JPH0586848A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH0586848A
JPH0586848A JP24567991A JP24567991A JPH0586848A JP H0586848 A JPH0586848 A JP H0586848A JP 24567991 A JP24567991 A JP 24567991A JP 24567991 A JP24567991 A JP 24567991A JP H0586848 A JPH0586848 A JP H0586848A
Authority
JP
Japan
Prior art keywords
secondary air
air
exhaust
fuel ratio
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24567991A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirayama
洋 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP24567991A priority Critical patent/JPH0586848A/en
Publication of JPH0586848A publication Critical patent/JPH0586848A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a means which efficiently supplies secondary air to exhaust systems of an internal combustion engine having independent exhaust systems in every one of two cylinder groups, such as a V-engine. CONSTITUTION:Secondary air is intaken from an intake pipe 3 through an air inlet pipe 21, and supplied to exhaust manifolds 4a, 4b of both banks of a V-engine 1 by means of an air pump 9. Control valves 10a, 10b are provided respectively on branch pipes 23a, 23b for supplying secondary air to each bank. The secondary air is alternately supplied to the banks by opening and closing the valves alternately with specified intervals. Exhaust secondary air-fuel ratios at respective banks are periodically changed to lean and rich sides, so that a supplying amount of the secondary air is reduced. As for the catalyst atmosphere, it is keeps a value of approximate a theoretical air-fuel ratio due to oxygen storage effect of catalysts 5a, 5b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気浄化装置
に関し、詳細にはV型エンジンのように、2つの気筒グ
ループ毎に設けられた排気系のそれぞれに二次空気を供
給する手段を備えた排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more specifically to a means for supplying secondary air to each of the exhaust systems provided for every two cylinder groups, such as a V-type engine. The present invention relates to an exhaust emission control device.

【0002】[0002]

【従来の技術】内燃機関の排気通路に三元触媒等を用い
た触媒コンバータを設け、排気中のHC,CO,NOX
等の有害成分を浄化するようにした排気浄化装置が一般
に用いられている。公知のように触媒におけるHC,C
O成分の酸化反応は空燃比がリッチ(燃料過剰)になる
と急速に低下する。一方、内燃機関冷間運転時等では機
関性能を安定させる目的で燃料増量が行われ、空燃比が
リッチになる。このため触媒でのHC,CO成分の排出
量の増大防止と、HC,COの酸化反応促進により触媒
温度上昇の促進のため上流側の排気通路に二次空気を導
入して排気空燃比をリーン側に移行させる対策がとられ
ている。
2. Description of the Related Art A catalytic converter using a three-way catalyst or the like is provided in an exhaust passage of an internal combustion engine to discharge HC, CO, NO x in exhaust gas.
Exhaust gas purification devices that purify harmful components such as the above are generally used. As is known, HC and C in the catalyst
The oxidation reaction of the O component rapidly decreases when the air-fuel ratio becomes rich (fuel excess). On the other hand, during cold operation of the internal combustion engine, the amount of fuel is increased for the purpose of stabilizing the engine performance, and the air-fuel ratio becomes rich. Therefore, in order to prevent an increase in the amount of HC and CO components discharged from the catalyst and to accelerate the catalyst temperature rise by promoting the oxidation reaction of HC and CO, secondary air is introduced into the exhaust passage on the upstream side to make the exhaust air-fuel ratio lean. Measures to shift to the side are taken.

【0003】V型エンジン等のように2つの気筒グルー
プにそれぞれ独立した排気系を有する内燃機関のそれぞ
れの排気系に二次空気を供給するようにした排気浄化装
置の例としては、例えば実開昭61−113913号公
報に記載されたものがある。同公報の装置は水平対向型
エンジンの左右のバンクの排気マニホルドにそれぞれエ
アサクションバルブを設け、このエアサクションバルブ
を介してそれぞれの排気マニホルドとエンジン吸気系と
を二次空気供給管で接続している。エンジン冷間時等で
二次空気供給が必要な場合には両方のエアサクションバ
ルブを開放し、両バンクの排気マニホルドに同時に二次
空気供給が行われる。
An example of an exhaust gas purifying device that supplies secondary air to each exhaust system of an internal combustion engine having independent exhaust systems in two cylinder groups such as a V-type engine There is one described in Japanese Patent Laid-Open No. 61-113913. In the device of the publication, air suction valves are provided on the exhaust manifolds of the left and right banks of a horizontally opposed engine, and the exhaust manifolds and the engine intake system are connected by secondary air supply pipes via the air suction valves. There is. When it is necessary to supply the secondary air when the engine is cold, both air suction valves are opened, and the secondary air is simultaneously supplied to the exhaust manifolds of both banks.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記実開昭6
1−113913号公報の装置では二次空気を両方のバ
ンクに同時に供給し、両方のバンクの排気を常にリーン
(空気過剰)になるように保持しているため、二次空気
供給管に大量の空気を流す必要がある。このため吸気系
からの二次空気取入れ用の接続口や接続配管を大径化す
る必要があり、接続口の設置位置確保が困難であり、更
に配管や関連部品の大型化によりエンジンへの搭載性が
悪化する問題が生じていた。また、両方のバンクの排気
を常にリーン側に保持しているため、HC,CO成分の
浄化は充分に行われるものの、逆にNOX 成分の浄化能
力が低下する問題があった。更に、エンジン始動時で触
媒温度が低く、触媒での酸化反応が充分に行われないよ
うな場合には、大量の二次空気導入により触媒が冷却さ
れてしまい触媒の活性温度到達(触媒暖機)が遅れる問
題が生じていた。
[Problems to be Solved by the Invention] However, the above-mentioned actual exploitation 6
In the device of JP-A 1-113913, secondary air is supplied to both banks at the same time, and the exhaust gas of both banks is always kept lean (air excess). Therefore, a large amount of secondary air is supplied to the secondary air supply pipe. It is necessary to let air flow. For this reason, it is necessary to increase the diameter of the connection port and connection pipe for intake of secondary air from the intake system, making it difficult to secure the installation position of the connection port. There was a problem of worsening sex. Further, since the exhaust gases of both banks are always held to the lean side, the HC and CO components are sufficiently purified, but on the contrary, there is a problem that the purification capability of NO X components is lowered. Furthermore, when the catalyst temperature is low at engine startup and the oxidation reaction on the catalyst is not sufficiently performed, the catalyst is cooled by the introduction of a large amount of secondary air and the catalyst activation temperature is reached (catalyst warm-up). ) Was delayed.

【0005】本発明は上記課題に鑑み、V型エンジン等
の相互に独立した2つの排気系に二次空気を供給する際
に、吸気系への二次空気供給管接続口や配管、部品等を
小型簡略化して搭載性を向上すると共に、二次空気供給
に伴うNOX浄化能力の低減や触媒暖機の遅れを防止す
ることができる排気浄化装置を提供することを目的とし
ている。
In view of the above problems, the present invention provides a secondary air supply pipe connection port to the intake system, piping, parts, etc. when supplying secondary air to two mutually independent exhaust systems such as a V-type engine. It is an object of the present invention to provide an exhaust gas purification device that can be simplified in size to improve the mountability, and can reduce the NO x purification capacity and the delay in catalyst warm-up due to the supply of secondary air.

【0006】[0006]

【発明が解決しようとする課題】本発明によれば、複数
気筒を2つのグループに分割し、それぞれの気筒グルー
プ毎に排気系を設けた内燃機関のそれぞれの排気系に2
次空気を供給する排気浄化装置において、前記内燃機関
の吸気系から二次空気を取入れる空気取入れ管と、該取
入れ管から分岐して前記各気筒グループ排気系のそれぞ
れに二次空気を供給する二次空気供給管と、前記二次空
気供給管分岐部、若しくは分岐部下流側の各二次空気供
給管上に配置した制御弁とを備え、前記各気筒グループ
排気系に交互に所定間隔で二次空気を供給するように前
記制御弁を動作させることを特徴とする内燃機関の排気
浄化装置が提供される。
According to the present invention, a plurality of cylinders are divided into two groups, and an exhaust system is provided for each cylinder group.
In an exhaust gas purification device that supplies secondary air, an air intake pipe that takes in secondary air from an intake system of the internal combustion engine, and a branch from the intake pipe to supply secondary air to each of the cylinder group exhaust systems. A secondary air supply pipe and a control valve arranged on the secondary air supply pipe branch portion or on each secondary air supply pipe on the downstream side of the branch portion, and alternately at predetermined intervals in each of the cylinder group exhaust systems. An exhaust gas purification apparatus for an internal combustion engine, characterized in that the control valve is operated to supply secondary air.

【0007】[0007]

【作用】吸気系から取入れた二次空気は、両方のバンク
の排気マニホルドに二次空気供給管と制御弁とを介して
供給される。前記制御弁は両方のバンクに交互に二次空
気を供給するように作動するため、各バンクの排気系内
では二次空気が供給されている間は空燃比がリーンにな
り、二次空気が供給されていない間はリッチになる。
The secondary air taken in from the intake system is supplied to the exhaust manifolds of both banks via the secondary air supply pipe and the control valve. Since the control valve operates to alternately supply the secondary air to both banks, the air-fuel ratio becomes lean in the exhaust system of each bank while the secondary air is being supplied, and the secondary air is Rich when not supplied.

【0008】このように排気空燃比を所定間隔でリッチ
側とリーン側とに変動させることにより触媒の酸素貯蔵
効果が発揮され、触媒は常に理論空燃比近傍で作動する
ことになりHC,CO,NOX の3成分共に良好な浄化
が行われる。また、排気空燃比をリッチ側とリーン側と
に周期的に変動させることにより、従来のように常時リ
ーン側に保持する場合と比較して二次空気量を半分程度
まで低減することが可能となり、接続口や配管部品の小
型化、簡略化、触媒暖機の促進を図ることができる。
Thus, by varying the exhaust air-fuel ratio between the rich side and the lean side at a predetermined interval, the oxygen storage effect of the catalyst is exerted, and the catalyst always operates near the stoichiometric air-fuel ratio. Good purification is performed for all three NO x components. Further, by periodically varying the exhaust air-fuel ratio between the rich side and the lean side, it becomes possible to reduce the amount of secondary air by about half compared to the case where the lean side is always held as in the conventional case. It is possible to reduce the size and simplification of the connection port and the piping parts, and promote the catalyst warm-up.

【0009】[0009]

【実施例】図1に本発明の排気浄化装置の実施例構成を
示す。図1において、1はエンジンを示し、本実施例で
はV型気筒配置を有するV型エンジンが使用されてい
る。3はエンジン1の左右両バンクの気筒に吸気を供給
する吸気管、2は吸気管3の入口に設けられたエアクリ
ーナ、3aはスロットル弁である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an embodiment of the exhaust gas purification device of the present invention. In FIG. 1, reference numeral 1 denotes an engine, and in this embodiment, a V type engine having a V type cylinder arrangement is used. Reference numeral 3 is an intake pipe for supplying intake air to the cylinders of both the left and right banks of the engine 1, 2 is an air cleaner provided at the inlet of the intake pipe 3, and 3a is a throttle valve.

【0010】エンジン1の左右両バンクの気筒は相互に
独立した排気マニホルド4a,4bを介して排気管7
a,7bに接続されている。また、排気管7a,7bに
はそれぞれ三元触媒を用いた触媒コンバータ5a,5b
が配置され、排気中のHC,CO,NOX 成分の浄化を
行っている。排気管7a,7bの触媒コンバータ5a,
5bの上流側には二次空気供口8a,8bが設けられて
おり、二分岐管23a,23bを介して、触媒上流側に
二次空気が供給される。
The cylinders of the left and right banks of the engine 1 are connected to the exhaust pipe 7 via independent exhaust manifolds 4a and 4b.
a, 7b. Further, the exhaust pipes 7a and 7b are respectively provided with catalytic converters 5a and 5b using a three-way catalyst.
Is arranged to purify HC, CO, and NO x components in the exhaust gas. Exhaust pipes 7a, 7b catalytic converter 5a,
Secondary air supply ports 8a and 8b are provided on the upstream side of 5b, and the secondary air is supplied to the catalyst upstream side via the two branch pipes 23a and 23b.

【0011】本実施例では二次空気供給用に電動エアポ
ンプ9が設けられており、吸気管3のエアクリーナ2下
流側から空気取入管21を通して空気を吸入し、二次空
気供給管22に空気を送出している。また二次空気供給
管22は分岐管23a,23bにより各排気管7a,7
bの二次空気供給口8a,8bに接続されている。分岐
管23a,23bには排気の分岐管内への逆流を防止す
る逆止弁12a,12bと共に、各二次空気供給口8
a,8bへの二次空気供給を制御する制御弁10a,1
0bが設けられている。制御弁10a,10bは電磁弁
であり、制御装置11の出力に応じて開閉し分岐管23
a,23b内の二次空気の流れを制御する。
In this embodiment, an electric air pump 9 is provided for supplying secondary air. Air is sucked into the secondary air supply pipe 22 from the air cleaner 2 downstream side of the intake pipe 3 through the air intake pipe 21. Sending out. The secondary air supply pipe 22 is connected to the exhaust pipes 7a and 7a by the branch pipes 23a and 23b.
It is connected to the secondary air supply ports 8a and 8b. The branch pipes 23a and 23b are provided with check valves 12a and 12b for preventing backflow of exhaust gas into the branch pipes, as well as the secondary air supply ports 8.
control valves 10a, 1 for controlling the secondary air supply to a, 8b
0b is provided. The control valves 10a and 10b are solenoid valves, and open / close in accordance with the output of the control device 11 to open the branch pipe 23.
Control the flow of secondary air in a and 23b.

【0012】後述のように、本実施例では制御装置11
は制御弁10a,10bを所定間隔で交互に開閉し、二
次空気供給口8a,8bに交互に二次空気を供給してい
る。従って分岐管23a,23bに二つの制御弁10
a,10bを設ける代わりに、二次空気供給管22から
の分岐管23a,23bの分岐部に電磁三方弁を1つ設
け、分岐管23a,23bを交互に二次空気供給管22
に連通させるように上記電磁三方弁を切換制御しても良
い。
As will be described later, in this embodiment, the control device 11
Alternately opens and closes the control valves 10a and 10b at predetermined intervals to alternately supply the secondary air to the secondary air supply ports 8a and 8b. Therefore, the control valves 10 are
Instead of providing a and 10b, one electromagnetic three-way valve is provided at the branch portion of the branch pipes 23a and 23b from the secondary air supply pipe 22, and the branch pipes 23a and 23b are alternately arranged.
The electromagnetic three-way valve may be switch-controlled so as to communicate with the.

【0013】また、図に25で示したのはエンジンの燃
料噴射制御や点火時期制御等の基本制御を行う公知のデ
ィジタルコンピュータから成る電子制御装置(ECU)
である。ECU25は上記の他エンジン冷却水温度等を
基に2次空気供給要否を判定しエアポンプ9や制御装置
11の作動を制御している。本実施例では二次空気供給
はエンジン冷却水温度が所定値(例えば40℃〜60℃
程度)以下であり、エンジン暖機が完了していない場合
に行われる。エンジン暖機完了後は、ECU25は排気
マニホルド4a,4bに設けた排気O2 センサ6a,6
bの出力を基に排気が理論空燃比になるように燃料噴射
量をフィードバック制御するため、二次空気供給は必要
とされない。エンジン冷間時はエンジンの運転状態を安
定させるため、フィードバック制御を行わず燃料噴射量
を増量しているため排気空燃比がリッチ側に移行してお
り、HC,CO成分の浄化のため二次空気供給が必要と
なる。前述のように従来は触媒コンバータ入口での排気
空燃比(以下「二次空燃比」という)が理論空燃比より
常時リーン側に保持されるように二次空気供給が行われ
ていた。従って、両方のバンクの排気系とも連続的に二
次空気供給を行うため多量の二次空気が必要とされ装置
の搭載性の悪化やNOX 浄化能力の低下、暖機時間の増
大を生じていた。
Further, an electronic control unit (ECU) shown by reference numeral 25 in the drawing comprises a known digital computer for performing basic control such as fuel injection control and ignition timing control of the engine.
Is. The ECU 25 controls the operation of the air pump 9 and the control device 11 by determining whether or not the secondary air needs to be supplied based on the engine cooling water temperature and the like other than the above. In this embodiment, the temperature of the engine cooling water in the secondary air supply is a predetermined value (for example, 40 ° C to 60 ° C).
It is performed when the engine warm-up is not completed. After the engine warm-up is completed, the ECU 25 controls the exhaust O 2 sensors 6a, 6 provided on the exhaust manifolds 4a, 4b.
Since the fuel injection amount is feedback-controlled so that the exhaust gas has the stoichiometric air-fuel ratio based on the output of b, the secondary air supply is not required. When the engine is cold, in order to stabilize the operating condition of the engine, the fuel injection amount is increased without performing feedback control, so the exhaust air-fuel ratio is shifting to the rich side, and the secondary air is purified for purification of HC and CO components. Air supply is required. As described above, conventionally, the secondary air is supplied so that the exhaust air-fuel ratio (hereinafter referred to as "secondary air-fuel ratio") at the catalytic converter inlet is always kept leaner than the stoichiometric air-fuel ratio. Therefore, a large amount of secondary air is required to continuously supply the secondary air to the exhaust systems of both banks, which deteriorates the mountability of the device, reduces the NO x purification capacity, and increases the warm-up time. It was

【0014】本発明では、制御装置11は制御弁10
a,10bを交互に開閉して触媒の酸素貯蔵効果を利用
することにより二次空気量を低減して上記問題を解決し
ている。触媒には希土類酸化物や遷移金属の酸化物等の
酸素貯蔵成分が添加されている。この酸素貯蔵成分は、
リーン空燃比条件下では排気中の酸素を吸収し、リッチ
空燃比条件下ではリーン条件下で吸収した酸素を放出
し、排気空燃比の変動を緩和して触媒近傍での排気空燃
比を理論空燃比に近づける作用を行う。従って二次空気
の供給を周期的に断続して排気二次空燃比をリッチ側と
リーン側とに変動させることにより触媒を常に理論空燃
比近傍の雰囲気に保つことができる。しかし、触媒の酸
素貯蔵能力には限度があるため上記酸素貯蔵効果を有効
に利用するためには二次空燃比の変動周期を適切に設定
する必要がある。変動周期が長すぎて触媒が酸素貯蔵能
力の最大限まで酸素を吸収した後も空燃比がリーン側に
変動していると、もはや排気中の酸素は触媒に貯蔵され
ずに排気管から無駄に排出されることになるからであ
る。
In the present invention, the control device 11 includes the control valve 10
By alternately opening and closing a and 10b and utilizing the oxygen storage effect of the catalyst, the amount of secondary air is reduced to solve the above problem. An oxygen storage component such as a rare earth oxide or a transition metal oxide is added to the catalyst. This oxygen storage component is
It absorbs oxygen in the exhaust under lean air-fuel ratio conditions and releases the absorbed oxygen under lean conditions under rich air-fuel ratio conditions to mitigate fluctuations in the exhaust air-fuel ratio and make the exhaust air-fuel ratio near the catalyst stoichiometric. Performs the action of approaching the fuel ratio. Therefore, the catalyst can always be maintained in the atmosphere near the stoichiometric air-fuel ratio by periodically interrupting the supply of the secondary air and changing the exhaust air-fuel ratio to the rich side and the lean side. However, since the oxygen storage capacity of the catalyst is limited, it is necessary to appropriately set the fluctuation cycle of the secondary air-fuel ratio in order to effectively use the oxygen storage effect. If the air-fuel ratio fluctuates to the lean side even after the fluctuation cycle is too long and the catalyst absorbs oxygen to the maximum oxygen storage capacity, the oxygen in the exhaust gas is no longer stored in the catalyst and is wasted from the exhaust pipe. Because it will be discharged.

【0015】実験の結果、上記空燃比の変動周期を0.
5〜2Hz程度に設定すると酸素貯蔵効果を最も有効に利
用できることが判明している。従って本実施例では制御
装置11は制御弁10a,10bを0.5〜2Hzの範囲
の周期で交互に開閉させ、両バンクの排気二次空燃比を
リッチ側とリーン側とに上記の周期で変動させている。
As a result of the experiment, the fluctuation cycle of the air-fuel ratio is set to 0.
It has been found that the oxygen storage effect can be used most effectively when set to about 5 to 2 Hz. Therefore, in this embodiment, the control device 11 alternately opens and closes the control valves 10a and 10b in a cycle in the range of 0.5 to 2 Hz, and sets the exhaust secondary air-fuel ratios of both banks to the rich side and the lean side at the above cycle. It is fluctuating.

【0016】図2は従来のように連続的に二次空気を供
給した場合と本実施例のように周期的に二次空気を供給
した場合について触媒入口での排気空燃比と触媒出口で
の排気空燃比の変化を示した図である。図2(a)は触
媒入口での排気空燃比を示し、点線は連続的に二次空気
を供給して常に排気空燃比をリーン側に保持した場合を
示し、実線は一定周期で断続的に二次空気を供給した場
合を示す。断続的に二次空気を供給した場合は二次空気
のON/OFFに応じて空燃比はリーン側とリッチ側と
に変動している。
FIG. 2 shows the exhaust air-fuel ratio at the catalyst inlet and the exhaust air-fuel ratio at the catalyst outlet when the secondary air is continuously supplied as in the prior art and when the secondary air is periodically supplied as in this embodiment. It is a figure showing a change of exhaust air-fuel ratio. FIG. 2 (a) shows the exhaust air-fuel ratio at the catalyst inlet, the dotted line shows the case where secondary air is continuously supplied to always keep the exhaust air-fuel ratio on the lean side, and the solid line intermittently shows a constant cycle. The case where secondary air is supplied is shown. When the secondary air is supplied intermittently, the air-fuel ratio fluctuates between the lean side and the rich side according to ON / OFF of the secondary air.

【0017】図2(b)は触媒出口での排気空燃比を示
す。連続的に二次空気を供給した場合(点線)は、触媒
の酸素貯蔵能力は飽和状態のままに保持されるため触媒
での酸素の吸収、放出は行われず触媒出口の空燃比は触
媒入口(図1点線)と同じ変化をする。一方、断続的に
二次空気を供給した場合(実線)は、触媒入口側での空
燃比変動に応じて酸素の吸収、放出が繰り返されるた
め、入口側での空燃比変動は平均化され触媒出口での空
燃比は咯理論空燃比近傍になる。
FIG. 2B shows the exhaust air-fuel ratio at the catalyst outlet. When secondary air is continuously supplied (dotted line), the oxygen storage capacity of the catalyst is maintained in a saturated state, so oxygen is not absorbed or released by the catalyst and the air-fuel ratio at the catalyst outlet is The same change as the dotted line in FIG. On the other hand, when the secondary air is supplied intermittently (solid line), the absorption and release of oxygen are repeated according to the air-fuel ratio fluctuations on the catalyst inlet side, so the air-fuel ratio fluctuations on the inlet side are averaged and the catalyst is The air-fuel ratio at the outlet is close to the stoichiometric air-fuel ratio.

【0018】図2からわかるように従来のように連続的
に二次空気を供給して空燃比をリーンに保持した場合は
理論空燃比との差(図2(b),A)に相当する量の空
気はHC,CO成分の酸化反応には寄与せず単に触媒を
通過して排出されるに過ぎないことがわかる。このため
二次空気量が不必要に増大するのみならずリーン雰囲気
化で触媒のNOX の浄化能力が低下する問題が生じる。
一方、断続的に二次空気を供給した場合には触媒入口側
で空燃比がリーンになったときに吸収された酸素がリッ
チ空燃比時に放出されるため二次空気中の酸素が有効に
酸化反応に寄与し、連続的に二次空気を供給した場合の
約半分の空気量でHC,CO成分の良好な浄化を行うこ
とができる。しかも触媒は常時理論空燃比近傍に保持さ
れているためNOX の浄化能力低下が生じない。
As can be seen from FIG. 2, when secondary air is continuously supplied to keep the air-fuel ratio lean as in the conventional case, it corresponds to the difference from the theoretical air-fuel ratio (FIG. 2 (b), A). It can be seen that the amount of air does not contribute to the oxidation reaction of the HC and CO components and is simply discharged through the catalyst. For this reason, there arises a problem that the amount of secondary air unnecessarily increases and that the NO x purification capability of the catalyst is lowered in a lean atmosphere.
On the other hand, when the secondary air is supplied intermittently, the oxygen absorbed when the air-fuel ratio becomes lean at the catalyst inlet side is released at the rich air-fuel ratio, so the oxygen in the secondary air is effectively oxidized. It contributes to the reaction, and the HC and CO components can be satisfactorily purified with about half the amount of air that is supplied continuously from the secondary air. Moreover, since the catalyst is always kept near the stoichiometric air-fuel ratio, the NO X purification capacity does not decrease.

【0019】次に図3に二次空気供給制御動作のフロー
チャートを示す。本ルーチンはECU25により一定時
間毎に実行される。図においてルーチンがスタートする
とステップ110ではエンジン冷却水温が所定値T(例
えばT=60℃)以上か否かが判定され、水温が所定値
以下である場合はステップ120で冷間時燃料増量が行
われているか否かが判定される。ステップ110で冷却
水温が所定値以上である場合、また水温が所定値以下で
あってもステップ120で燃料の増量が行われていない
場合には空燃比のフィードバック制御が行われており排
気は理論空燃比に維持されているため二次空気の供給は
行わず制御装置11の作動停止(ステップ150)と電
動エアポンプ9の停止(ステップ160)を行いルーチ
ンを終了する。一方ステップ120で燃料増量が行われ
ていた場合には、ステップ130で制御弁10a,10
bの制御装置11を作動させ、次いでステップ140で
電動エアポンプ9を作動させる。これにより制御装置1
1は制御弁10a,10bを所定の周期(0.5〜2H
z)で交互に開閉し、両バンクの二次空気供給口8a,
8bにそれぞれ断続的に二次空気を供給する。
Next, FIG. 3 shows a flowchart of the secondary air supply control operation. This routine is executed by the ECU 25 at regular intervals. When the routine starts in the figure, it is determined in step 110 whether the engine cooling water temperature is equal to or higher than a predetermined value T (for example, T = 60 ° C.), and if the water temperature is equal to or lower than the predetermined value, the cold fuel increase is performed in step 120. It is determined whether or not it has been broken. If the cooling water temperature is equal to or higher than the predetermined value in step 110, or if the amount of fuel is not increased in step 120 even if the water temperature is equal to or lower than the predetermined value, feedback control of the air-fuel ratio is performed and the exhaust gas is theoretically discharged. Since the air-fuel ratio is maintained, the secondary air is not supplied and the operation of the control device 11 is stopped (step 150) and the electric air pump 9 is stopped (step 160), and the routine is ended. On the other hand, if the fuel amount has been increased in step 120, the control valves 10a, 10
The controller 11 of b is operated, and then the electric air pump 9 is operated in step 140. Thereby, the control device 1
1 is for controlling the control valves 10a and 10b in a predetermined cycle (0.5 to 2H).
z) to open and close alternately, and the secondary air supply ports 8a of both banks,
Secondary air is intermittently supplied to each of 8b.

【0020】なお、本実施例ではエアポンプの吐出流量
は必要二次空気量の最大値を供給できるだけの流量に設
定して特に吐出流量制御は行っていないが、例えばエン
ジンの吸入空気量と燃料噴射量とから排気空燃比を算出
し、電動エアポンプ9の回転数を変えて二次空燃比が適
当な変動幅になるように運転条件に応じて二次空気量を
制御するようにすることも可能である。
In the present embodiment, the discharge flow rate of the air pump is set to a flow rate at which the maximum required secondary air amount can be supplied and the discharge flow rate is not particularly controlled. It is also possible to calculate the exhaust air-fuel ratio from the amount and change the rotation speed of the electric air pump 9 to control the secondary air amount according to the operating conditions so that the secondary air-fuel ratio has an appropriate fluctuation range. Is.

【0021】なお、上記実施例はエアポンプを用いて二
次空気を供給する場合についてのみ説明したが、本発明
は従来のエアサクションバルブを用いて二次空気導入を
行う場合にも同様に適用可能である。
Although the above embodiment has been described only for the case of supplying the secondary air by using the air pump, the present invention is similarly applicable to the case of introducing the secondary air by using the conventional air suction valve. Is.

【0022】[0022]

【発明の効果】本発明の排気浄化装置はV型エンジン等
の両バンクの排気系に交互に二次空気を供給するように
構成したことにより全体としての二次空気供給量を低減
して配管部品の小型化簡易化を図ることができ、装置の
搭載性が向上する利点を有する。更に本発明によれば触
媒の酸素貯蔵効果を有効に利用できるためHC,CO,
NOX 3成分の浄化能力を高く維持すると共に過剰な二
次空気供給による触媒暖機時間の増大を防止することが
可能となる。
The exhaust gas purifying apparatus of the present invention is configured to alternately supply the secondary air to the exhaust systems of both banks of a V-type engine or the like, thereby reducing the overall secondary air supply amount and piping. The components can be downsized and simplified, and the mountability of the device can be improved. Further, according to the present invention, since the oxygen storage effect of the catalyst can be effectively utilized, HC, CO,
It becomes possible to maintain the purification ability of the NO x 3 component high and prevent the catalyst warm-up time from increasing due to excessive secondary air supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成を示す略示図である。FIG. 1 is a schematic view showing the configuration of an embodiment of the present invention.

【図2】触媒入口側と出口側の排気空燃比変化を説明す
る図である。
FIG. 2 is a diagram for explaining changes in the exhaust air-fuel ratio on the catalyst inlet side and the catalyst outlet side.

【図3】二次空気供給制御動作を示すフローチャートで
ある。
FIG. 3 is a flowchart showing a secondary air supply control operation.

【符号の説明】[Explanation of symbols]

1…V型エンジン 4a,4b…排気マニホルド 5a,5b…触媒コンバータ 8a,8b…二次空気供給口 9…エアポンプ 10a,10b…制御弁 11…制御弁制御装置 21…空気取入管 22…二次空気供給管 23a,23b…分岐管 25…電子制御装置 1 ... V type engine 4a, 4b ... Exhaust manifold 5a, 5b ... Catalytic converter 8a, 8b ... Secondary air supply port 9 ... Air pump 10a, 10b ... Control valve 11 ... Control valve control device 21 ... Air intake pipe 22 ... Secondary Air supply pipes 23a, 23b ... Branch pipe 25 ... Electronic control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数気筒を2つのグループに分割し、そ
れぞれの気筒グループ毎に排気系を設けた内燃機関のそ
れぞれの排気系に2次空気を供給する排気浄化装置にお
いて、前記内燃機関の吸気系から二次空気を取入れる空
気取入れ管と、該取入れ管から分岐して前記各気筒グル
ープ排気系のそれぞれに二次空気を供給する二次空気供
給管と、前記二次空気供給管分岐部、若しくは分岐部下
流側の各二次空気供給管上に配置した制御弁とを備え、
前記各気筒グループ排気系に交互に所定間隔で二次空気
を供給するように前記制御弁を動作させることを特徴と
する内燃機関の排気浄化装置。
1. An exhaust gas purification apparatus for dividing a plurality of cylinders into two groups and supplying secondary air to each exhaust system of an internal combustion engine having an exhaust system for each cylinder group. An air intake pipe for taking in secondary air from the system, a secondary air supply pipe branched from the intake pipe for supplying secondary air to each of the cylinder group exhaust systems, and the secondary air supply pipe branching portion Or with a control valve arranged on each secondary air supply pipe on the downstream side of the branch portion,
An exhaust emission control device for an internal combustion engine, wherein the control valve is operated so as to alternately supply the secondary air to each of the cylinder group exhaust systems at predetermined intervals.
JP24567991A 1991-09-25 1991-09-25 Exhaust emission control device for internal combustion engine Pending JPH0586848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24567991A JPH0586848A (en) 1991-09-25 1991-09-25 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24567991A JPH0586848A (en) 1991-09-25 1991-09-25 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0586848A true JPH0586848A (en) 1993-04-06

Family

ID=17137203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24567991A Pending JPH0586848A (en) 1991-09-25 1991-09-25 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0586848A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824871A1 (en) * 2001-05-15 2002-11-22 Bosch Gmbh Robert METHOD AND DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE HAVING MULTIPLE CYLINDERS WITH MULTIPLE VALVES AND AT LEAST ONE TOTAL-VARIABLE CONTROL VALVE
US7140177B2 (en) 2003-12-04 2006-11-28 Toyota Jidosha Kabushiki Kaisha Secondary air supply system and abnormality diagnosis method of secondary air supply system
WO2007113679A2 (en) * 2006-03-30 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
AT500991B1 (en) * 2006-02-09 2008-01-15 Avl List Gmbh Exhaust gas temperature increasing method for internal combustion engine, involves operating set of cylinders with high fuel to air ratio, and operating another set of cylinders is operated with low fuel to air ratio
US7543444B2 (en) 2005-06-15 2009-06-09 Toyota Jidosha Kabushiki Kaisha Air supply apparatus
JP2019002377A (en) * 2017-06-19 2019-01-10 マツダ株式会社 Exhaust system for turbocharged engine
DE112006002008B4 (en) 2005-08-11 2022-07-07 Avl List Gmbh Method for raising the exhaust gas temperature in an internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824871A1 (en) * 2001-05-15 2002-11-22 Bosch Gmbh Robert METHOD AND DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE HAVING MULTIPLE CYLINDERS WITH MULTIPLE VALVES AND AT LEAST ONE TOTAL-VARIABLE CONTROL VALVE
US7140177B2 (en) 2003-12-04 2006-11-28 Toyota Jidosha Kabushiki Kaisha Secondary air supply system and abnormality diagnosis method of secondary air supply system
DE102004058398B4 (en) * 2003-12-04 2007-07-19 Toyota Jidosha Kabushiki Kaisha, Toyota Additional air supply system and abnormality diagnosis method of the auxiliary air supply system
US7543444B2 (en) 2005-06-15 2009-06-09 Toyota Jidosha Kabushiki Kaisha Air supply apparatus
DE112006002008B4 (en) 2005-08-11 2022-07-07 Avl List Gmbh Method for raising the exhaust gas temperature in an internal combustion engine
AT500991B1 (en) * 2006-02-09 2008-01-15 Avl List Gmbh Exhaust gas temperature increasing method for internal combustion engine, involves operating set of cylinders with high fuel to air ratio, and operating another set of cylinders is operated with low fuel to air ratio
WO2007113679A2 (en) * 2006-03-30 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
WO2007113679A3 (en) * 2006-03-30 2007-12-06 Toyota Motor Co Ltd Exhaust gas purification system for internal combustion engine
JP2019002377A (en) * 2017-06-19 2019-01-10 マツダ株式会社 Exhaust system for turbocharged engine

Similar Documents

Publication Publication Date Title
US5562086A (en) Control device of a varable cylinder engine
EP0828063B1 (en) Exhaust gas purifying device for engine
US5758493A (en) Method and apparatus for desulfating a NOx trap
JPS58573B2 (en) Fuel supply cylinder number control device
US6253545B1 (en) Internal combustion engine having lean NOx catalyst
US8099948B2 (en) Exhaust system of internal combustion engine
US20090229256A1 (en) Control unit for exhaust gas purifying apparatus
JP4349362B2 (en) Exhaust device for internal combustion engine
JP4572709B2 (en) Exhaust gas purification system for internal combustion engine
JP2007239493A (en) Internal combustion engine with supercharger
JPH0586848A (en) Exhaust emission control device for internal combustion engine
JP3462445B2 (en) Exhaust gas purification device
US4240254A (en) Exhaust gas purifying apparatus for multicylinder internal combustion engines
JPH11173138A (en) Exhaust emission control device for internal combustion engine
JP2932838B2 (en) Secondary air control device for internal combustion engine
JP2009264203A (en) Exhaust device for internal combustion engine
JP3956107B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JP4058897B2 (en) Exhaust gas purification device for internal combustion engine
JP4052215B2 (en) Control device for spark ignition engine
JP2007231792A (en) Air/fuel ratio control device of internal-combustion engine
JP4525487B2 (en) Exhaust gas purification device for internal combustion engine
JP4412057B2 (en) Secondary air supply device for internal combustion engine
JP4214791B2 (en) Cylinder control device for multi-cylinder internal combustion engine
JPH039014A (en) Exhaust purifying device of internal combustion engine
JPH09317506A (en) Catalyst heating apparatus for internal combustion engine