JPH058693B2 - - Google Patents

Info

Publication number
JPH058693B2
JPH058693B2 JP15833785A JP15833785A JPH058693B2 JP H058693 B2 JPH058693 B2 JP H058693B2 JP 15833785 A JP15833785 A JP 15833785A JP 15833785 A JP15833785 A JP 15833785A JP H058693 B2 JPH058693 B2 JP H058693B2
Authority
JP
Japan
Prior art keywords
triethanolamine
distillation
heat treatment
quality
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15833785A
Other languages
Japanese (ja)
Other versions
JPS6219558A (en
Inventor
Harushige Sugawara
Mareo Tokunaga
Yoshitsuru Tanaka
Tadahiro Watanabe
Takashi Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15833785A priority Critical patent/JPS6219558A/en
Publication of JPS6219558A publication Critical patent/JPS6219558A/en
Publication of JPH058693B2 publication Critical patent/JPH058693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、トリエタノールアミンの製造方法
に関する。更に詳しくは無色透明で異臭のない、
酸中和した際に異常な発色をしない、かつ品質の
経時変化が少く安定した、高品質トリエタノール
アミンの製造方法に関する。 〔従来の技術〕 トリエタノールアミンは通常、エチレンオキシ
ドとアンモニア水とを反応させてつくられる。こ
の場合、反応器を出た反応生成物は、未反応のア
ンモニアを分離した後ストリツパーに送り、こゝ
で水分を除去してモノ−、ジ−、およびトリエタ
ノールアミンを含む混合エタノールアミンを得
る。次いでこの混合エタノールアミンを第1蒸留
装置に送り減圧蒸留でモノエタノールアミンを分
離し、その塔底液を第2蒸留装置に送つて減圧蒸
留ジエタノールアミンを分離し、更にその塔底液
を第3蒸留装置に送つて減圧蒸留でトリエタノー
ルアミンを分離する。かくして得られるトリエタ
ノールアミンは普通ジエタノールアミンを4〜10
重量%含んでいるため、更に減圧蒸留で再度ジエ
タノールアミンを分離して精製するか、あるいは
別途第2蒸留装置塔底液を次の蒸留装置に送つて
減圧蒸留で低沸成分を分離し、その塔底液を更に
次の蒸留装置で減圧蒸留して高純度のトリエタノ
ールアミンが製造されている。 〔発明が解決しようとする問題点〕 一方トリエタノールアミンは、脂肪酸アミドや
高級アルキル硫酸エステルとして化粧品、洗剤、
乳化剤などの原料に用いられる。 そのため、高純度であることは勿論、高品質が
要求される。即ち、着色せず、異臭を伴わず、原
料として二次的な反応を行わせる際、例えば無水
酢酸、クエン酸、硫酸、塩酸、リン酸などの有機
酸または無機酸で中和するときに、異常な着色を
示さないものが要求されている。しかし、従来の
製造方法によれば高純度化は可能であるが、着色
および僅かに異臭を伴うことがあり、かつ酸中和
着色が高く、また製造直後は良好でも経時変化が
大きいなど、高品質化は非常に困難であつた。 また従来の製造方法において高純度、高品質化
を達成するためには、低沸留分ならびに高沸留分
の分離を十分に行う必要があり、そのため蒸留塔
還流比を大きくし、且つ分離する留出量または塔
底抜出し量を増やすなどの操作が必要となる。そ
の結果、製品収量は低下し経済性が損われるとい
う問題があつた。 また一般的にトリエタノールアミンは熱劣化を
受けやすく高温で長時間加熱することにより品質
が悪化すると云われており、そのため蒸留精製工
程において熱劣化を極力さけるために種々の考案
がなされている。しかしその結果においても蒸留
留出品の着色や異臭の問題、更には品質や色相の
経時変化等の問題点はまだ完全には解決されてい
ない。 本発明の目的は以上の観点にたつて、無色透明
で異臭のない、酸中和の際に異常な発色をせず、
かつ品質の経時変化が少い、安定した高品質トリ
エタノールアミンの製造方法を提供することにあ
る。 〔問題点を解決するための手段〕 本発明者は、前記問題点を解決するため鋭意研
究を行い、本発明を完成するに至つた。 すなわち、本発明は、 エチレンオキシドとアンモニアとを反応させて
エタノールアミン類を製造する方法において、反
応生成物から未反応物、モノエタノールアミンお
よびジエタノールアミンを分離して得られる粗ト
リエタノールアミンを、ケイ素もしくはアルミニ
ウムの酸化物または水酸化物とアルカリ金属もし
くはアルカリ土類金属の酸化物、水酸化物、炭酸
塩または炭酸水素塩とからなる化合物の存在下
に、酸素をしや断した条件下で温度170〜250℃に
1〜10時間加熱処理した後減圧蒸留することを特
徴とする安定化高品質トリエタノールアミンの製
造方法である。 本発明の方法を更に詳細に説明する。 本発明の粗トリエタノールアミンはエチレンオ
キシドとアンモニアの通常の反応で製造されるエ
タノールアミン類混合物から常法で分離される。 本発明の方法では得られたエタノールアミン類
の生成比率が異つたものであつても何ら差し支え
はない。 反応生成物はまず未反応のアンモニアを分離し
た後、脱水塔に送つて水分を除去し、モノ−、ジ
−、およびトリエタノールアミンを含む混合エタ
ノールアミンを得る。次いでこの混合エタノール
アミンを第1蒸留装置で減圧蒸留でモノエタノー
ルアミンを分離し、その塔底液を第2蒸留装置に
送つて減圧蒸留でジエタノールアミンを分離す
る。本発明においてはこゝで得られる塔底液即ち
粗トリエタノールアミンに所定の添加剤を加えて
加熱処理装置で酸素をしや断した条件下に加熱処
理を行う。 本発明の方法において添加剤として用いられる
化合物は a ケイ素もしくはアルミニウムの酸化物または
水酸化物と b アルカリ金属もしくはアルカリ土類金属の酸
化物、水酸化物、炭酸塩または炭酸水素塩 とからなる化合物であつて、これらの化合物は
a)とb)の化合物からなる複合化合物であつて
も、またa)とb)の混合物であつても差し支え
なく、さらにまたa),b)それぞれの化合物が
1種または2種以上の化合物からなる化合物であ
つても差し支えない。 これらの化合物としては、例えばケイ酸ナトリ
ウム(Na4SiO4)、メタケイ酸カリウム(K2
SiO3)、メタケイ酸カリウムナトリウム
(KNaSiO3)、酸化アルミニウムナトリウム
(AlNaO2)、アルミノケイ酸カリウム(K2O・
Al2O3・6SiO3)、酸化アルミニウムマグネシウム
化合物(2.5MgO・Al2O3・χH20;協和化学工
業商品名=キヨーワード300)などの複酸化物や、
水酸化アルミニウム・炭酸水素ナトリウム(Al
(OH)3・NaHC03;同商品名=キヨーワード
400)、水酸化アルミニウム・水酸化マグネシウ
ム・炭酸マグネシウム(Mg6 Al2(OH)16C03
4H20;同商品名=キヨーワード500)などの複
合化合物が挙げられる。 またカレツト(K2C03/SiO230:70重量%混合
物)は好適に用いられる混合物として挙げられ
る。 これらの添加剤は通常は粉末状のものが使用さ
れる。粒状になると効力がやゝ低下するものの、
しかし添加剤の大きさには特に制限はない。 添加量は通常0.01重量%〜1重量%で好ましく
は0.05重量%〜0.2重量%である。しかしこれ以
上添加しても勿論差し支えない。 添加剤は加熱処理前に添加されるがその方法は
予めエタノールアミン類にといてスラリー状ある
いはペースト状にしてフイードするとか、又は粉
状のまゝで添加するなど処理しようとする粗トリ
エタノールアミンに均一に分散混合する様な形式
であれば特に限定はなく、例えばラインミキシン
グ又はかきまぜ混合槽を設置する等の方法が採用
出来る。 本発明の方法における粗トリエタノールアミン
の加熱処理温度は170〜250℃であつて、加熱温度
が170℃未満では加熱処理に長時間を要し実用的
でなくしかも十分な効果を期待する事ができず、
また250℃を超えると熱分解による生成物が原因
となる新たな着色によりかえつて品質が悪化す
る。 加熱処理時間は1〜10時間であつて、適度な温
度範囲においては加熱処理温度が低ければ加熱時
間を長くし、高ければ短くすることができる。特
に好ましい加熱処理温度は190〜210℃、時間は5
〜2時間である。 操作圧力は加圧、常圧、減圧いずれでも良く、
特に限定はない。 本発明の加熱処理は回分式でも連続式でも実施
できる。 また本発明の方法による加熱処理装置は何ら複
雑な装置を必要とせず、通常の熱交換器またはジ
ヤケツトないし内部コイルを有した加熱釜型のも
のであつて所定時間の滞留時間を保持できるもの
であればよい。しかし連続法による場合、混合フ
ロータイプでは時にシヨートパスにより効果にば
らつきが出る惧れがあるので、プラグフローが望
ましい。また回分式の場合はかきまぜまたはポン
プ循環などにより良好な効果が得られる。 かくして加熱処理を終つた粗トリエタノールア
ミンは第3蒸留装置に送り、減圧蒸留により低沸
点成分の分離およびトリエタノールアミンの精留
を行つて、高品質の精製トリエタノールアミンを
得る。 また回分式加熱処理と回分式蒸留とを組み合わ
せて、例えば次のように実施することも可能であ
る。即ち第2蒸留装置の塔底液を回分式蒸留塔ポ
ツトに供給し、添加剤の所定量を添加したのち、
リボイラーに循環しながら加熱し所定の条件下で
加熱処理後引続き減圧蒸留により低沸点成分を分
離し、次いでトリエタノールアミンを留出分離し
製造することができる。 本発明の方法では更にこれらの加熱処理および
その後の減圧蒸留を、酸素をしや断した条件で行
うことが必要である。本発明の目的を達するため
には加熱処理装置、トリエタノールアミン減圧蒸
留塔ならびに付帯設備は空気のもれ込みを防ぐ事
が肝要であり、かつまたスタートに際しても装置
内は窒素等により十分に置換し酸素ガスを排除し
たのち使用することが必要である。 従来トリエタノールアミンは熱劣化をうけやす
く高温で長時間加熱する事により品質が悪化する
と云われており特に190℃以上の条件下では蒸
留々出品が着色したり、経時的変化が大きいなど
の問題が発生するとされていた。しかし本発明の
方法により酸素との接触を厳密に防止して高温処
理および減圧蒸留して得られるトリエタノールア
ミンはおどろくべき事に無色透明で、異臭を伴わ
ず、かつ酸中和着色が殆どなく、更に経時変化に
よる品質低下が抑制される、安定な高品質のトリ
エタノールアミンである。 〔実施例〕 以下本発明を実施例および比較例により具体的
に説明する。 実施例 1 エタノールアミン製造プラントにおいて、エチ
レンオキシドと30重量%アンモニア水溶液をモル
比1:3、加圧下に反応温度60℃で1時間反応さ
せ、反応液から未反応のアンモニアを除き、次に
脱水して混合エタノールアミンを得、更に減圧蒸
留によりモノエタノールアミンおよびジエタノー
ルアミンを分離して塔底液として得られた、トリ
エタノールアミン94.5重量%および残余はジエタ
ノールアミンと僅かな高沸物より成る粗トリエタ
ノールアミンを、冷却して、窒素シールした容器
に採取、保存して以下の処理の原料として用い
た。 直径3cm、高さ50cmのガラス製ウイドマー蒸留
塔、窒素出入口および窒素用毛細管を備えた1
のガラスフラスコに粗トリエタノールアミン
700gを秤取し、酸化アルミニウムナトリウムの
粉末0.7g(粗トリエタノールアミンに対し0.1重量
%)を添加する。装置内を窒素で置換したのち、
毛細管より小量の窒素を導入しながら加熱を開始
する。設定温度200℃で2時間加熱処理を行い、
加熱を一時中止して放冷し、150℃に至つて減圧
蒸留を開始し、174〜178℃/3mmHgの留分を分
取し、純度98.7重量%のトリエタノールアミン
520gを得た。 この精製トリエタノールアミンにつき色相
(APHA)測定および酸中和着色試験を実施し
た。こゝに色相(APHA)とは分光光度計によ
り蒸留水基準で50m/mのセルを用いて波長
420nmの吸光度を測定し、APHAに換算した値
である。また酸中和着色度とは次の如く行つた値
である。すなわちトリエタノールアミン45gを有
栓三角フラスコに採り水5gを加えてよくかきま
ぜ、次いでリン酸10g、更にプロピレングリコー
ル12.5gを加えよく混合し栓をして75℃の湯浴中
で20分間加温した後分光光度計により蒸留水を基
準とし、20m/mのセルを用いて波長420nmおよ
び530nmにおける吸光度(−logT)を測定して
求めた。(以下同様。) 得られた精トリエタノールアミンの色相
(APHA)は5以下であり、リン酸中和着色度は
420nmで0.012、530nmで0.004であつた。 また臭気は著るしくマイルドであつた。 実施例 2〜3 実施例−1において酸化アルミニウムナトリウ
ムの量を0.35g(粗トリエタノールアミンに対して
0.05重量%)および1.4g(同0.2重量%)に変え、
その他は実施例−1と同様に処理をした。結果を
表−1に示す。 比較例 1 実施例−1において酸化アルミニウムナトリウ
ムを使用せずに、それ以外は実施例−1と同様に
加熱処理および減圧蒸留を行つてトリエタノール
アミンを得た。その結果を、表−1に示す。実施
例−1の結果と比べて色相及び酸中和着色度は劣
つていた。 比較例 2 実施例−1において酸化アルミニウムナトリウ
ムは使用し、加熱処理は行わずに実施例−1と同
様に減圧蒸留してトリエタノールアミンを得た。
その結果を表−1に示す。実施例−1の結果と比
べて色相及び酸中和着色度は劣つていた。 比較例 3 実施例−1において酸化アルミニウムナトリウ
ムを使用せず、また加熱処理も行わずに実施例−
1と同様に減圧蒸留してトリエタノールアミンを
得た。その結果を、実施例−1の結果とも併せて
表−1に示す。実施例−1の結果と比べて色相及
び酸中和着色度は大きく劣つていた。
[Industrial Application Field] This invention relates to a method for producing triethanolamine. In more detail, it is colorless and transparent and has no strange odor.
This invention relates to a method for producing high-quality triethanolamine that does not develop abnormal color upon acid neutralization and is stable with little change in quality over time. [Prior Art] Triethanolamine is usually produced by reacting ethylene oxide and aqueous ammonia. In this case, the reaction product leaving the reactor is sent to a stripper after separating unreacted ammonia, where water is removed to obtain mixed ethanolamine containing mono-, di-, and triethanolamine. . Next, this mixed ethanolamine is sent to a first distillation device to separate monoethanolamine by vacuum distillation, the bottom liquid is sent to a second distillation device to separate vacuum distilled diethanolamine, and the bottom liquid is then subjected to a third distillation. It is sent to a device and triethanolamine is separated by vacuum distillation. The triethanolamine thus obtained usually contains 4 to 10 diethanolamines.
% by weight, so it is necessary to separate and purify diethanolamine again by vacuum distillation, or separately send the bottom liquid of the second distillation unit to the next distillation unit, separate the low-boiling components by vacuum distillation, and then remove the diethanolamine from that column. High purity triethanolamine is produced by further distilling the bottom liquid under reduced pressure using the following distillation apparatus. [Problems to be solved by the invention] On the other hand, triethanolamine is used as fatty acid amide and higher alkyl sulfate ester in cosmetics, detergents,
Used as a raw material for emulsifiers, etc. Therefore, not only high purity but also high quality is required. That is, it is not colored, does not have an unusual odor, and is used as a raw material when performing a secondary reaction, for example, when neutralized with an organic or inorganic acid such as acetic anhydride, citric acid, sulfuric acid, hydrochloric acid, or phosphoric acid. There is a need for something that does not exhibit abnormal coloration. However, although it is possible to achieve high purity using conventional manufacturing methods, it may be accompanied by coloration and a slight off-odor, and the coloring caused by acid neutralization is high, and even though it is good immediately after manufacturing, it changes significantly over time. Quality control was extremely difficult. In addition, in order to achieve high purity and high quality in conventional production methods, it is necessary to sufficiently separate low-boiling fractions and high-boiling fractions, so the reflux ratio of the distillation column is increased and separation is required. Operations such as increasing the amount of distillation or the amount taken out from the bottom are required. As a result, there was a problem in that the product yield decreased and economic efficiency was impaired. In addition, it is generally said that triethanolamine is susceptible to thermal deterioration and its quality deteriorates when heated at high temperatures for long periods of time. Therefore, various ideas have been made to avoid thermal deterioration as much as possible in the distillation purification process. However, even with these results, problems such as coloration and off-odor of distillate products, as well as changes in quality and hue over time, have not yet been completely resolved. In view of the above, the object of the present invention is to be colorless and transparent, have no strange odor, and do not develop abnormal color during acid neutralization.
Another object of the present invention is to provide a method for producing stable high-quality triethanolamine with little change in quality over time. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventor conducted extensive research and completed the present invention. That is, the present invention provides a method for producing ethanolamines by reacting ethylene oxide and ammonia, in which crude triethanolamine obtained by separating unreacted substances, monoethanolamine, and diethanolamine from the reaction product is treated with silicon or In the presence of a compound consisting of an oxide or hydroxide of aluminum and an oxide, hydroxide, carbonate, or hydrogen carbonate of an alkali metal or alkaline earth metal, at a temperature of 170°C under oxygen-free conditions. This is a method for producing stabilized high-quality triethanolamine, which is characterized by heating at ~250°C for 1 to 10 hours and then distilling under reduced pressure. The method of the present invention will be explained in more detail. The crude triethanolamine of this invention is separated in a conventional manner from a mixture of ethanolamines prepared by the conventional reaction of ethylene oxide and ammonia. In the method of the present invention, there is no problem even if the production ratio of the ethanolamines obtained is different. The reaction product is first separated from unreacted ammonia, and then sent to a dehydration tower to remove water to obtain a mixed ethanolamine containing mono-, di-, and triethanolamine. Next, monoethanolamine is separated from this mixed ethanolamine by vacuum distillation in a first distillation device, and the bottom liquid is sent to a second distillation device to separate diethanolamine by vacuum distillation. In the present invention, predetermined additives are added to the bottom liquid obtained here, that is, crude triethanolamine, and heat treatment is performed in a heat treatment apparatus under conditions where oxygen is excluded. The compound used as an additive in the method of the present invention is a compound consisting of a silicon or aluminum oxide or hydroxide and b an alkali metal or alkaline earth metal oxide, hydroxide, carbonate or hydrogen carbonate. These compounds may be a composite compound consisting of the compounds a) and b), or a mixture of a) and b), and each of the compounds a) and b) may be The compound may be composed of one or more kinds of compounds. These compounds include, for example, sodium silicate (Na 4 SiO 4 ), potassium metasilicate (K 2
SiO 3 ), potassium sodium metasilicate (KNaSiO 3 ), sodium aluminum oxide (AlNaO 2 ), potassium aluminosilicate (K 2 O.
Al 2 O 3・6SiO 3 ), double oxides such as aluminum magnesium oxide compound (2.5MgO ・Al 2 O 3・χH 2 0; Kyowa Chemical Industry product name = Kyoword 300),
Aluminum hydroxide/sodium hydrogen carbonate (Al
(OH) 3・NaHC0 3 ;Same product name=Kiyoword
400), aluminum hydroxide, magnesium hydroxide, magnesium carbonate (Mg 6 Al 2 (OH) 16 C0 3 ,
Examples include complex compounds such as 4H 2 0 (same trade name = Kyoward 500). Further, cullet (K 2 C0 3 /SiO 2 30:70% by weight mixture) is mentioned as a suitably used mixture. These additives are usually used in powder form. Although the efficacy decreases slightly when it becomes granular,
However, there are no particular restrictions on the size of the additive. The amount added is usually 0.01% to 1% by weight, preferably 0.05% to 0.2% by weight. However, it is of course possible to add more than this. Additives are added before heat treatment, but the method is to dissolve the crude triethanolamine in ethanolamine in advance and feed it in the form of a slurry or paste, or add it in powder form. There is no particular limitation as long as the method allows uniform dispersion and mixing, and for example, methods such as line mixing or installing a stirring mixing tank can be adopted. The heat treatment temperature of crude triethanolamine in the method of the present invention is 170 to 250°C, and if the heating temperature is less than 170°C, the heat treatment will take a long time and will not be practical and may not produce sufficient effects. I can't do it,
Moreover, when the temperature exceeds 250°C, the quality deteriorates due to new coloration caused by products of thermal decomposition. The heat treatment time is 1 to 10 hours, and within an appropriate temperature range, the heating time can be lengthened if the heat treatment temperature is low, and shortened if it is high. Particularly preferable heat treatment temperature is 190 to 210℃, time is 5
~2 hours. The operating pressure can be pressurized, normal pressure, or reduced pressure.
There are no particular limitations. The heat treatment of the present invention can be carried out either batchwise or continuously. Further, the heat treatment apparatus according to the method of the present invention does not require any complicated equipment; it is a heating pot type having an ordinary heat exchanger or jacket or internal coil, and is capable of maintaining a predetermined residence time. Good to have. However, when using a continuous method, plug flow is preferable because mixed flow types may sometimes produce variations in effectiveness due to shot passes. In addition, in the case of batch type, good effects can be obtained by stirring or pump circulation. The crude triethanolamine that has been heat-treated in this way is sent to a third distillation device, where low-boiling components are separated and triethanolamine is rectified by vacuum distillation to obtain purified triethanolamine of high quality. It is also possible to combine batch heat treatment and batch distillation, for example, as follows. That is, after supplying the bottom liquid of the second distillation apparatus to the batch distillation column pot and adding a predetermined amount of additive,
The product can be produced by heating it while being circulated through a reboiler, and after heat treatment under predetermined conditions, low-boiling components are separated by distillation under reduced pressure, and then triethanolamine is distilled off. In the method of the present invention, it is further necessary to carry out these heat treatments and the subsequent vacuum distillation under conditions where oxygen is excluded. In order to achieve the purpose of the present invention, it is important to prevent air from leaking into the heat treatment equipment, triethanolamine vacuum distillation column, and ancillary equipment, and also to ensure that the inside of the equipment is sufficiently purged with nitrogen, etc. at the time of startup. It is necessary to use the product after removing oxygen gas. Conventionally, triethanolamine is susceptible to thermal deterioration, and it is said that the quality deteriorates when heated at high temperatures for long periods of time.In particular, under conditions of 190℃ or higher, there are problems such as discoloration of distillate products and large changes over time. was believed to occur. However, the triethanolamine obtained by the method of the present invention through high-temperature treatment and vacuum distillation while strictly preventing contact with oxygen is surprisingly colorless and transparent, has no off-odor, and has almost no acid-neutralized coloration. Furthermore, it is a stable, high-quality triethanolamine that suppresses quality deterioration due to changes over time. [Examples] The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 In an ethanolamine production plant, ethylene oxide and a 30% by weight ammonia aqueous solution were reacted at a molar ratio of 1:3 under pressure at a reaction temperature of 60°C for 1 hour, unreacted ammonia was removed from the reaction solution, and then dehydrated. A mixture of ethanolamine was obtained by distillation under reduced pressure, and monoethanolamine and diethanolamine were separated by vacuum distillation to obtain crude triethanolamine as a column bottom liquid, consisting of 94.5% by weight of triethanolamine and the remainder consisting of diethanolamine and a few high-boiling substances. was cooled, collected and stored in a nitrogen-sealed container, and used as a raw material for the following treatment. Glass Widmer distillation column with a diameter of 3 cm and a height of 50 cm, equipped with a nitrogen inlet/outlet and a capillary tube for nitrogen.
Crude triethanolamine in a glass flask
Weigh out 700 g and add 0.7 g of sodium aluminum oxide powder (0.1% by weight based on crude triethanolamine). After replacing the inside of the device with nitrogen,
Heating is started while introducing a small amount of nitrogen through a capillary tube. Heat treatment is performed for 2 hours at a set temperature of 200℃,
Heating was temporarily stopped and allowed to cool, and when the temperature reached 150°C, vacuum distillation was started, and the fraction at 174-178°C/3 mmHg was collected, and triethanolamine with a purity of 98.7% by weight was obtained.
Got 520g. This purified triethanolamine was subjected to hue (APHA) measurement and acid neutralization coloring test. Hue (APHA) is the wavelength determined by a spectrophotometer using a 50m/m cell based on distilled water.
This is the value calculated by measuring the absorbance at 420 nm and converting it to APHA. Further, the acid neutralization coloring degree is a value determined as follows. That is, put 45 g of triethanolamine in a stoppered Erlenmeyer flask, add 5 g of water, stir well, then add 10 g of phosphoric acid and 12.5 g of propylene glycol, mix well, stopper, and heat in a 75°C water bath for 20 minutes. After that, the absorbance (-logT) was determined using a spectrophotometer at wavelengths of 420 nm and 530 nm using a 20 m/m cell using distilled water as a reference. (The same applies hereinafter.) The hue (APHA) of the obtained purified triethanolamine is 5 or less, and the degree of coloration due to phosphoric acid neutralization is
It was 0.012 at 420 nm and 0.004 at 530 nm. Moreover, the odor was noticeably mild. Examples 2-3 In Example-1, the amount of sodium aluminum oxide was 0.35g (based on crude triethanolamine).
0.05% by weight) and 1.4g (0.2% by weight),
The rest was treated in the same manner as in Example-1. The results are shown in Table-1. Comparative Example 1 Triethanolamine was obtained by performing heat treatment and vacuum distillation in the same manner as in Example-1, except that sodium aluminum oxide was not used in Example-1. The results are shown in Table-1. Compared to the results of Example-1, the hue and degree of acid neutralization coloring were inferior. Comparative Example 2 In Example-1, sodium aluminum oxide was used, but triethanolamine was obtained by vacuum distillation in the same manner as in Example-1 without heat treatment.
The results are shown in Table-1. Compared to the results of Example-1, the hue and degree of acid neutralization coloring were inferior. Comparative Example 3 Example-1 was prepared without using sodium aluminum oxide and without heat treatment.
Triethanolamine was obtained by distillation under reduced pressure in the same manner as in 1. The results are shown in Table 1 together with the results of Example 1. Compared to the results of Example-1, the hue and degree of acid neutralization coloring were significantly inferior.

【表】 実施例 4〜7 実施例−1と同様の方法で添加剤のみをかえて
同様に処理した。結果を表−2に示す。 実施例 8〜10 実施例−1と同様の方法で添加剤としてケイ酸
カリウムナトリウム0.1重量%を添加し、加熱処
理温度を190,200および210℃にかえて同様に処
理した。結果を表−3に示す。
[Table] Examples 4 to 7 The samples were treated in the same manner as in Example 1, except that only the additives were changed. The results are shown in Table-2. Examples 8 to 10 The same process as in Example 1 was carried out except that 0.1% by weight of potassium sodium silicate was added as an additive and the heat treatment temperature was changed to 190, 200 and 210°C. The results are shown in Table-3.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、無色透明で異臭を伴な
わず、かつ酸中和時における着色を殆んど認めな
い、更に経時的変化による品質低下の抑制され
た、安定な高品質トリエタノールアミンを容易に
且つ経済的に製造することが出来る。
According to the method of the present invention, stable, high-quality triethanolamine is colorless and transparent, has no off-odor, shows almost no coloring during acid neutralization, and suppresses quality deterioration due to changes over time. can be manufactured easily and economically.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 エチレンオキシドとアンモニアとを反応させ
てエタノールアミン類を製造する方法において、
反応生成物から未反応物、モノエタノールアミン
およびジエタノールアミンを分離して得られる粗
トリエタノールアミンを、ケイ素もしくはアルミ
ニウムの酸化物または水酸化物とアルカリ金属も
しくはアルカリ土類金属の酸化物、水酸化物、炭
酸塩または炭酸水素塩とからなる化合物の存在下
に、酸素をしや断した条件下で温度170〜250℃に
1〜10時間加熱処理した後減圧蒸留することを特
徴とする安定化高品質トリエタノールアミンの製
造方法。
1. In a method for producing ethanolamines by reacting ethylene oxide and ammonia,
Crude triethanolamine obtained by separating unreacted substances, monoethanolamine and diethanolamine from the reaction product, is converted into oxides or hydroxides of silicon or aluminum and oxides or hydroxides of alkali metals or alkaline earth metals. , carbonate or hydrogen carbonate, heat-treated at a temperature of 170 to 250°C for 1 to 10 hours in the absence of oxygen, and then distilled under reduced pressure. How to produce quality triethanolamine.
JP15833785A 1985-07-19 1985-07-19 Production of stabilized triethanolamine of high quality Granted JPS6219558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15833785A JPS6219558A (en) 1985-07-19 1985-07-19 Production of stabilized triethanolamine of high quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15833785A JPS6219558A (en) 1985-07-19 1985-07-19 Production of stabilized triethanolamine of high quality

Publications (2)

Publication Number Publication Date
JPS6219558A JPS6219558A (en) 1987-01-28
JPH058693B2 true JPH058693B2 (en) 1993-02-02

Family

ID=15669428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15833785A Granted JPS6219558A (en) 1985-07-19 1985-07-19 Production of stabilized triethanolamine of high quality

Country Status (1)

Country Link
JP (1) JPS6219558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443036B2 (en) 2003-02-03 2018-06-27 Nippon Shokubai Co., Ltd. Process for producing high purity trialkanolamine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011942A1 (en) * 2000-03-11 2001-09-13 Basf Ag Decolorization of alkanolamines, useful in cosmetics industry e.g. in soap, washing agent or shampoo, or as dispersant or emulsifier, uses phosphorous or hypophosphorous acid or compound in heat treatment and distillation
DE10346779A1 (en) * 2003-10-08 2005-05-12 Basf Ag Process for the separation of triethanolamine from a mixture obtained by the reaction of ammonia with ethylene oxide
WO2005107423A2 (en) * 2004-05-06 2005-11-17 The Procter & Gamble Company Process and method for treating alkylamines
DE102004044091A1 (en) * 2004-09-09 2006-03-16 Basf Ag Process for the preparation of triethanolamine
US8466323B2 (en) 2008-12-19 2013-06-18 Basf Se Process for preparing pure triethanolamine (TEOA)
EP2513037B1 (en) * 2009-12-17 2014-04-02 Basf Se Method for producing higher ethanolamines
CN103724214B (en) * 2014-01-22 2016-01-20 湖北葛店人福药用辅料有限责任公司 The purification process of pharmaceutical grade trolamine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443036B2 (en) 2003-02-03 2018-06-27 Nippon Shokubai Co., Ltd. Process for producing high purity trialkanolamine

Also Published As

Publication number Publication date
JPS6219558A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
TWI453181B (en) Process for preparing pure triethanolamine (teoa)
EP1443036B2 (en) Process for producing high purity trialkanolamine
JP4294875B2 (en) Method for purifying triethanolamine
JPH058693B2 (en)
US7411079B2 (en) Synthesis of ester linked long chain alkyl moieties
CN106518675B (en) The method for producing dimethyl oxalate and by-product dimethyl carbonate
EP1700839B1 (en) Production of carboxylic acids or carboxylic acid esters
CN113292491B (en) Preparation method of anti-aging agent AW
JP5305036B2 (en) Method for producing dimethyl ether
JP5044947B2 (en) Method for producing carboxylic acid or carboxylic acid ester
CN102786403B (en) Preparation method for 4-tertiary butyl-4'-methoxy dibenzoyl methane
CN1031706C (en) Process for producing antioxidant
JPH058692B2 (en)
CN111689858B (en) Method for preparing ethyl chloroformate
CN100579955C (en) Process for the manufacture of N-alkoxyoxaloalaninate
CN102432510B (en) Synthetic method of dimethyl cysteamine hydrochloride
CN109704958B (en) Method for preparing ethyl butyrate and catalyst used in method
EP0919537B1 (en) Process for producing aliphatic amine derivative
CN101723842A (en) Method for preparing ethylene diamine tetraacetic acid (EDTA) disodium salt
CN101485999B (en) Lewis acid catalyst as well as preparation method and application thereof in technique for producing acetylacetone by isopropenyl acetate displacement method
CN1031993C (en) Method for separating unsaponifiables from organic acid
CN102766051A (en) Method for preparing benzyl benzoate by oxidizing dibenzyl ether
KR100540822B1 (en) Purification Method for Isobutyric Acid
CN101024598B (en) Method for preparing alkanediol and alkanetriol with ortho-diol group
CN116693390A (en) Composition of cetostearyl alcohol and fatty acid, and preparation method and application thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term