JPH0587057B2 - - Google Patents

Info

Publication number
JPH0587057B2
JPH0587057B2 JP62073355A JP7335587A JPH0587057B2 JP H0587057 B2 JPH0587057 B2 JP H0587057B2 JP 62073355 A JP62073355 A JP 62073355A JP 7335587 A JP7335587 A JP 7335587A JP H0587057 B2 JPH0587057 B2 JP H0587057B2
Authority
JP
Japan
Prior art keywords
acid
bromide
chrysanthemum
trans
cis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62073355A
Other languages
Japanese (ja)
Other versions
JPS63238037A (en
Inventor
Takeo Suzukamo
Yoji Sakito
Masami Fukao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP62073355A priority Critical patent/JPS63238037A/en
Priority to EP88301792A priority patent/EP0282221B1/en
Priority to DE8888301792T priority patent/DE3867658D1/en
Priority to HU881122A priority patent/HU203067B/en
Priority to US07/166,014 priority patent/US4820864A/en
Publication of JPS63238037A publication Critical patent/JPS63238037A/en
Publication of JPH0587057B2 publication Critical patent/JPH0587057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は第䞀菊酞類のラセミ化方法に関し、さ
らに詳しくは䞀般匏
The present invention relates to a method for racemizing primary chrysanthemum acids, and more specifically, the present invention relates to a method for racemizing primary chrysanthemum acids, and more specifically,

【化】 匏䞭、は氎玠原子、炭玠数〜20のアルキ
ル基、シクロアルキル基たたはアラルキル基を衚
わし、は䞍斉炭玠を衚わす。 で瀺される光孊掻性第䞀菊酞類に過酞化物もしく
はアゟ化合物の存圚䞋、カルボン酞ブロミド類、
ブロム化ケむ玠類、チオニルブロミド、−ブロ
ム化合物類から遞ばれる少なくずも皮の化合物
を䜜甚させるこずを特城ずする光孊掻性第䞀菊酞
類のラセミ化方法に関するものである。 第䞀菊酞は、䜎毒速効性殺虫剀ずしお有甚なピ
レトリン、アレスリン、フタルスリンなどのいわ
ゆるピレスロむド系殺虫剀ずしおよく知られおい
る゚ステル類の酞成分を構成するものであり、前
蚘䞀般匏で瀺される第䞀菊酞類は、これら
のピレスロむド系殺虫剀の原料ずしお有甚であ
る。 前蚘䞀般匏で瀺される第䞀菊酞類にはシ
ス、トランスの幟䜕異性䜓があり、たたその各々
におよび−の光孊異性䜓があるこずか
ら、合蚈皮の異性䜓が存圚する。䞀般に、これ
らの異性䜓の䞭、トランス䜓から導びかれるピレ
スロむド系の゚ステル類は察応するシス䜓から導
びかれるピレスロむド系゚ステル類よりも匷い殺
虫掻性を瀺し、さらに䜓の゚ステル類が察
応する−䜓の゚ステル類よりも遥かに高い掻
性を瀺すこずが知られおいる。 第䞀菊酞は通垞シス䜓、トランス䜓の混合した
ラセミ䜓、即ち±䜓ずしお補造され、これを
光孊掻性な有機塩基を甚いお光孊分割するこずに
より䜓が埗られ、より高掻性な殺虫性化合
物の補造に䜿甚されおいる。ここで光孊分割され
た残りの−䜓はそのピレスロむド系の゚ステ
ルずしおの掻性が殆んどなく、埓぀おこの有甚性
のない−䜓を効率よくラセミ化し、䞊蚘の光
孊分割の原料ずしお䟛し埗るようにするこずは、
特に工業的芏暡での䜓の生産時においおは
倧きな課題ずなる。 しかしながら、前蚘のように、䞀般匏で
瀺されるシクロプロパンカルボン酞にはC1䜍ず
C3䜍に個の䞍斉炭玠を有するため、そのラセ
ミ化には皮々の困難を䌎なう。 これ迄、第䞀菊酞類のラセミ化方法ずしおは
−トランス−第䞀菊酞のC3䜍のむ゜ブテニル
基を酞化しおケトアルコヌル基に導いた埌、C1
䜍のカルボン酞を゚ステル化し、これをアルカリ
金属アルコレヌトず溶媒の存圚䞋に加熱反応させ
る方法特公昭39−15977号公報、あるいは
−−トランス−第䞀菊酞を光増感剀の存圚䞋に
玫倖線を照射する方法特公昭47−30697号公報
が知られおいるが、前者は倚くの反応工皋を芁す
るこず、たた埌者は反応率が劣るうえ光源の電力
消費量が倧きく、たた光源の寿呜も比范的短いこ
ずなど工業的に実斜するには皮々の問題点を有す
る。 本発明者らは先に、光孊掻性第䞀菊酞類を酞ハ
ラむドずしお、これにルむス酞を觊媒ずしお䜜甚
させるこずによるラセミ化方法特公昭53−
37858号公報、特開昭52−144651号公報、光孊掻
性なシクロプロパンカルボン酞の無氎物にペり玠
を䜜甚させるこずによるラセミ化方法特開昭57
−163341号公報、および第䞀菊酞誘導䜓に臭化
ホり玠や臭化アルミずいう特殊な觊媒を䜜甚させ
るこずによるラセミ化方法特開昭60−174744、
61−5045号公報を提案しおいる。 本発明者らはその埌さらに皮々怜蚎を重ねた結
果、カルボン酞ブロミド類、ブロム化ケむ玠類、
チオニルブロミド、−ブロム化合物類が、これ
を過酞化物もしくはアゟ化合物ず共甚するこずに
より、光孊掻性第䞀菊酞類のラセミ化を意倖にも
極めお奜郜合に進行させるこずを芋出し、曎に
皮々の怜蚎を加えお、本発明を完成した。 すなわち本発明は䞀般匏
[Chemical formula] (In the formula, R represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, or an aralkyl group, and * represents an asymmetric carbon.) In the presence of oxides or azo compounds, carboxylic acid bromides,
The present invention relates to a method for racemizing optically active chrysanthemum acids, which comprises reacting with at least one compound selected from silicon bromination, thionyl bromide, and N-bromine compounds. Daiichichrysanthemum acid constitutes the acid component of esters that are well known as so-called pyrethroid insecticides such as pyrethrin, allethrin, and phthalthrin, which are useful as low-toxicity and fast-acting insecticides, and has the general formula () The primary chrysanthemum acids represented by are useful as raw materials for these pyrethroid insecticides. The primary chrysanthemum acids represented by the general formula () have cis and trans geometric isomers, and each of them has (+) and (-) optical isomers, so there are a total of four isomers. exists. Generally, among these isomers, pyrethroid esters derived from the trans isomer exhibit stronger insecticidal activity than the corresponding pyrethroid esters derived from the cis isomer; It is known to exhibit much higher activity than the corresponding (-) esters. Daiichichrysanthemum acid is usually produced as a racemic mixture of cis and trans forms, that is, the (±) form, and by optically resolving this using an optically active organic base, the (+) form is obtained. Used in the production of highly active insecticidal compounds. The remaining (-) isomer optically resolved here has almost no activity as a pyrethroid ester, and therefore this useless (-) isomer is efficiently racemized and used as the raw material for the above optical resolution. To be able to serve as
This is especially a big problem when producing (+) bodies on an industrial scale. However, as mentioned above, cyclopropanecarboxylic acid represented by the general formula () has a C1 position and
Since it has two asymmetric carbon atoms at the C3 position, its racemization is accompanied by various difficulties. Up until now, the racemization method for primary chrysanthemum acids has been to oxidize the isobutenyl group at the C3 position of (-)trans- primary chrysanthemum acid to convert it into a ketoalcohol group, and then convert it into a keto alcohol group .
A method of esterifying a carboxylic acid in position and heating the reaction with an alkali metal alcoholate in the presence of a solvent (Japanese Patent Publication No. 39-15977), or using (-)-trans-carboxylic acid as a photosensitizer. A method of irradiating ultraviolet rays in the presence of
However, the former requires many reaction steps, and the latter has an inferior reaction rate, high power consumption of the light source, and a relatively short lifespan of the light source, making it difficult to implement industrially. It has various problems. The present inventors previously proposed a racemization method (Japanese Patent Publication No. 53-1973) in which an optically active primary chrysanthemum acid is used as an acid halide and a Lewis acid is made to act on this as a catalyst.
37858, JP-A-52-144651), a racemization method by reacting iodine to an anhydride of optically active cyclopropanecarboxylic acid (JP-A-57-1988),
-163341), and a racemization method in which a special catalyst such as boron bromide or aluminum bromide is applied to the primary chrysanthemum derivative (Japanese Patent Application Laid-open No. 174744/1983).
61-5045). As a result of further various studies, the present inventors found that carboxylic acid bromides, brominated silicons,
It was discovered that thionyl bromide and N-brome compounds, when used in combination with peroxides or azo compounds, surprisingly facilitated the racemization of optically active dichroic acids, and further conducted various studies. The present invention was completed by adding the following. That is, the present invention is based on the general formula ()

【化】 匏䞭、は氎玠原子、炭玠数〜20のアルキ
ル基、シクロアルキル基たたはアラルキル基を衚
わし、は䞍斉炭玠を衚わす。 で瀺される光孊掻性第䞀菊酞類に過酞化物もしく
はアゟ化合物の存圚䞋、カルボン酞ブロミド類、
ブロム化ケむ玠類、チオニルブロミド、−ブロ
ム化合物類から遞ばれる少くずも皮の化合物を
䜜甚させるこずを特城ずする光孊掻性第䞀菊酞類
のラセミ化方法を提䟛するものである。 本発明方法によれば、他の誘導䜓に導くこずな
しに、光孊掻性第䞀菊酞そのもの、あるいはその
゚ステルのたたでラセミ化させるこずができるこ
ずから極めお有利であり、さらに皮々の光孊分割
法によ぀お分離陀去される菊酞類、䟋えば光孊分
割剀を甚いる物理化孊的分割法により分離される
無効な−−第䞀菊酞あるいは酵玠等による生
化孊的分割法においお分離陀去される−−第
䞀菊酞類゚ステルなどを盎接、効率よく有効利甚
するこずが可胜ずなる。 たた、本発明方法においお埗られるラセミ䜓
は、より有効なトランス䜓に富み、この点におい
おも本発明方法は有利である。 以䞋に本発明方法に぀いお詳现に説明する。 本発明の原料である䞀般匏で瀺される光
孊掻性第䞀菊酞類ずしおは、䟋えば第䞀菊酞、第
䞀菊酞メチル、第䞀菊酞゚チル、第䞀菊酞プロピ
ル、第䞀菊酞ブチル、第䞀菊酞シクロヘキシル、
第䞀菊酞シクロヘキシルメチル、第䞀菊酞ベンゞ
ル等の光孊掻性䜓が挙げられる。 第䞀菊酞類にはそれぞれ皮に異性䜓が存圚す
るが、その䞭の皮単独、たたはこれらの任意の
割合の混合物を甚いるこずができ、たた光孊玔床
はどの皋床のものでも差し぀かえないが、本発明
の目的から考えお−䜓たたは−䜓に富む
カルボン酞類を甚いる時に、その意矩を発揮する
こずは蚀うたでもない。 本発明においお甚いられるカルボン酞ブロミド
類ずしおは、炭玠数〜18のカルボン酞ブロミド
が通垞甚いられ、䟋えば、アセチルブロミド、プ
ロピオニルブロミド、ブチリルブロミド、む゜ブ
チリルブロミド、バレリルブロミド、む゜バレリ
ルブロミド、ピバロむルブロミド、ヘキサノむル
ブロミド、ヘプタノむルブロミド、シクロヘキサ
ンカルボニルブロミド、オクタノむルブロミド、
むナノむルブロミド、デカノむルブロミド、−
−メチルプロペニル−−ゞメチルシク
ロプロパンカルボニルブロミド、りンデカノむル
ブロミド、パルミトむルブロミド、ステアロむル
ブロミド、等の脂肪族モノカルボニルブロミド、
マロニルゞブロミド、スクシニルゞブロミド、グ
ルタリルゞブロミド、アゞポむルゞブロミド、ピ
メロむルゞブロミド、スベロむルゞブロミド、ア
れラオむルゞブロミド、セバコむルゞブロミド等
の脂肪族ゞカルボン酞ゞブロミド、ベンゟむルブ
ロミド、プニルアセチルブロミド、プニルプ
ロピオニルブロミド、プニルブチリルブロミ
ド、ナフタレンカルボニルブロミド、フタロむル
ゞブロミド、テレフタロむルゞブロミド、む゜フ
タロむルゞブロミド、等の芳銙族基を有するモノ
およびゞカルボン酞の酞ブロミドが挙げられる。 たたブロム化ケむ玠類ずしおはトリメチルシリ
ルブロミド、ゞメチルシリルゞブロミド、メチル
シリルトリブロミド、トリ゚チルシリルブロミ
ド、等の䜎玚アルキルシリルブロミド、シリルテ
トラブロミド等が䟋瀺できる。 −ブロム化合物類ずしおは−ブロムスクシ
ンむミド、−ブロムアセタミド、−ブロムプ
ロピオンアミド、−ブロムブチラミド、−ブ
ロムパレラミド等が䟋瀺できる。これ等のうち、
奜たしくはカルボン酞ブロミド類、より奜たしく
はアセチルブロミド、プロピオニルブロミド等が
甚いられる。 これ等の䜿甚量は被凊理第䞀菊酞類モルに察
し通垞1/1000〜1/4モルの範囲である。 たた過酞化物ずしおは䟋えば、過酞化氎玠、
−ブチルハむドロパヌオキサむド、
−テトラメチルブチルハむドロパヌオキサむ
ド、テトラヒドロフラン、ゞオキサン等の゚ヌテ
ル類の酞化によ぀お生成するハむドロパヌオキサ
むド、キナメンハむドロパヌオキサむド、ゞむ゜
プロピルベンれンハむドロパヌオキサむドなどの
ハむドロパヌオキサむド類、ベンゟむルパヌオキ
サむド、ラりロむルパヌオキサむドなどのゞアシ
ルパヌオキサむド類、−ブチルパヌベンゟ゚ヌ
ト、−ブチルパヌアセテヌト、ゞむ゜プロピル
パヌオキシゞカヌボネヌト、ゞシクロヘキシルパ
ヌオキシゞカヌボネヌトなどのパヌオキシ゚ステ
ル類、メチル゚チルケトンパヌオキサむド、シク
ロヘキサノンパヌオキサむドなどのケトンパヌオ
キサむド類、ゞ−−ブチルパヌオキサむド、ゞ
クミルパヌオキサむドなどのゞアルキルパヌオキ
サむド類、過酢酞などの過酞類等が挙げられる。
これらの䞭で奜たしくはハむドロパヌオキサむド
類、ゞアシルパヌオキサむド類、パヌオキシ゚ス
テル類である。 過酞化物の䜿甚量はブロム化合物モルに察し
お通垞1/20〜モル、奜たしくは1/10〜モルの
範囲である。 たたアゟ化合物ずしおは、䟋えばアゟビスむ゜
ブチロニトリル、2′−アゟビス−ゞ
メチルバレロニトリル、1′−アゟビスシ
クロヘキサン−−カルボニトリル、4′−
アゟビス−−シアノペンタノむツクアシツド、
−プニルアゟ−−ゞメチル−−メト
キシバレロニトリル、−シアノ−−プロピル
アゟホルムアミドなどのアゟニトリル類、アゟビ
スむ゜酪酞メチル、アゟビスむ゜酪酞゚チルなど
のアゟ゚ステル類、アゟ−−ブタンなどのアル
キルアゟ類等が挙げられる。奜たしくはアゟニト
リル類、アゟ゚ステル類が甚いられる。 たたその䜿甚量は前蚘ブロム化合物モルに察
しお通垞1/20〜モル、奜たしくは1/10〜モル
の範囲である。 反応を行なうに際しおは䞍掻性溶媒を䜿甚する
こずが奜たしく、そのような溶媒ずしおは飜和炭
化氎玠、芳銙族炭化氎玠及びこれらのハロゲン化
物、゚ヌテル類などを挙げるこずができる。 たた反応枩床は甚いる過酞化物あるいはアゟ化
合物等にもよるが、−20℃〜圓該第䞀菊酞類の沞
点溶媒を䜿甚する堎合はその沞点の範囲で任
意であり、通垞は−20〜100℃である。 反応に芁する時間はブロム化合物および過酞化
物あるいはアゟ化合物の䜿甚量や反応枩床によ぀
おも倉わり埗るが通垞数分〜10時間で充分その目
的を達成するこずができる。 本発明方法を実斜するに際しおは、通垞溶媒の
存圚䞋に被凊理第䞀菊酞類ず過酞化物あるいはア
ゟ化合物ずを混合し、次でこれにブロム化合物を
加えるか、あるいは、被凊理第䞀菊酞類を溶媒に
溶解し、次でこれに過酞化物あるいはアゟ化合物
およびブロム化合物を䜵泚する操䜜により行われ
る。 尚反応の進行床は反応液の䞀郚をサンプリング
しお旋光床を枬定するかガスクロマトグラフむヌ
等による分析で求めるこずができる。 䞊蚘のようにしお埗られるラセミ化された第䞀
菊酞類は皮々のピレスロむドアルコヌルずの゚ス
テル化反応により殺虫性゚ステルに導くこずがで
きる。 次に、実斜䟋によ぀お、本発明をさらに詳现に
説明するが、本発明は䜕らこれらに限定されるも
のではない。 実斜䟋  巊旋性第䞀菊酞類−シス䜓1.8、−
−シス䜓17.6、−トランス䜓10.1、−
−トランス䜓70.5からなる10.0をトル゚ン
20mlに溶解し、アゟビスむ゜ブチロニトリル0.19
を加え、80℃で攪拌しアセチルプロミド0.18
を滎䞋した。 反応埌、垌塩酞を加えお攪拌、分液埌、有機局
を27の10カセむ゜ヌダ氎溶液で回抜出し、
埗られる氎局を塩酞酞性にしおトル゚ンで回抜
出した。トル゚ン局を氎掗し、硫酞゜ヌダで也燥
したのち枛圧䞋に溶媒を留去し、次で残留液を蒞
留しお沞点110〜119℃2.5mmの留分9.34
を埗た。このものは赀倖線吞収スペクトルより菊
酞であるこずが確認された。 該留出液の䞀郚を−−オクチル゚ステ
ルに誘導し、ガスクロマトグラフむヌで光孊異性
䜓比率を枬定したずころ−シス䜓3.5、
−−シス䜓3.5、−トランス䜓44.3、
−−トランス䜓48.7であ぀た。 実斜䟋  実斜䟋で甚いた第䞀菊酞10.0にトル゚ン20
ml及び−ブチル過安息銙酞0.58を加え100℃
で攪拌しながらアセチルブロミド0.37の四塩化
炭玠溶液を滎䞋し、同枩床で20分攪拌した。 実斜䟋ず同様の凊理を行ない8.3の第䞀菊
酞を埗た。 該留出液の䞀郚を実斜䟋ず同様にしお第䞀菊
酞の光孊異性䜓比率を枬定したずころ、−シ
ス䜓3.4、−−シス䜓3.6、−トランス
䜓44.5、−−シス䜓48.5であ぀た。 実斜䟋  実斜䟋で甚いた第䞀菊酞4.00をトル゚ン
20.0mlに溶解し、アゟビスむ゜ブチロニトリル98
mgを加え、80℃で攪拌しながらトリメチルシリル
ブロミド91mgを滎䞋した。実斜䟋ず同様の凊理
を行ない3.68の第䞀菊酞を埗た。 光孊異性䜓比率は−シス䜓3.5、−−
シス䜓3.5、−トランス䜓45.4、−−
トランス䜓47.6であ぀た。 実斜䟋  実斜䟋で甚いた第䞀菊酞2.00をクロルベン
れン10.0mlに溶解し、−ブチル過安息銙酞0.23
を加え、100℃で攪拌しながらトリメチルシリ
ルブロミド87mgを滎䞋した。 実斜䟋ず同様の凊理を行ない1.63の第䞀菊
酞を埗た。光孊異性䜓比率は−シス䜓3.8
、−−シス䜓3.6、−トランス䜓45.1
、−−トランス䜓47.2であ぀た。 実斜䟋  実斜䟋で甚いた第䞀菊酞2.1をトル゚ン10
mlに溶解し−ブチルヒドロパヌオキシド0.11
を加えた。20℃でトリメチルシリルブロミド0.19
を加え、同枩床で20分攪拌した。 実斜䟋ず同様の凊理を行ない1.9の第䞀菊
酞を埗た。光孊異性䜓比は−シス䜓2.1、
−−シス䜓2.1、トランス䜓46.3、
−−トランス䜓49.5であ぀た。 実斜䟋  −−シス第䞀菊酞0.50ずアゟビスむ゜ブ
チロニトリル47mgをトル゚ン10mlに溶解した。80
℃で攪拌しながら臭化チオニル59mgを滎䞋し、20
分間攪拌した。 実斜䟋ず同様の凊理を行ない0.4の第䞀菊
酞を埗た。光孊異性䜓比は−シス䜓3.6、
−−シス䜓7.1、−トランス䜓44.8、
−−トランス䜓44.5であ぀た。 実斜䟋  実斜䟋で甚いた菊酞1.0ずアゟビスむ゜ブ
チロニトリル98mgをゞオキサン10mlに溶解した。
80℃で攪拌しながら−ブロムスクシンむミド
0.15を加え、20分間反応させた。 反応埌、40氎酞化ナトリりム氎溶液を加
え、枛圧䞋に溶媒を留去した。残留物に氎および
トル゚ンを加え、抜出を行ない分液した。氎局を
垌硫酞で䞭和し、トル゚ンで抜出埌、氎掗した。
次いで有機局を濃瞮埌、蒞留し、第䞀菊酞0.79
を埗た。沞点110〜119℃2.5mm光孊異性
䜓は−シス䜓2.1、−−シス䜓2.1、
−トランス䜓40.6、−−トランス䜓55.2
であ぀た。 実斜䟋  実斜䟋で甚いた菊酞1.0ずアゟビスむ゜ブ
チロニトリル98mgをトル゚ン10mlに溶解した。80
℃で攪拌しながらベンゟむルブロミド0.11を滎
䞋し、20分間反応させた。 このものの光孊異性䜓比を分析したずころ
−シス䜓3.3、−−シス䜓2.4、−
トランス䜓43.6、−−トランス䜓50.7であ
぀た。 実斜䟋  実斜䟋で甚いた菊酞2.0ずアゟビスむ゜ブ
チロニトリル0.15をトル゚ン20mlに溶解した。
80℃で攪拌しながらアゞボむルゞブロミド0.25
を滎䞋し20分間反応させた。 このものの光孊異性䜓比を分析したずころ
−シス䜓3.8、−−シス䜓3.4、−
トランス䜓43.4、−−トランス䜓49.4であ
぀た。 実斜䟋 10 −シス䜓1.8、−−シス䜓18.3、
−トランス䜓11.1、−−トランス䜓68.8
からなる第䞀菊酞の゚チル゚ステル3.2ずア
ゟビスむ゜ブチロニトリル0.27をトル゚ン20ml
に溶解した。80℃で攪拌しながらトリメチルシリ
ルブロミド0.38を加え20分反応させた。 反応液を氎酞化ナトリりム氎溶液で掗浄し
溶媒を留去した。次で枛圧䞋蒞留し、沞点85〜88
℃10mmの留出液2.6を埗た。 このものは赀倖線吞収スペクトルより第䞀菊酞
の゚チル゚ステルであるこずが確認された。その
䞀郚を垞法により加氎分解し埗られたカルボン酞
を−−オクタノヌルずの゚ステルに導い
た埌、ガスクロマトグラフむヌによりその光孊異
性䜓比率を求めたずころ−シス䜓3.5、
−−シス䜓3.5、−トランス䜓43.5、
−−トランス䜓49.5であ぀た。 実斜䟋 11 実斜䟋10で甚いた第䞀菊酞゚チル゚ステル0.32
ず過酞化ベンゟむル50mgをクロルベンれン10ml
に溶解した。80℃でアセチルブロミド29mgを加
え、20分反応させた。 このものの䞀郚をサンプリングし、垞法により
加氎分解し、光孊異性䜓比を枬定したずころ
−シス䜓3.5、−−シス䜓3.5、−
トランス䜓42.0、−−トランス䜓51.0であ
぀た。
[Chemical formula] (In the formula, R represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, or an aralkyl group, and * represents an asymmetric carbon.) In the presence of oxides or azo compounds, carboxylic acid bromides,
The present invention provides a method for racemizing optically active chrysanthemum acids, which comprises reacting with at least one compound selected from silicon bromination, thionyl bromide, and N-brome compounds. The method of the present invention is extremely advantageous because it can racemize optically active chrysanthemum acid itself or its ester without converting it into other derivatives. chrysanthemum acids separated and removed, for example, invalid (-) separated by a physicochemical resolution method using an optical resolving agent - (-) separated and removed by a biochemical resolution method using primary chrysanthemum acids or enzymes, etc. - It becomes possible to directly, efficiently and effectively utilize primary chrysanthemum acid esters, etc. Furthermore, the racemate obtained by the method of the present invention is rich in more effective trans isomers, and the method of the present invention is advantageous in this respect as well. The method of the present invention will be explained in detail below. Examples of the optically active primary chrysanthemum acids represented by the general formula () which are raw materials of the present invention include primary chrysanthemic acid, methyl primary chrysantheate, ethyl primary chrysantheate, propyl primary chrysantheate, and primary chrysanthemic acid. Butyl, cyclohexyl monochrylate,
Examples include optically active substances such as cyclohexylmethyl monochrylate and benzyl monochrylate. Each of the primary chrysanthemum acids has four isomers, and one of them can be used alone, or a mixture of these in any proportion can be used, and any level of optical purity can be used. However, it goes without saying that, in view of the purpose of the present invention, its significance is exhibited when a (-)-isomer or a carboxylic acid rich in (-)-isomer is used. As the carboxylic acid bromides used in the present invention, carboxylic acid bromides having 1 to 18 carbon atoms are usually used, such as acetyl bromide, propionyl bromide, butyryl bromide, isobutyryl bromide, valeryl bromide, isovaleryl bromide, pivaloyl bromide, hexanoyl bromide, heptanoyl bromide, cyclohexanecarbonyl bromide, octanoyl bromide,
inanoyl bromide, decanoyl bromide, 3-
Aliphatic monocarbonyl bromides such as (2-methylpropenyl)-2,2-dimethylcyclopropane carbonyl bromide, undecanoyl bromide, palmitoyl bromide, stearoyl bromide,
Aliphatic dicarboxylic acid dibromides such as malonyl dibromide, succinyl dibromide, glutaryl dibromide, adipoyl dibromide, pimeloyl dibromide, suberoyl dibromide, azeroyl dibromide, sebacoyl dibromide, benzoyl bromide, Acid bromides of mono- and dicarboxylic acids having aromatic groups such as enylacetyl bromide, phenylpropionyl bromide, phenylbutyryl bromide, naphthalenecarbonyl bromide, phthaloyl dibromide, terephthaloyl dibromide, isophthaloyl dibromide, etc. . Examples of the brominated silicones include lower alkylsilyl bromides such as trimethylsilyl bromide, dimethylsilyl dibromide, methylsilyl tribromide, and triethylsilyl bromide, and silyl tetrabromide. Examples of N-bromo compounds include N-bromo succinimide, N-bromoacetamide, N-bromopropionamide, N-bromobutyramide, and N-bromopareramide. Of these,
Preferably, carboxylic acid bromides are used, more preferably acetyl bromide, propionyl bromide and the like. The amount of these used is usually in the range of 1/1000 to 1/4 mole per mole of the primary chrysanthemum acid to be treated. Examples of peroxides include hydrogen peroxide, t
-butyl hydroperoxide, 1,1,3,
Hydroperoxides produced by oxidation of ethers such as 3-tetramethylbutyl hydroperoxide, tetrahydrofuran and dioxane, hydroperoxides such as kyumene hydroperoxide and diisopropylbenzene hydroperoxide, benzoyl peroxide, and lauroyl. Diacyl peroxides such as peroxide, peroxy esters such as t-butyl perbenzoate, t-butyl peracetate, diisopropyl peroxydicarbonate, dicyclohexyl peroxydicarbonate, ketone peroxide such as methyl ethyl ketone peroxide, cyclohexanone peroxide, etc. Examples include oxides, dialkyl peroxides such as di-t-butyl peroxide and dicumyl peroxide, and peracids such as peracetic acid.
Among these, hydroperoxides, diacyl peroxides, and peroxy esters are preferred. The amount of peroxide used is generally 1/20 to 5 mol, preferably 1/10 to 2 mol, per mol of the bromine compound. Examples of azo compounds include azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 4,4'-
azobis-4-cyanopentanoic acid,
Azonitriles such as 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile and 2-cyano-2-propylazoformamide, azo esters such as methyl azobisisobutyrate and ethyl azobisisobutyrate, and alkylazos such as azo-t-butane. etc. Preferably, azonitriles and azo esters are used. The amount used is generally 1/20 to 5 mol, preferably 1/10 to 2 mol, per 1 mol of the bromine compound. When carrying out the reaction, it is preferable to use an inert solvent, and examples of such solvents include saturated hydrocarbons, aromatic hydrocarbons, their halides, and ethers. Although the reaction temperature depends on the peroxide or azo compound used, it is arbitrary within the range of -20°C to the boiling point of the primary chrysanthemum acid (if a solvent is used, the boiling point), and is usually -20°C to It is 100℃. The time required for the reaction may vary depending on the amount of bromine compound and peroxide or azo compound used and the reaction temperature, but usually several minutes to 10 hours is sufficient to achieve the purpose. When carrying out the method of the present invention, the primary chrysanthemum acids to be treated are usually mixed with a peroxide or an azo compound in the presence of a solvent, and then a bromine compound is added thereto, or This is carried out by dissolving an acid in a solvent and then adding a peroxide or an azo compound and a bromine compound thereto. The degree of progress of the reaction can be determined by sampling a portion of the reaction solution and measuring the optical rotation, or by analysis using gas chromatography or the like. The racemized primary chrysanthemum acids obtained as described above can be converted into insecticidal esters through an esterification reaction with various pyrethroid alcohols. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Levorotatory primary chrysanthemum acids ((+)-cis form 1.8%, (-)
-cis form 17.6%, (+) -trans form 10.1%, (-)
- 10.0g of toluene (consisting of 70.5% trans isomer)
Azobisisobutyronitrile 0.19 dissolved in 20ml
Add 0.18g of acetyl bromide and stir at 80℃.
was dripped. After the reaction, dilute hydrochloric acid was added, stirred, and separated, and the organic layer was extracted twice with 27 g of 10% caustic soda aqueous solution.
The resulting aqueous layer was acidified with hydrochloric acid and extracted twice with toluene. The toluene layer was washed with water, dried over sodium sulfate, the solvent was distilled off under reduced pressure, and the residual liquid was then distilled to obtain 9.34 g of a fraction with a boiling point of 110-119°C/2.5 mmHg.
I got it. This substance was confirmed to be chrysanthemum acid by infrared absorption spectrum. A part of the distillate was induced into (+)-2-octyl ester, and the optical isomer ratio was measured by gas chromatography. As a result, the (+)-cis form was 3.5%;
(-)-cis form 3.5%, (+)-trans form 44.3%,
The (-)-trans form was 48.7%. Example 2 Add 20 g of toluene to 10.0 g of Daiichi Chrysanthemum acid used in Example 1.
ml and 0.58 g of t-butyl perbenzoic acid and heated to 100°C.
A solution of 0.37 g of acetyl bromide in carbon tetrachloride was added dropwise while stirring at the same temperature, and the mixture was stirred for 20 minutes at the same temperature. The same treatment as in Example 1 was carried out to obtain 8.3 g of Daiichi chrysanthemum acid. When a part of the distillate was measured in the same manner as in Example 1 to measure the optical isomer ratio of Daisic Chrysanthemum acid, it was found that the (+)-cis form was 3.4%, the (-)-cis form was 3.6%, and the (+)-cis form was 3.4%. The -trans form was 44.5%, and the (-)-cis form was 48.5%. Example 3 4.00 g of Daishu chrysanthemum acid used in Example 1 was added to toluene.
Azobisisobutyronitrile 98% dissolved in 20.0ml
91 mg of trimethylsilyl bromide was added dropwise while stirring at 80°C. The same treatment as in Example 1 was carried out to obtain 3.68 g of Daiichi chrysanthemum acid. The optical isomer ratio is (+)-cis isomer 3.5%, (-)-
3.5% cis form, 45.4% (+)-trans form, (-)-
The trans form was 47.6%. Example 4 2.00 g of chlorinated chrysanthemum acid used in Example 1 was dissolved in 10.0 ml of chlorobenzene, and 0.23 g of t-butyl perbenzoic acid was dissolved.
g, and 87 mg of trimethylsilyl bromide was added dropwise while stirring at 100°C. The same treatment as in Example 1 was carried out to obtain 1.63 g of Daiichi chrysanthemum acid. The optical isomer ratio is (+)-cis 3.8
%, (-)-cis form 3.6%, (+)-trans form 45.1
%, (-)-trans form was 47.2%. Example 5 2.1 g of Daiichi Chrysanthemum acid used in Example 1 was added to 10 g of toluene.
0.11 g of t-butyl hydroperoxide dissolved in ml
added. Trimethylsilyl bromide 0.19 at 20℃
g was added thereto, and the mixture was stirred at the same temperature for 20 minutes. The same treatment as in Example 1 was carried out to obtain 1.9 g of Daiichi chrysanthemum acid. The optical isomer ratio is (+)-cis 2.1%,
(-)-cis form 2.1%, (+) trans form 46.3%,
The (-)-trans form was 49.5%. Example 6 0.50 g of (-)-cis primary chrysanthemum acid and 47 mg of azobisisobutyronitrile were dissolved in 10 ml of toluene. 80
Add 59 mg of thionyl bromide dropwise while stirring at ℃,
Stir for a minute. The same treatment as in Example 1 was carried out to obtain 0.4 g of Daiichi chrysanthemum acid. The optical isomer ratio is (+)-cis isomer 3.6%,
(-)-cis form 7.1%, (+)-trans form 44.8%,
The (-)-trans form was 44.5%. Example 7 1.0 g of chrysanthemum acid used in Example 1 and 98 mg of azobisisobutyronitrile were dissolved in 10 ml of dioxane.
N-bromsuccinimide with stirring at 80 °C.
0.15g was added and reacted for 20 minutes. After the reaction, 1 g of 40% aqueous sodium hydroxide solution was added, and the solvent was distilled off under reduced pressure. Water and toluene were added to the residue, and extraction was performed to separate the layers. The aqueous layer was neutralized with dilute sulfuric acid, extracted with toluene, and then washed with water.
Next, the organic layer was concentrated and distilled to obtain 0.79g of daisies chrysanthemum acid.
I got it. (Boiling point 110-119℃/2.5mmHg) Optical isomers are (+)-cis 2.1%, (-)-cis 2.1%,
(+)-trans form 40.6%, (-)-trans form 55.2%
It was %. Example 8 1.0 g of chrysanthemum acid used in Example 1 and 98 mg of azobisisobutyronitrile were dissolved in 10 ml of toluene. 80
While stirring at °C, 0.11 g of benzoyl bromide was added dropwise, and the mixture was allowed to react for 20 minutes. Analysis of the optical isomer ratio of this product revealed that the (+)-cis form was 3.3%, the (-)-cis form was 2.4%, and the (+)-cis form was 2.4%.
The trans-isomer accounted for 43.6% and the (-)-trans-isomer accounted for 50.7%. Example 9 2.0 g of chrysanthemum acid used in Example 1 and 0.15 g of azobisisobutyronitrile were dissolved in 20 ml of toluene.
0.25 g of adiboyl dibromide while stirring at 80℃
was added dropwise and allowed to react for 20 minutes. Analysis of the optical isomer ratio of this product revealed that the (+)-cis form was 3.8%, the (-)-cis form was 3.4%, and the (+)-cis form was 3.4%.
The trans-isomer accounted for 43.4% and the (-)-trans-isomer accounted for 49.4%. Example 10 (+)-cis form 1.8%, (-)-cis form 18.3%,
(+)-trans form 11.1%, (-)-trans form 68.8%
% ethyl ester of chrysanthemum acid and 0.27 g of azobisisobutyronitrile in 20 ml of toluene.
dissolved in While stirring at 80°C, 0.38 g of trimethylsilyl bromide was added and reacted for 20 minutes. The reaction solution was washed with a 2% aqueous sodium hydroxide solution, and the solvent was distilled off. Distilled under reduced pressure with the following, boiling point 85-88
2.6 g of distillate at ℃/10 mmHg was obtained. This product was confirmed to be ethyl ester of chrysanthemum acid based on infrared absorption spectrum. The carboxylic acid obtained by hydrolyzing a part of it by a conventional method was converted into an ester with (+)-2-octanol, and the optical isomer ratio was determined by gas chromatography. 3.5%,
(-)-cis form 3.5%, (+)-trans form 43.5%,
The (-)-trans form was 49.5%. Example 11 Ethyl chrysanthemum ester used in Example 10 0.32
g and benzoyl peroxide 50mg to chlorobenzene 10ml
dissolved in 29 mg of acetyl bromide was added at 80°C and reacted for 20 minutes. A part of this material was sampled, hydrolyzed using a conventional method, and the optical isomer ratio was determined: (+)-cis isomer 3.5%, (-)-cis isomer 3.5%, (+)-
The trans isomer was 42.0%, and the (-)-trans isomer was 51.0%.

Claims (1)

【特蚱請求の範囲】  䞀般匏 【化】 匏䞭、は氎玠原子、炭玠数〜20のアルキ
ル基、シクロアルキル基たたはアラルキル基を衚
わし、は䞍斉炭玠を衚わす。 で瀺される光孊掻性第䞀菊酞類に過酞化物もしく
はアゟ化合物の存圚䞋、カルボン酞ブロミド類、
ブロム化ケむ玠類、チオニルブロミド、−ブロ
ム化合物類から遞ばれる少くずも皮の化合物を
䜜甚させるこずを特城ずする光孊掻性第䞀菊酞類
のラセミ化方法。
[Claims] 1 Represented by the general formula: (wherein, R represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, or an aralkyl group, and * represents an asymmetric carbon.) In the presence of a peroxide or an azo compound, carboxylic acid bromides,
A method for racemizing optically active chrysanthemum acids, which comprises reacting with at least one compound selected from silicon bromination, thionyl bromide, and N-bromine compounds.
JP62073355A 1987-03-09 1987-03-26 Racemization of optically active chrysanthemum-monocarboxylic acids Granted JPS63238037A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62073355A JPS63238037A (en) 1987-03-26 1987-03-26 Racemization of optically active chrysanthemum-monocarboxylic acids
EP88301792A EP0282221B1 (en) 1987-03-09 1988-03-01 Method for racemization of optically active chrysanthemic acid or its ester
DE8888301792T DE3867658D1 (en) 1987-03-09 1988-03-01 METHOD FOR RACEMIZING OPTICALLY ACTIVE CHRYSANTHEMUIC ACID OR ITS ESTERS.
HU881122A HU203067B (en) 1987-03-09 1988-03-08 Process for racemization and isomeric transformation of optically active chrysanthemic acid and of its ester
US07/166,014 US4820864A (en) 1987-03-09 1988-03-09 Method for racemization of optically active chrysanthemic acid or its ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073355A JPS63238037A (en) 1987-03-26 1987-03-26 Racemization of optically active chrysanthemum-monocarboxylic acids

Publications (2)

Publication Number Publication Date
JPS63238037A JPS63238037A (en) 1988-10-04
JPH0587057B2 true JPH0587057B2 (en) 1993-12-15

Family

ID=13515774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073355A Granted JPS63238037A (en) 1987-03-09 1987-03-26 Racemization of optically active chrysanthemum-monocarboxylic acids

Country Status (1)

Country Link
JP (1) JPS63238037A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617334B2 (en) * 1987-04-30 1994-03-09 䜏友化孊工業株匏䌚瀟 Method for producing racemic-trans primary chrysanthemic acid

Also Published As

Publication number Publication date
JPS63238037A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
JPH0587057B2 (en)
JPH0586775B2 (en)
EP0165070B1 (en) Method for racemization of chrysanthemic acid or its ester
US4788323A (en) Method for racemization of optically active chrysanthemic acid or its ester
JPH0688933B2 (en) Racemization Method for Optically Active Primary Chrysanthemic Acids
JPH0586941B2 (en)
JP2595682B2 (en) Racemization method for optically active chrysanthemic anhydride
JP2600354B2 (en) Method for producing racemic chrysanthemic acids
JPH0688932B2 (en) Method for racemization of optically active primary chrysanthemic acids
JPH0587058B2 (en)
JPH0531538B2 (en)
JPH0617334B2 (en) Method for producing racemic-trans primary chrysanthemic acid
JP2503585B2 (en) Method for racemizing chrysanthemic acid derivatives
US4820864A (en) Method for racemization of optically active chrysanthemic acid or its ester
JP2517274B2 (en) Method for producing racemic-trans chrysanthemic halide
EP0342843B1 (en) Process for preparing racemic dihalovinylcyclopropane carboxylic acid halides
JP2591084B2 (en) Method for producing racemic dihalovinylcyclopropanecarboxylic acid halide
JPS6361934B2 (en)
JPS63196542A (en) Racemization of optically active chrysanthemum monocarboxylic acids
JPS60174744A (en) Method for racemizing chrysanthemum-monocarboxylic acid derivative
JPS615047A (en) Racemization of chrysanthemum-monocarboxylic acid
JP2000302723A (en) Racemization of dihalovinyl-cyclopropanecarboxylic acids
JPS6352617B2 (en)
JPS615046A (en) Racemization of chrysanthemum-monocarboxylic acid
Suzukamo et al. Lewis acid catalyzed racemization of chrysanthemoyl chloride.