添
加する外管と、前記内胴の外周に前記大径のスク
リユーとは逆巻きのらせんとして取付けられ前記
分離液からかき上げられた汚泥堆積物の表層を吐
出口とは反対の方向に送る小径の補助スクリユー
と、を備えたことを特徴とするスクリユーデカン
タ型遠心分離機。
An outer shell that is provided concentrically on the outside of the inner shell and has a discharge port on one end and rotates at high speed; an inner pipe that sends sludge into the outer shell; and an inner pipe that is attached to the outer circumference of the inner shell and performs sedimentation and separation inside the outer shell. a large-diameter screw that scrapes up the sludge deposits from the sludge separation liquid and sends them in the direction of the discharge port; A small diameter screw is attached to the outer periphery of the inner shell as a spiral winding in the opposite direction to the large diameter screw and sends the surface layer of the sludge deposits scraped up from the separated liquid in the opposite direction to the discharge port. A screw decanter type centrifuge characterized by being equipped with an auxiliary screw.
JP10646485U 1985-07-12 1985-07-12 Expired JPH031077Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646485U JPH031077Y2 (en) 1985-07-12 1985-07-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10646485U JPH031077Y2 (en) 1985-07-12 1985-07-12

Publications (2)

Publication Number Publication Date
JPS6213551U JPS6213551U (en) 1987-01-27
JPH031077Y2 true JPH031077Y2 (en) 1991-01-14

Family

ID=30981847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646485U Expired JPH031077Y2 (en) 1985-07-12 1985-07-12

Country Status (1)

Country Link
JP (1) JPH031077Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402418B2 (en) * 1995-08-21 2003-05-06 月島機械株式会社 Centrifugal concentrator
JP4518531B2 (en) * 2001-09-27 2010-08-04 孝治 大塚 Rinse decanter
JP5191565B2 (en) * 2011-02-25 2013-05-08 寿工業株式会社 Centrifugal dehydration method and centrifugal dehydration apparatus
JP2013154327A (en) * 2012-01-31 2013-08-15 Ihi Corp Centrifugal dewaterer
KR101127015B1 (en) 2012-02-01 2012-03-26 주식회사 월드이노텍 Centrifugal separator including agitating blade

Also Published As

Publication number Publication date
JPS6213551U (en) 1987-01-27

Similar Documents

Publication Publication Date Title
JP2540198B2 (en) Sludge dewatering method and apparatus using decanter type centrifuge
JPH031077Y2 (en)
JPH0966299A (en) Two-stage chemical injection type centrifugal dehydrator
JPH0641000B2 (en) Sludge dewatering equipment
CN112479444A (en) Integrated high-efficiency coagulation, oxidation and clarification equipment
JP2540180B2 (en) Sludge dewatering method and apparatus using decanter type centrifuge
CN103803774B (en) Sludge thickening device and sludge treatment method thereof
CN1064648C (en) Sewage treatment technology and equipment using refined diatomite as treating agent
JPH0716630B2 (en) Screen-decanter centrifuge
KR20130123006A (en) Centrifugal separator and method for sludge dewatering
JPS63194760A (en) Centrifugal dehydrator
JPH0775747A (en) Decanter continuous centrifuge of immersion contacting flocculation type
JPS6365366B2 (en)
JPH04123895A (en) Device for treating sludge
CN109516608A (en) A kind of advanced treatment process of coking waste water and processing system
KR100226518B1 (en) Pretreatment system for excretions and centrifugal separator
JPH031076Y2 (en)
JPS6025357Y2 (en) Solid-liquid separator
CN215365190U (en) Integrated high-efficiency coagulation, oxidation and clarification equipment
CN212451133U (en) Sludge dewatering device for environmental protection
JPS6129448Y2 (en)
KR100502195B1 (en) Method for dewatering in sludge having high efficiency
KR200413932Y1 (en) Hydroextractor using rotation speed difference for drum screen and screw
JP4302786B2 (en) High SS waste liquid and sludge purification method
JPH029845B2 (en)