JPH058692B2 - - Google Patents

Info

Publication number
JPH058692B2
JPH058692B2 JP14392185A JP14392185A JPH058692B2 JP H058692 B2 JPH058692 B2 JP H058692B2 JP 14392185 A JP14392185 A JP 14392185A JP 14392185 A JP14392185 A JP 14392185A JP H058692 B2 JPH058692 B2 JP H058692B2
Authority
JP
Japan
Prior art keywords
triethanolamine
distillation
coloring
heat treatment
vacuum distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14392185A
Other languages
Japanese (ja)
Other versions
JPS625939A (en
Inventor
Harushige Sugawara
Mareo Tokunaga
Yoshitsuru Tanaka
Tadahiro Watanabe
Takashi Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP14392185A priority Critical patent/JPS625939A/en
Publication of JPS625939A publication Critical patent/JPS625939A/en
Publication of JPH058692B2 publication Critical patent/JPH058692B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、トリエタノールアミンの製造方法
に関する。更に詳しくは有機または無機酸により
中和した際に異常な発色をしないトリエタノール
アミンの製造方法に関する。 〔従来の技術〕 トリエタノールアミンは通常、エチレンオキシ
ドとアンモニア水とを反応させてつくられる。こ
の場合、反応器を出た反応生成物は、未反応のア
ンモニアを分離した後ストリツパーに送り、こゝ
で水分を除去してモノ−、ジ−、およびトリエタ
ノールアミンを含む混合エタノールアミンを得
る。次いでこの混合エタノールアミンを第1蒸留
装置に送り減圧蒸留でモノエタノールアミンを分
離し、その塔底液を第2蒸留装置に送つて減圧蒸
留でジエタノールアミンを分離し、更にその塔底
液を第3蒸留装置に送つて減圧蒸留でトリエタノ
ールアミンを分離する。かくして得られるトリエ
タノールアミンは普通ジエタノールアミンを4〜
10重量%含んでいるため、更に減圧蒸留で再度ジ
エタノールアミンを分離して精製するか、あるい
は別途第2蒸留装置塔底液を次の蒸留装置に送つ
て減圧蒸留で低沸成分を分離し、その塔底液を更
に次の蒸留装置で減圧蒸留して高純度のトリエタ
ノールアミンが製造されている。 〔発明が解決しようとする問題点〕 一方トリエタノールアミンは、脂肪酸アミドや
高級アルキル硫酸エステルとして化粧品、洗剤、
乳化剤などの原料に用いられる。 そのため、高純度が要求されるのは勿論、使用
に際し二次的な反応を行わせる際、例えば無水酢
酸、クエン酸、硫酸、塩酸、リン酸などの有機酸
また無機酸で中和するときに、異常な着色を示さ
ないものが要求されている。しかし、従来の製造
方法によれば高純度化は可能であるが、色相なら
びに酸着色が高くなる傾向にあり、また製造時に
は低くても経時変化が大きいなど、高品質化は非
常に困難であつた。また従来の製造方法において
高純度、高品質化を達成するためには、低沸留分
ならびに高沸留分の分離を十分に行う必要があ
り、そのため蒸留塔還流比を大きくし、且つ分離
する留出量または塔底抜出し量を増やすなどの操
作が必要となる。その結果、製品収量は低下し経
済性において不利となるうえにそのわりに酸中和
着色の改善効果は得られなかつた。 このため酸中和の際に着色の少ない高純度トリ
エタノールアミンの製造方法として種々の方法が
提案されている。例えば特公昭41−13978におい
ては蒸留により得られるトリエタノールアミン
に、アルカリボロハイドライドを添加混合して処
理することによつて色相ならびにクエン酸着色を
長期に渡つて防ぐ方法が開示されているが、添加
剤が高価であり、更に少量の添加では処理直後の
色相やクエン酸着色の改善効果は認められるが、
効果に持続性がなく経時変化を防ぐためには添加
量を多くする必要があつて製品コストが高くなる
難点がある。 更に、特開昭56−2942においては、減圧蒸留に
よつてトリエタノールアミンを留出させた後すみ
やかに25〜100℃の温度で酸素含有ガスと接触さ
せることにより酸中和の際に着色することを防止
する方法が開示されている。 しかしこの方法では酸中和着色のうち、無水酢
酸、硫酸などによる着色度の減少効果はあるもの
リン酸に対する効果は十分でなくまた通常色相は
逆に悪化する等の欠点を有している。 本発明の目的は以上の観点にたつて、酸中和の
際に着色の少い高純度のトリエタノールアミンの
製造方法を提供することにある。 〔問題点を解決するための手段〕 本発明者は、前記問題点を解決するため鋭意研
究を行い、本発明を完成するに至つた。 すなわち、本発明は、 エチレンオキシドとアンモニアとを反応させて
エタノールアミン類を製造する方法において、反
応生成物から未反応物を、モノエタノールアミン
およびジエタノールアミンを分離して得られる粗
トリエタノールアミンを、酸素をしや断した条件
下に温度170〜250℃で1〜10時間加熱処理した後
減圧蒸留することを特徴とする酸中和の際に着色
することのないトリエタノールアミンの製造方法
である。 本発明の方法を更に詳細に説明する。 本発明の粗トリエタノールアミンはエチレンオ
キシドとアンモニアの通常の反応で製造されるエ
タノールアミン類混合物から常法で分離される。 本発明の方法では得られたエタノールアミン類
の生成比率が異つたものであつても何ら差し支え
はない。 反応生成物はまず未反応のアンモニアを分離し
た後、脱水塔に送つて水分を除去し、モノ−、ジ
−、およびトリエタノールアミンを含む混合エタ
ノールアミンを得る。次いでこの混合エタノール
アミンを第1蒸留装置で減圧蒸留でモノエタノー
ルアミンを分離し、その塔底液を第2蒸留装置に
送つて減圧蒸留でジエタノールアミンを分離す
る。本発明においてはこゝで得られる塔底液即ち
粗トリエタノールアミンを加熱処理装置に供給し
加熱処理を行う。 本発明の方法における粗トリエタノールアミン
の加熱処理温度は170〜250℃であつて、加熱温度
が170℃未満では加熱処理に長時間を要し実用的
でなくしかも十分な効果を期待する事ができず、
また250℃を超えると熱分解による生成物が原因
となる新たな着色によりかえつて品質が悪化す
る。 加熱処理時間は1〜10時間であつて、適度な温
度範囲においては加熱処理温度が低ければ加熱時
間を長くし、高ければ短くすることができる。特
に好ましい加熱処理温度は190〜210℃、時間は5
〜2時間である。 操作圧力は加圧、常圧、減圧いずれでも良く、
特に限定はない。 本発明の加熱処理は回分式でも連続式でも実施
できる。 また本発明の方法による加熱処理装置は何ら複
雑な装置を必要とせず、通常の熱交換器またはジ
ヤケツトないし内部コイルを有した加熱釜型のも
のであつて所定時間の滞留時間を保持できるもの
であればよい。しかし連続法による場合、混合フ
ロータイプでは時にシヨートパスにより効果にば
らつきが出る惧れがあるので、プラグフローが望
ましい。また回分式の場合はかきまぜまたはポン
プ循環などにより良好な効果が得られる。 かくして加熱処理を終つた粗トリエタノールア
ミンは第3蒸留装置に送り、減圧蒸留により高品
質の精製トリエタノールアミンを得る。 また回分式加熱処理と回分式蒸留とを組み合わ
せて、例えば次のように実施することも可能であ
る。即ち第2蒸留装置の塔底液を回分式蒸留塔ポ
ツトに供給し、リボイラーに循環しながら加熱し
所定の条件下で加熱処理後引続き減圧蒸留により
低沸点成分を分離し、次いでトリエタノールアミ
ンを留出分離し製造することができる。 本発明の方法では更にこれらの加熱処理および
その後の減圧蒸留を、酸素をしや断した条件で行
うことが必要である。本発明の目的を達するため
には加熱処理装置、トリエタノールアミン減圧蒸
留塔ならびに付帯設備は空気のもれ込みを防ぐ事
が肝要であり、かつまたスタートに際しても装置
内は窒素等により十分に置換し酸素ガスを排除し
たのち使用することが必要である。 従来トリエタノールアミンは熱劣化をうけやす
く高温で長時間加熱する事により品質が悪化する
と云われており特に190℃以上の条件下では蒸
留々出品が着色したり、経時的変化が大きいなど
の問題が発生するとされていた。しかし本発明の
方法により酸素との接触を厳密に防止して高温処
理および減圧蒸留して得られるトリエタノールア
ミンはおどろくべき事に色相が良好で、酸中和着
色が殆どなく、更に経時変化も小さい高品質のト
リエタノールアミンである。 〔実施例〕 以下本発明を実施例および比較例により具体的
に説明する。 実施例 1 エタノールアミン製造プラントにおいて、エチ
レンオキシドと30重量%アンモニア水溶液をモル
比1:3、加圧下に反応温度60℃で反応させ、反
応液から未反応のアンモニアを除き、次に脱水し
て混合エタノールアミンを得、更に減圧蒸留によ
りモノエタノールアミンおよびジエタノールアミ
ンを分離して塔底液として得られた、トリエタノ
ールアミン95〜96重量%および残余はジエタノー
ルアミンと僅かな高沸物より成る粗トリエタノー
ルアミンを、以下の処理の原料として用いた。 加熱処理装置は窒素出入口とかきまぜ機を備え
た容量2のステンレス製オートクレーブ、蒸留
装置は直径3cm、高さ50cmのガラス製ウイドマー
塔、窒素出入口および窒素用毛細管を備えた2
のガラスフラスコを用い、オートクレーブと減圧
蒸留装置は導管で直結して加熱処理後の粗トリエ
タノールアミンは窒素圧によりオートクレーブか
ら減圧蒸留装置に空気に触れることなく移送でき
る様にした。 オートクレーブは窒素で置換して酸素を排除し
た後、上記粗トリエタノールアミン1Kgを装入し
た。更に窒素置換して酸素を排除し、窒素で0.2
Kg/cm2Gに加圧した後、かきまぜながら190℃に
5時間加熱した。加熱処理後が終つた液は空気に
ふれないように窒素圧送でオートクレーブから蒸
留装置に移送した。次いで減圧で蒸留して175〜
178℃/3mmHgの留分を分取し、純度98.7%のト
リエタノールアミン850gが得られた。この精製
トリエタノールアミンにつき色相(APHA)測
定およびリン酸中和着色試験を実施した。こゝに
色相(APHA)とは分光光度計により蒸留水基
準で波長420nmの吸光度を測定し、APHAに換
算した値である。またリン酸中和着色とは次の如
く行つた値である。すなわちトリエタノールアミ
ン45gを有栓三角フラスコに採り水5gを加えてか
きまぜ、次いでリン酸10g、更にプロピレングリ
コール12.5gを加え良く混合し栓をして75℃の湯
浴中で20分間加温した後分光光度計により蒸留水
を基準として波長420nmおよび530nmにおける吸
光度(−logT)を測定して求めた。(以下同様。) 得られた精トリエタノールアミンの色相
(APHA)は10>であり、リン酸中和着色は
420nmで0.015,530nmで0.008であつた。 比較例 1 実施例−1において粗トリエタノールアミンの
加熱処理を行わずに、減圧蒸留のみを同様に行つ
て精トリエタノールアミンを得た。その色相は
30、リン酸中和着色は420mmで0.042,530nmで
0.027であつて、実施例−1の精トリエタノール
アミンに比べていずれも大きく劣つていた。 実施例2〜10および比較例2 実施例−1において加熱温度と加熱時間をかえ
た以外は実施例−1と同様にして実施例−2〜10
を行つた。 表−1および−2に処理条件と、得られた精ト
リエタノールアミンの色相、リン酸中和着色、無
水酢酸中和着色および硫酸中和着色の結果を、実
施例−1、比較例−1の結果と併せて表記する。
また比較例−1と同様に比較例−2を行つて得ら
れた精トリエタノールアミンの酸中和着色結果を
表−2に示す。 なおこゝに無水酢酸中和着色とは、トリエタノ
ールアミン30gに無水酢酸1mlを加え80℃で30分
間保持した後分光光度計を用い蒸留水を標準とし
て波長530nmおよび445nmにおける吸光度(−
logT)を測定して求めた値であり、硫酸中和着
色とはトリエタノールアミンを蒸留水で1:1
(容量比)に稀釈し、これを62重量%硫酸により
PHメーターを用いてPH6.5に中和した後、分光光
度計により蒸留水を基準として波長445nmおよび
580nmにおける吸光度(−logT)を測定して求
めた値である。
[Industrial Application Field] This invention relates to a method for producing triethanolamine. More specifically, the present invention relates to a method for producing triethanolamine that does not develop an abnormal color when neutralized with an organic or inorganic acid. [Prior Art] Triethanolamine is usually produced by reacting ethylene oxide and aqueous ammonia. In this case, the reaction product leaving the reactor is sent to a stripper after separating unreacted ammonia, where water is removed to obtain mixed ethanolamine containing mono-, di-, and triethanolamine. . Next, this mixed ethanolamine is sent to a first distillation device to separate monoethanolamine by vacuum distillation, the bottom liquid is sent to a second distillation device to separate diethanolamine by vacuum distillation, and the bottom liquid is sent to a third distillation device. It is sent to a distillation device and triethanolamine is separated by vacuum distillation. The triethanolamine thus obtained usually contains diethanolamine in 4-
Since it contains 10% by weight, it is necessary to separate and purify diethanolamine again by vacuum distillation, or separately send the bottom liquid of the second distillation unit to the next distillation unit and separate the low-boiling components by vacuum distillation. High purity triethanolamine is produced by further distilling the bottom liquid under reduced pressure using the following distillation apparatus. [Problems to be solved by the invention] On the other hand, triethanolamine is used as fatty acid amide and higher alkyl sulfate ester in cosmetics, detergents,
Used as a raw material for emulsifiers, etc. Therefore, not only high purity is required, but also when performing secondary reactions during use, for example, when neutralizing with organic or inorganic acids such as acetic anhydride, citric acid, sulfuric acid, hydrochloric acid, and phosphoric acid. , those that do not exhibit abnormal coloring are required. However, although it is possible to achieve high purity using conventional manufacturing methods, it is extremely difficult to achieve high quality, as the hue and acid coloring tend to be high, and even if the manufacturing method is low, changes over time are large. Ta. In addition, in order to achieve high purity and high quality in conventional production methods, it is necessary to sufficiently separate low-boiling fractions and high-boiling fractions, so the reflux ratio of the distillation column is increased and separation is required. Operations such as increasing the amount of distillation or the amount taken out from the bottom are required. As a result, the yield of the product was reduced, which was disadvantageous in terms of economy, and on the other hand, the effect of improving acid neutralization coloration was not obtained. For this reason, various methods have been proposed as methods for producing highly purified triethanolamine with little coloring during acid neutralization. For example, Japanese Patent Publication No. 41-13978 discloses a method for long-term prevention of hue and citric acid coloring by adding and mixing alkali borohydride to triethanolamine obtained by distillation. Additives are expensive, and when added in small amounts, the effect of improving the hue and citric acid coloring immediately after treatment is recognized;
The problem is that the effect is not sustainable, and in order to prevent changes over time, it is necessary to increase the amount added, which increases the product cost. Furthermore, in JP-A-56-2942, after triethanolamine is distilled out by vacuum distillation, it is immediately brought into contact with an oxygen-containing gas at a temperature of 25 to 100°C to color it during acid neutralization. A method for preventing this is disclosed. However, this method has the disadvantage that, among acid-neutralized coloring, acetic anhydride, sulfuric acid, etc. have the effect of reducing the degree of coloring, but the effect against phosphoric acid is not sufficient, and the hue usually worsens. In view of the above, an object of the present invention is to provide a method for producing highly pure triethanolamine that is less colored during acid neutralization. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventor conducted extensive research and completed the present invention. That is, the present invention provides a method for producing ethanolamines by reacting ethylene oxide and ammonia, in which crude triethanolamine obtained by separating unreacted substances from the reaction product and monoethanolamine and diethanolamine is treated with oxygen. This is a method for producing triethanolamine that does not become colored during acid neutralization, which is characterized by carrying out a heat treatment at a temperature of 170 to 250° C. for 1 to 10 hours under conditions where the acid is inactive, followed by distillation under reduced pressure. The method of the present invention will be explained in more detail. The crude triethanolamine of this invention is separated in a conventional manner from a mixture of ethanolamines prepared by the conventional reaction of ethylene oxide and ammonia. In the method of the present invention, there is no problem even if the production ratio of the ethanolamines obtained is different. The reaction product is first separated from unreacted ammonia, and then sent to a dehydration tower to remove water to obtain a mixed ethanolamine containing mono-, di-, and triethanolamine. Next, monoethanolamine is separated from this mixed ethanolamine by vacuum distillation in a first distillation device, and the bottom liquid is sent to a second distillation device to separate diethanolamine by vacuum distillation. In the present invention, the bottom liquid obtained here, that is, crude triethanolamine, is supplied to a heat treatment apparatus and subjected to heat treatment. The heat treatment temperature of crude triethanolamine in the method of the present invention is 170 to 250°C, and if the heating temperature is less than 170°C, the heat treatment will take a long time and will not be practical and may not produce sufficient effects. I can't do it,
Moreover, when the temperature exceeds 250°C, the quality deteriorates due to new coloring caused by products of thermal decomposition. The heat treatment time is 1 to 10 hours, and within an appropriate temperature range, the heating time can be lengthened if the heat treatment temperature is low, and shortened if it is high. Particularly preferable heat treatment temperature is 190 to 210℃, time is 5
~2 hours. The operating pressure can be pressurized, normal pressure, or reduced pressure.
There are no particular limitations. The heat treatment of the present invention can be carried out either batchwise or continuously. Further, the heat treatment apparatus according to the method of the present invention does not require any complicated equipment; it is a heating pot type having an ordinary heat exchanger or jacket or internal coil, and is capable of maintaining a predetermined residence time. Good to have. However, when using a continuous method, plug flow is preferable because mixed flow types may sometimes produce variations in effectiveness due to shot passes. In addition, in the case of batch type, good effects can be obtained by stirring or pump circulation. The crude triethanolamine that has been heat-treated in this way is sent to a third distillation device, and purified triethanolamine of high quality is obtained by distillation under reduced pressure. It is also possible to combine batch heat treatment and batch distillation, for example, as follows. That is, the bottom liquid of the second distillation apparatus is supplied to the batch distillation column pot, heated while being circulated to the reboiler, and after heat treatment under predetermined conditions, low boiling point components are separated by vacuum distillation, and then triethanolamine is separated. It can be produced by distillation and separation. In the method of the present invention, it is further necessary to carry out these heat treatments and the subsequent vacuum distillation under conditions where oxygen is excluded. In order to achieve the purpose of the present invention, it is important to prevent air from leaking into the heat treatment equipment, triethanolamine vacuum distillation column, and ancillary equipment, and also to ensure that the inside of the equipment is sufficiently purged with nitrogen, etc. at the time of startup. It is necessary to use the product after removing oxygen gas. Conventionally, triethanolamine is susceptible to thermal deterioration, and it is said that the quality deteriorates when heated at high temperatures for long periods of time.In particular, under conditions of 190℃ or higher, there are problems such as discoloration of distillate products and large changes over time. was believed to occur. However, the triethanolamine obtained by the method of the present invention through high temperature treatment and vacuum distillation while strictly preventing contact with oxygen surprisingly has a good color, almost no acid neutralization coloring, and also shows no change over time. It is a small high quality triethanolamine. [Examples] The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 In an ethanolamine production plant, ethylene oxide and a 30% by weight ammonia aqueous solution were reacted at a molar ratio of 1:3 under pressure at a reaction temperature of 60°C, unreacted ammonia was removed from the reaction solution, and then dehydrated and mixed. Ethanolamine was obtained, and then monoethanolamine and diethanolamine were separated by vacuum distillation to obtain crude triethanolamine as a column bottom liquid, consisting of 95-96% by weight of triethanolamine and the remainder being diethanolamine and a few high-boiling substances. was used as a raw material for the following treatment. The heat treatment equipment is a stainless steel autoclave with a capacity of 2 equipped with a nitrogen inlet/outlet and a stirrer, and the distillation equipment is a glass Widmer column with a diameter of 3 cm and a height of 50 cm, a nitrogen inlet/outlet and a capillary tube for nitrogen.
A glass flask was used, and the autoclave and vacuum distillation apparatus were directly connected through a conduit so that the crude triethanolamine after heat treatment could be transferred from the autoclave to the vacuum distillation apparatus using nitrogen pressure without coming into contact with air. The autoclave was purged with nitrogen to eliminate oxygen, and then 1 kg of the crude triethanolamine was charged therein. Furthermore, remove oxygen by replacing with nitrogen, and add 0.2
After pressurizing to Kg/cm 2 G, the mixture was heated to 190° C. for 5 hours while stirring. After the heat treatment, the liquid was transferred from the autoclave to the distillation apparatus using nitrogen pressure so as not to come into contact with air. Then distilled under reduced pressure to 175 ~
A fraction at 178°C/3 mmHg was collected to obtain 850 g of triethanolamine with a purity of 98.7%. This purified triethanolamine was subjected to hue (APHA) measurement and phosphoric acid neutralization coloring test. Hue (APHA) is the value obtained by measuring the absorbance at a wavelength of 420 nm using a spectrophotometer based on distilled water and converting it to APHA. Moreover, phosphoric acid neutralization coloring is a value obtained as follows. That is, 45 g of triethanolamine was placed in a stoppered Erlenmeyer flask, 5 g of water was added and stirred, then 10 g of phosphoric acid and further 12.5 g of propylene glycol were added, mixed well, the flask was stoppered, and heated in a 75°C water bath for 20 minutes. It was determined by measuring the absorbance (-logT) at wavelengths of 420 nm and 530 nm with distilled water as a reference using a spectrophotometer. (The same applies hereinafter.) The hue (APHA) of the obtained purified triethanolamine is 10>, and the coloration due to phosphoric acid neutralization is
It was 0.015 at 420 nm and 0.008 at 530 nm. Comparative Example 1 In the same manner as in Example 1, crude triethanolamine was not heat-treated and only vacuum distillation was performed to obtain purified triethanolamine. Its hue is
30, Phosphoric acid neutralization coloring is 0.042, 530nm at 420mm
0.027, which was significantly inferior to the purified triethanolamine of Example-1. Examples 2 to 10 and Comparative Example 2 Examples 2 to 10 were carried out in the same manner as Example 1 except that the heating temperature and heating time were changed in Example 1.
I went there. Tables 1 and 2 show the processing conditions, the hue of the obtained purified triethanolamine, the results of phosphoric acid neutralization coloring, acetic anhydride neutralization coloring, and sulfuric acid neutralization coloring, Example 1, Comparative Example 1 This will be shown together with the results.
Further, Table 2 shows the acid neutralization coloring results of purified triethanolamine obtained by carrying out Comparative Example 2 in the same manner as Comparative Example 1. Note that acetic anhydride neutralization coloring refers to adding 1 ml of acetic anhydride to 30 g of triethanolamine, holding it at 80°C for 30 minutes, and using a spectrophotometer to measure the absorbance (-) at wavelengths of 530 nm and 445 nm using distilled water as standard.
logT), and sulfuric acid neutralization coloring refers to triethanolamine mixed with distilled water at a ratio of 1:1.
(by volume) and diluted with 62% by weight sulfuric acid.
After neutralizing to PH6.5 using a PH meter, the wavelength of 445 nm and
This is a value obtained by measuring absorbance (-logT) at 580 nm.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば高純度で酸中和着色の殆
んど認められない、しかも色相良好な高品質トリ
エタノールアミンを容易に且つ経済的に製造する
ことが可能となる。また本発明の方法によるトリ
エタノールアミンは添加剤による着色防止に比べ
て無添加で着色防止するため不純物が混入せず、
液体洗剤、ボデイシヤンプー、化粧品等の原料と
して極めて有利に使用できる。
According to the method of the present invention, it is possible to easily and economically produce high-quality triethanolamine with high purity, almost no acid-neutralized coloring, and a good hue. In addition, the triethanolamine produced by the method of the present invention prevents coloring without any additives, so no impurities are mixed in.
It can be extremely advantageously used as a raw material for liquid detergents, body shampoos, cosmetics, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 エチレンオキシドとアンモニアとを反応させ
てエタノールアミン類を製造する方法において、
反応生成物から未反応物、モノエタノールアミン
およびジエタノールアミンを分離して得られる粗
トリエタノールアミンを、酸素をしや断した条件
下に温度170〜250℃で1〜10時間加熱処理した後
減圧蒸留することを特徴とする酸中和の際に着色
することのないトリエタノールアミンの製造方
法。
1. In a method for producing ethanolamines by reacting ethylene oxide and ammonia,
Crude triethanolamine obtained by separating unreacted substances, monoethanolamine, and diethanolamine from the reaction product is heat-treated at a temperature of 170 to 250°C for 1 to 10 hours in the absence of oxygen, and then distilled under reduced pressure. A method for producing triethanolamine without coloring during acid neutralization.
JP14392185A 1985-07-02 1985-07-02 Production of triethanolamine free from coloring with acid Granted JPS625939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14392185A JPS625939A (en) 1985-07-02 1985-07-02 Production of triethanolamine free from coloring with acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14392185A JPS625939A (en) 1985-07-02 1985-07-02 Production of triethanolamine free from coloring with acid

Publications (2)

Publication Number Publication Date
JPS625939A JPS625939A (en) 1987-01-12
JPH058692B2 true JPH058692B2 (en) 1993-02-02

Family

ID=15350194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14392185A Granted JPS625939A (en) 1985-07-02 1985-07-02 Production of triethanolamine free from coloring with acid

Country Status (1)

Country Link
JP (1) JPS625939A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141349C1 (en) * 1991-12-14 1993-06-03 Degussa Ag, 6000 Frankfurt, De
FR2804109B1 (en) 2000-01-24 2002-08-16 Bp Chemicals Snc CONTINUOUS MANUFACTURING PROCESS OF TRIETHANOLAMINE, AND PRODUCT OBTAINED
DE102004044091A1 (en) * 2004-09-09 2006-03-16 Basf Ag Process for the preparation of triethanolamine
JP2012512826A (en) 2008-12-19 2012-06-07 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing pure triethanolamine (TEOA)

Also Published As

Publication number Publication date
JPS625939A (en) 1987-01-12

Similar Documents

Publication Publication Date Title
KR20080106079A (en) Process for preparing alkali metal alkoxides
JP4294875B2 (en) Method for purifying triethanolamine
Osipow et al. Sugar esters
JPH058692B2 (en)
JPH058693B2 (en)
WO2024130837A1 (en) Method for synthesizing n-acyl amino acid surfactant
CA1113124A (en) Process for the preparation of tertiary butyl alcohol
JPS61291543A (en) Manufacture of methyl metacrylate
JPH0236174A (en) Production of 2, 2, 4-trimethyl-1, 2- dihydroquinoline oligomer
GB623227A (en) Improvements in or relating to the production of 3, 3, 3-trifluoro-1, 1, 2-trichloropropene-1
EP0919537B1 (en) Process for producing aliphatic amine derivative
RU2430085C1 (en) Method of producing ethanolamines
JPH01268663A (en) Production of monoglyceride
CN110256387B (en) Preparation method of medical intermediate
JPS63190862A (en) Recovery of n-vinylformamide
Dymicky A general method for the preparation of formates
EP0289298A2 (en) Process for purifying crude 4-aminophenol
JPH03181440A (en) Purification of acrylic acid by distillation
JPH01117845A (en) Method for purifying monoglyceride
EP1200449B1 (en) Method for producing cyclic dimethylsiloxanes
JP3831021B2 (en) 2-Production method of indanones
JPH11286482A (en) Purification of gamma-butyrolactone
JPS5657743A (en) Purification of crude dicyclohexylamine
JPH0667869B2 (en) Pharmaceutical composition for treating adrenoleukodystrophy
JP2005008536A (en) Method for purifying trialkanolamine

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term