JP4058897B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4058897B2
JP4058897B2 JP2000353327A JP2000353327A JP4058897B2 JP 4058897 B2 JP4058897 B2 JP 4058897B2 JP 2000353327 A JP2000353327 A JP 2000353327A JP 2000353327 A JP2000353327 A JP 2000353327A JP 4058897 B2 JP4058897 B2 JP 4058897B2
Authority
JP
Japan
Prior art keywords
exhaust
temperature
internal combustion
combustion engine
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000353327A
Other languages
Japanese (ja)
Other versions
JP2002155738A (en
Inventor
太郎 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000353327A priority Critical patent/JP4058897B2/en
Publication of JP2002155738A publication Critical patent/JP2002155738A/en
Application granted granted Critical
Publication of JP4058897B2 publication Critical patent/JP4058897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化技術に関し、特に、冷間時に炭化水素(HC)を効率よく浄化する技術に関する。
【0002】
【従来の技術】
この種の従来技術としては、例えば特開平7−91237号がある。本従来技術は、各気筒毎に2つの排気弁を有し、各気筒の第1の排気弁から流出する排気を合流した後、HC吸着触媒に導く一方、各気筒の第2の排気弁から流出する排気を合流した後、前記HC吸着触媒下流に導いて前記第1の排気弁から流出する排気と合流し、触媒コンバータ(いわゆる三元触媒)に導く構成としている。
【0003】
ここで、冷間始動時には第1の排気弁のみ作動させて、排出されたHCをHC吸着触媒に吸着させる。HC吸着触媒の温度が上昇し、吸着したHCが脱離を始める条件となった後は、第1の排気弁の作動を停止して第2の排気弁のみ作動させることで冷間時に排出された大量のHCをHC吸着触媒に閉じ込める。触媒コンバータの温度が所定値以上となったときに第1の排気弁を作動させ、冷間時に排出された炭化水素を触媒コンバータに導いて浄化処理することで効率的な排気の浄化を図っている。
【0004】
また、別の従来技術としては特開平9−256840号に開示される技術がある。この従来技術は、排気の加熱手段とHC吸着触媒と三元触媒を上流から順に配置し、機関始動時に大量のHCをHC吸着触媒に吸着させ、該吸着したHCが脱離しはじめる温度に達する直前から前記排気の加熱手段を作動させることで最下流の三元触媒を早期に活性化させている。これにより、HC吸着触媒から脱離したHCを、三元触媒で効率よく浄化することを図っている。
【0005】
さらに、別の従来技術としては特開平5−44447号に開示される技術がある。この従来技術は、最上流に第1の触媒を配置し、その下流にHC吸着触媒を配置するとともに該HC吸着触媒をバイパスするバイパス路を設け、かつ、排気を該バイパス路に導くかHC吸着触媒に導くかを選択可能な切換手段を設け、さらに、バイパス路下流とHC吸着触媒下流で合流した排気管の下流に第2の触媒を設けている。そして、機関始動時などの冷間時は、排気はHC吸着触媒へ導かれ、浄化できなかったHCが吸着される。第1の触媒が活性すると排気はバイパス路に導かれて第2の触媒へ直接流入する。第2の触媒が活性した段階で排気をHC吸着触媒へ導くように制御することで冷間時に処理できなかった炭化水素を第2の触媒で浄化させることを図っている。また、HC吸着触媒へのHC吸着を補助する目的で、HC吸着触媒の上流よりエアを導入している。エアを導入することでHC吸着触媒の昇温が抑制され、通常よりも長時間流入してくるHCを吸着することができる。
【0006】
エアをHC吸着触媒の上流より導入する従来技術としては、他に特開平9−228828号に開示された技術がある。本従来技術では最上流にエア導入手段,その下流にHC吸着触媒,最下流に三元触媒が配置される。冷間時はエア導入手段を作動させず、排出されるHCはHC吸着触媒に吸着される。HC吸着触媒の温度が、吸着したHCが脱離を始める所定温度になったときにHC吸着触媒上流よりエアを導入する。その結果排気が酸素過剰状態となり、HC吸着触媒より流出したHCが下流の三元触媒で効率よく浄化されるとしている。また、本従来技術では2次エアー導入以外の方法として、機関をリーン運転することも記載されている。機関をリーン運転すればその排気は酸素過剰状態となるため、2次エアー導入と同じ効果が得られる。
【0007】
HC吸着触媒をV型内燃機関に適用した従来技術としては特開平8−99033号に開示された技術がある。この従来技術では各バンクの排気管にそれぞれプリ三元触媒を配置し、その下流で各バンクからの排気を合流させ、その下流にHC吸着触媒を設置し、さらにその下流にメインの三元触媒を配置している。
【0008】
【発明が解決しようとする課題】
しかしながら、例えば前記特開平7−91237号の技術においては高い浄化率が得られるものの、片側弁停止機構が必要となるための高コストが問題となる。また、片側弁停止等の複雑な機構および排気マニホールド部の複雑な形状によりヒートマスが大きくなるため、触媒の活性までの時間が通常よりも長く必要となり、浄化率が悪くなるという問題点も想定される。さらに、触媒コンバータの温度が充分高くなったと判定して、HC吸着触媒側を排気が通過するように弁機構を制御した瞬間、HC吸着触媒は低温であるため触媒コンバータに流入する排気もまた低温となり、その結果HC吸着触媒から脱離した炭化水素の浄化率が一時的に低下するという問題点も想定される。
【0009】
また、特開平9−256840号の技術では、通常よりも浄化効率は上がるものの、最上流に排気の加熱手段が設置されており、加熱手段が作動するとHC吸着触媒まで加熱することになるため、HC吸着触媒からのHC脱離も促進され、最下流の触媒が完全に活性する前に脱離したHCは大気に放出されてしまう。また、最下流の触媒自体を電熱ヒータ等の加熱手段で加熱する従来技術もあるが、流入してくる排気の温度が低いと、加熱手段による昇温効果は少なく、HC浄化率はそれほど向上しない。加熱手段で発生させる熱量を大きくしようとすると大きなエネルギが必要となり、実用性の面より効果的とならない。
【0010】
特開平5−44447号の技術においては、その浄化率は非常に高いと考えられるが、バイパス機構を追加することによるヒートマスの増加とコストアップが課題となる。また、最上流の触媒が300℃程度の活性温度になったときにHC吸着触媒の温度を100℃程度のHC脱離温度以下に抑えるためにはどうしても冷却手段が必要となると考えられ、さらにコストアップすることが想定される。さらに、弁機構を設けることによる排気の漏れや、弁の劣化による固着等の問題点も挙げられる。本従来技術も特開平7−91237号の技術と同様に、第2の触媒が充分活性状態にあるとしてバイパスバルブを閉じた場合、HC吸着触媒を通過した低温の排気が第2の触媒に流入するため、ある期間第2の触媒の温度が低下してHC吸着触媒から流出したHCの浄化率が低下することも考えられる。
【0011】
特開平9−228828号の技術の場合は、通常よりも浄化効率は向上するものの、HC吸着触媒が三元触媒の上流に配置されているためHC吸着触媒の昇温がどうしても下流の三元触媒の昇温よりもはやくなり、HC吸着触媒より脱離したHCの多くが下流の三元触媒で浄化されずに大気へ放出されると考えられる。特開平8−99033号の技術では、そのHC吸着触媒の能力の向上により、浄化率は向上するものの、HC吸着触媒の下流に配置されている三元触媒の活性温度がHC吸着触媒からのHC脱離温度よりも高いために、脱離したHCの多くを大気へ放出している。
【0012】
【課題を解決するための手段】
このため、請求項1に係る発明は、
車両に横置きに搭載したV型内燃機関の複数に区分した各気筒群の排気を導く各排気管に、それぞれ、冷間時に流入した炭化水素を吸着し、温度が所定値以上になると吸着した炭化水素を排出するHC吸着触媒を配設し、
これら各排気管同士を各HC吸着触媒の下流で合流し、該合流点より下流の排気管に少なくとも炭化水素を浄化する排気浄化触媒を配設し、
前記V型内燃機関の冷間時に、リアバンク側に位置する気筒群で排気温度を早期に上昇させる昇温運転を、前記排気浄化触媒の温度が所定温度に達するまで実施することを特徴とする。
【0013】
請求項1に係る発明によると、
冷間時に、一部の気筒群が昇温運転されることにより、昇温運転を実施しない気筒群のHC吸着触媒が、吸着したHCを脱離する温度に達する前に、下流側の排気浄化触媒が排気を十分に浄化できる活性温度に達する。なお、一部の気筒群の昇温運転は、排気浄化触媒が前記活性温度に達するまで行えばよいが、活性温度に近い所定温度に達するまで行うようにしてもよい。
【0014】
その後、前記昇温運転を実施しない気筒群のHC吸着触媒が、さらに温度上昇して、HC脱離温度に達したときに、該HC吸着触媒から脱離したHCは、活性化された排気浄化触媒により、効率よく浄化される。昇温運転を実施する気筒群のHC吸着触媒に吸着されたHCの浄化性能は、通常のHC吸着触媒と排気浄化触媒とを直列に配置した場合と、同様であるので、全体として、冷間時のHC浄化効率を大きく向上できる。
【0015】
また、特開平7−91237号の技術のような弁停止機構や、排気通路切換機構を必要とせず、排気マニホールド形状が複雑となったりすることもないので、低コストで実現でき、排気浄化触媒上流のヒートマスも小さくすることができるので排気浄化触媒の昇温活性化も早められる。
また、昇温運転を行わない気筒群のHC吸着触媒にも常時排気は流しておくため、特開平7−91237号や特開平5−44447号の技術で問題となるHC吸着触媒側へ排気の流路を切り換えた場合の、下流の排気浄化触媒の一時的な温度低下が避けられ、HC吸着触媒から流出したHCを初期から効率よく浄化することができる。
通常車両では排気は後方へ排出されるため、車両に横置きに搭載したV型内燃機関の場合、フロントバンク側の排気配管はリアバンク側に対して長くなる。また、フロントバンク側は車速風によって冷却され易い。
そこで、リアバンク側に位置する気筒群で昇温運転を行い、フロントバンク側に位置する気筒群は昇温運転を行わないようにすることで、排気浄化触媒の昇温活性化と、昇温運転を行わない気筒群のHC吸着触媒の昇温遅延とを、効果的に行うことができる。
【0016】
また、請求項2に係る発明は、
多気筒内燃機関の複数に区分した各気筒群の排気を導く各排気管に、それぞれ、冷間時に流入した炭化水素を吸着し、温度が所定値以上になると吸着した炭化水素を排出するHC吸着触媒を配設し、
これら各排気管同士を各HC吸着触媒の下流で合流し、該合流点より下流の排気管に少なくとも炭化水素を浄化する排気浄化触媒を配設し、
冷間時に一部の気筒群で排気温度を早期に上昇させる昇温運転を、前記排気浄化触媒の温度が所定温度に達するまで実施し、
かつ、前記内燃機関は、3以上の気筒群に区分され、昇温運転される気筒群の数を切換可能としたことを特徴とする
請求項2に係る発明によると、
例えば、温度状態に応じて極低温時に昇温運転される気筒群の数を増やして、昇温をより促進させるようなことができる。
【0017】
また、請求項3に係る発明は、
排気バルブの開弁時期を早めて運転することで昇温運転を実施することを特徴とする。
請求項3に係る発明によると、
排気バルブの開弁時期を早めることにより、燃焼室から排出されるときの排気の温度が高められ、昇温運転が実施される。
このようにすれば、通常に装着される可変バルブタイミング装置などを制御するだけで、安価で効率の良い昇温運転を実施できる。
また、請求項4に係る発明は、
過濃空燃比で運転することで昇温運転を実施することを特徴とする。
請求項4に係る発明によると、
過濃空燃比で運転することにより、排気の温度が高められ、昇温運転が実施される。
【0018】
このようにすれば、特別な装置の追加が不要であり、安価でヒートマス増加がなく効率の良い昇温運転を実施できる。
また、請求項5に係る発明は、
火花点火機関において、点火時期を遅らせて運転することで昇温運転を実施することを特徴とする。
【0019】
請求項5に係る発明によると、
点火時期を遅らせて、燃焼行程の終了を遅らせることにより、燃焼室から排出されるときの排気の温度が高められ、昇温運転が実施される。
このようにすれば、昇温運転を実施するため特別な機構が不要であり、安価でヒートマス増加がなく効率の良い昇温運転を実施できる。
【0020】
また、請求項6に係る発明は、
圧縮着火機関において、燃料噴射時期を遅らせ、または吸気を絞ることの少なくとも一方を行って昇温運転を実施することを特徴とする。
請求項6に係る発明によると、
噴射時期を遅らせて着火燃焼を遅らせることにより、また、吸気を絞ることにより燃焼室内の残留ガス率が増大して、燃焼室から排出されるときの排気の温度が高められ、昇温運転が実施される。
【0021】
噴射時期遅延は噴射時期をコントロールできる電子制御噴射系を持つ最近のディーゼルエンジンであれば、特に追加の装置が不要である。また、吸気絞りはEGR率の詳細な制御を目的として設けられていれば昇温制御に流用することが可能である。以上より、特別な装置の付加無しに安価で効率の良い昇温運転が可能である。
【0022】
また、請求項5に係る発明は、
一部の気筒群で昇温運転を実施している期間、昇温運転を実施しない他の気筒群で通常運転より排気温度を下げる低排温運転を実施することを特徴とする。
請求項5に係る発明によると、
一部の気筒群郁昇温運転を実施している期間、昇温運転を実施しない他の気筒群で低排温運転を実施するため、該低排温運転を実施する気筒群のHC吸着触媒に吸着されているHCの脱離を極力遅らせることができる。
【0023】
このため、下流の排気浄化触媒が活性化する温度に到達するまでの時間を稼ぐことが可能となり、低排温運転を実施する気筒群のHC吸着触媒から脱離してくるHCの浄化効率をさらに向上させることができる。
また、請求項8に係る発明は、
希薄空燃比で運転することで低排温運転を実施することを特徴とする。
【0024】
請求項8に係る発明によると、
希薄空燃比で運転することで低排温運転を実施するために、リーンバーンやいわゆる成層燃焼が可能な火花点火式機関に適用する場合は、特別な装置の追加が不要であり、コスト的にも効率よく排気を浄化することが可能となる。
また、請求項9に係る発明は、
対応する排気管に配設されたHC吸着触媒の上流よりエアを導入することで低排温運転を実施することを特徴とする。
【0025】
請求項9に係る発明によると、
一般に排気浄化触媒の活性化を早める手段として排気浄化触媒上流の排気管内にエアを導入する記述が公知である。そのような装置をあらかじめ保有しているエンジンシステムであればその装置を流用することで、低排温運転の実施による効果が安価に得られる。
【0026】
また、上記請求項8,9に係る発明では、さらに、昇温運転を行う気筒群のHC吸着触媒から脱離してきたHCと、昇温運転を行わない気筒群の排気管より流入する余剰の酸素とが排気浄化触媒で反応し、該HCを処理できると同時に、その反応熱によって排気浄化触媒の活性が早まるという効果も期待できる。
また、請求項10に係る発明は、
昇温運転を実施する気筒群と、昇温運転をしない気筒群とを昇温運転の実施回数に応じて変更することを特徴とする。
【0027】
請求項10に係る発明によると、
昇温運転が全気筒で万遍なく実施されるため、可変バルブタイミング装置、燃料噴射装置、点火装置などの使用状態を全気筒一定とすることが可能となり、特定の気筒群の装置が異常に劣化する等の不具合を起こしにくくなる。
また、請求項11に係る発明は、
昇温運転を実施する気筒群をあらかじめ定めておき、その気筒群の排気管のみ保温を施すことを特徴とする。
【0028】
請求項11に係る発明によると、
あらかじめ定めた昇温運転を実施する気筒群の排気管のみ保温を施すため、昇温運転の効果がより得られるとともに、低排温運転の効果も保温が無いために最大限に得られる。
【0031】
また、請求項12に係る発明は、
前記各HC吸着触媒は、気筒群毎の各気筒からの排気が合流する排気管部分に配設されることを特徴とする。
請求項12に係る発明によると、HC吸着触媒の装着数を少なくでき、排気管構造もシンプルとなってヒートマスを低減できる。
【0032】
また、請求項13に係る発明は、
2つの気筒群に区分され、一方の気筒群が昇温運転されることを特徴とする。
請求項13に係る発明によると、
本発明の適用を、最もシンプルな形態で行うことができる。
【0033】
また、請求項14に係る発明は、
昇温運転を行う気筒群と、行わない気筒群とのトルク差を抑制する制御を行うことを特徴とする。
【0034】
請求項14に係る発明によると、
昇温運転を行う気筒群と、行わない気筒群とでは、そのままではトルク差を生じるので、例えば点火時期を遅角して昇温運転を行う気筒群に対し、昇温運転を行わない気筒群の燃料噴射量を減少補正するなどしてトルク差を抑制することができ、特に低回転領域での回転変動を抑制できる。
【0035】
また、請求項15に係る発明は、
昇温運転を行う気筒群と、行わない気筒群とは、互いの気筒数が同一であり、かつ、点火順序が交互に設定されていることを特徴とする。
請求項15に係る発明によると、
昇温運転を行わない気筒群のHC吸着触媒から脱離された高濃度のHCが分散して排気浄化触媒に導かれるので、無理なく効率的にHCを浄化処理でき、また、運転の相違によるトルクなどの変動が高周波で生じることによって、人体への感じ方を低減できる。
【0036】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して詳細に説明する。図1は、本発明を、希薄空燃比運転(リーンバーン)が可能な、火花点火機関に適用した第1の実施形態のシステム構成を示す。本実施形態では4気筒機関を例に示すが、多気筒機関であれば同様に構成できる。
【0037】
エンジン本体1の#2,3気筒からなる第1気筒群の燃焼室2に接続された排気管を合流させて第1の排気管3とし、該第1の排気管3に第1のHC吸着触媒4を配設する。また、#1,4気筒からなる第2気筒群の燃焼室2に接続された排気管を合流させて第2の排気管5とし、該第2の排気管5に第2のHC吸着触媒6を配設する。これら、第1のHC吸着触媒4および第2のHC吸着触媒6は、冷間時に排気中のHCを吸着し、温度が所定値以上になると吸着したHCを排出する機能を有する。
【0038】
前記第1のHC吸着触媒4の下流と第2のHC吸着触媒6の下流で、第1の排気管3と第2の排気管5とを合流させ、該合流点7の下流に排気浄化触媒8を設ける。排気浄化触媒8は、HC,COを酸化しつつNOxを還元する通常の三元触媒でよい。
前記第1のHC吸着触媒5、第2のHC吸着触媒6、排気浄化触媒8には、それぞれ温度センサ9,10,11を配設し、これら温度センサ9,10,11によって検出された各部の温度信号を、エンジンコントロールユニット(ECU)へ入力する。ECU12へはこれら温度信号の他に、少なくとも図示しないエンジンの回転速度センサ(クランク角センサ),吸入空気量センサ(エアフロメータ)からの信号が入力される。
【0039】
エンジン本体1は、燃料噴射弁13、点火プラグ14を備え、前記ECU12の演算結果に応じて、最適な燃料量を噴射し、最適なタイミングで点火するように制御する。また、第1気筒群の燃焼室2に接続された第1の吸気管15に第1のスロットル弁16、第2気筒群の燃焼室2に接続された第2の吸気管17に第2のスロットル弁18がそれぞれ介装され、これらスロットル弁16,18は、図示しないアクセル開度センサの出力に応じて開度が制御される。
【0040】
以下に、ECU12で演算される制御について説明する。図2は、第1の実施形態における制御の流れを示すブロック図である。温度センサ9で測定した排気浄化触媒8の温度やその他の運転条件に応じて昇温運転許可手段で昇温運転を実施するか否かを判断する。
昇温運転を実施する場合は昇温運転気筒決定手段で第1気筒群(#2,3気筒)で昇温運転を実施するか、第2気筒群(#1,4気筒)で昇温運転を実施するかを決定し、昇温運転手段の演算値に基づいて昇温運転するように選択された気筒のみ昇温運転を実施する。
【0041】
その後昇温運転しない気筒群で通常運転より低い排気温度とする低排温運転を実施するか否かを、昇温運転しない気筒群に設置されたHC吸着触媒6もしくは4の温度(温度センサ10もしくは11で検知)に応じて低排温運転許可手段で判断する。
低排温運転を実施する場合は、低排温運転手段によって演算された結果に基づいて低排温運転が実施される。
【0042】
次に各制御手段の具体的な制御フローについて詳細に説明する。図3は、昇温運転許可手段のフローチャートに相当する。
S1では、排気浄化触媒8の温度TCATを温度センサ9の出力値として読み込む。その温度が所定温度TCATSLよりも低い場合はS3へ進む。
S3では、基本燃料噴射量Tpとエンジン回転数Neで定義される運転領域に応じて、運転条件フラグFAREAをセットする。低負荷低回転運転の場合は1、高負荷高回転運転の場合は0にセットする。ここで基本燃料噴射量Tpは以下の式で演算された値のことである。
【0043】
Tp=k1×Qa/Ne…(1)
k1は定数
S4で、昇温運転許可範囲で運転されていると判断されれば(FAREA=1)S5で昇温運転許可フラグFHEATを1とし、許可範囲外と判断されればS6でFAEAT=0とする。
【0044】
また、S2でTCAT>TCATSLであれば、排気浄化触媒8は十分に排気を浄化できる温度になっていると判断して昇温運転を行わない(FHEAT=0)。
図4は、昇温運転気筒決定手段のフローチャートである。
S11では、FCYLが0か1かを判定する。0の場合は前回の昇温運転を行った気筒は第1気筒群(#2,3気筒)だったことを示し、1の場合は第2気筒群(#1,4気筒)だったことを示す。
【0045】
FCYL=0の場合はS12でFCYL=1とし、FCYL:1の場合はS13でFCYL=0とする。
これによって前回昇温運転を実施した気筒群と異なる気筒群に昇温運転を実施させることができ、燃料噴射弁13などの劣化を全気筒ほぼ均一に保つことができる。
【0046】
図5は、昇温運転手段のフローチャートである。
S21では、昇温が許可されているか(FHEAT=1)確認し、不許可であればそのまま本フローを終了するが、許可されていればS22で基本燃料噴射量Tpとエンジン回転数Neのマップより昇温運転時の点火時期ADVHを読み込む。この点火時期は通常運転時の点火時期よりも遅角するようにマッチングされている。
【0047】
さらにS23で昇温運転時の燃料噴射量補正係数THEATを基本燃料噴射量Tpとエンジン回転数Neのマップより読み込む。S22,23のマップの値はあらかじめ実験にて、エンジン安定度,昇温効果などが最適となるようにマッチングされている。
S24では、昇温運転用の燃料噴射量Tiを、基本燃料噴射量Tpと昇温時燃料噴射量補正係数THEATより次式で演算する。
【0048】
Ti=Tp×THEAT…(2)
ここでTHEAT>1であり、燃料は増量される。
S25でFCYLの値を判断し、FCYL=0であれば第1気筒群(#2,3気筒)に、FCYL=1であれば第2気筒群(#1,4気筒)に、前記昇温運転用の点火時期ADVHと燃料噴射量Tiの信号を出力する。
【0049】
以上で、点火時期の遅角と燃料噴射量増量による排温上昇制御が可能となる。
図6は、低排温運転許可手段のフローチャートである。
S31で昇温運転が許可されているか判定し、不許可であればS35で低排温運転も不許可である(FCOLD=0)として本フローを終了する。
昇温運転が許可されている場合は、S32で第2HC吸着触媒温度THCT2を読み込む。ここで第2HC吸着触媒とは昇温運転を行わない気筒群の排気が流入するHC吸着触媒のことであり、FCYLが0か1かによって決定される。
【0050】
S33でTHCT2とTHCTSLとを比較し、THCT2>THCTSLであればS34で低排温運転を許可(FCOLD=1)し、そうでなければS35で低排温運転を禁止(FCOLD=O)する。
図7は、低排温運転手段のフローチャートである。
S41で低排温運転が許可されているか(FCOLD=1)、否か(FCOLD=0)を判定し、不許可であれば本フローを終了する。
【0051】
許可されていればS42でTpとNeのマップより低排温運転時点火時期ADVCを読み込みS43で低排温運転時燃料噴射量補正係数TCOLDを読み込む。ここでADVCは、通常運転時の点火時期よりも進角しており、TCOLDは0<TCOLD<1である。
次に、S44で低排温運転用の燃料噴射量Tiを下式により演算する。
【0052】
Ti=Tp×TCOLD…(3)
これによりTiCは通常の燃料噴射量よりも少なく補正され、希薄空燃比運転が可能となる。希薄空燃比で運転すると排気温度は通常運転時よりも低下するので低排温運転が可能となる。
S45では、基本燃料噴射量Tpとエンジン回転数Neのマップより低排温運転時スロットル開度補正係数TVOCOLDを読み込み、S46でスロットルバルブ開度TVOCを下式により演算する。
【0053】
TVOC=TVO0×TVOCOLD
ここで、TVO0は低排温運転を実施しないときのスロットルバルブ開度であり、アクセル開度に応じて定められている。なお、前記昇温運転を実施している気筒群のスロットルバルブ開度は、TVO0に制御される。
次に、S47でFCYL=0であれば第2気筒群(#1,4気筒)の点火プラグ14および燃料噴射弁13に、前記低排温運転用の点火時期ADVCおよび燃料噴射量TiCを出力し、かつ、第2気筒群への吸入空気を調整している第2のスロットルバルブ18に低排温運転用のTVOCを出力する。
【0054】
一方、FCYL=1であれば第1気筒群(#2,3気筒)の点火プラグ14および燃料噴射弁13に、前記低排温運転用の点火時期ADVCおよび燃料噴射量TiCを出力し、かつ、第1のスロットルバルブ17に低排温運転用のTVOCを出力する。ここで、S42,43,S45で定めたADVC,TCOLDおよびTVOCOLDはあらかじめ実験によりマッチングされており、エンジンの安定度,排気性能などが最適となるように調整されている。
【0055】
以上のハード構成とフローを実行することにより、低コストで良好な排気性能を実現することができる。
また、本実施形態において、4気筒機関で一般的な点火順序#1→#3→#4→#2とすれば、昇温運転を行う気筒群と、行わない(低排温運転を行う)気筒群とが交互に点火される。このため、昇温運転を行わない気筒群のHC吸着触媒から脱離された高濃度のHCが分散して排気浄化触媒8内に導かれるので、無理なく効率的にHCを浄化処理でき、また、運転の相違によるトルクなどの変動が高周波で生じることによって、人体への感じ方を低減できる。
【0056】
次に、本発明の第2の実施形態について説明する。図8は本実施形態のエンジンシステム図である。第1の実施形態と異なるところは、2次エアポンプ21と2次空気導入口切換バルブ22が付加されていることである。また、制御フローで第1の実施形態と異なるのは低排温運転手段のみであるので、図9を用いて低排温運転手段のフローのみを説明する。
【0057】
S51で低排温運転の許可が出ているか否かを判定し、不許可であればS56で2次エアポンプ21をOFFして本フローを終了する。
S51で低排温運転が許可されていれば、S52で2次エアポンプ21をONとした後、S53でFCYLの状態を判定し、FCYL=0であれば、第2気筒群(#1,4)側へ2次エアが導入されるように切換バルブ22を切り換え、FCYL=1であれば第1気筒群(#2,3)側へ2次エアを導入する。
【0058】
以上によりリーン運転によらず低排温運転が可能である。コスト的には不利であるが、HC吸着触媒の温度をより低温に保つには第1の実施形態よりも自由度が広い。
次に、本発明の第3の実施形態について、図10を用いて説明する。本実施形態は、V型横置きのエンジンに適用した例である。なお、前記第1、第2の実施形態と同一機能を有する構成要素には同一符号を付してある。本実施形態では昇温運転を実施する気筒を切り換えることはせず、リア側のバンクのみで昇温運転を実施し、低排温運転を実施する場合はフロント側のバンクのみで実施する。通常車両では排気は後方へ排出されるため、フロント側の排気配管はリア側に対して長くなる。また、フロント側は車速風によって冷却され易い。したがって、昇温運転を実施する気筒群と、低排温運転を実施する気筒群とを特定した簡易な方式において、有利である。
【0059】
すなわち、昇温運転を実施するリア側バンクでは、燃焼室から排出された排気の温度低下が抑制されて排気浄化触媒8の活性が促進されると共に、昇温運転を実施しない(低排温運転を実施する)フロント側バンクではHC吸着触媒6の昇温が遅延されて排気浄化触媒8が活性温度に達するまでのHCの脱離を抑制できるので、HC浄化性能を十分に高めることができる。
【0060】
また、昇温運転を行うリア側の排気管3のみ、保温材でくるむなどして保温するようにすれば、昇温をより促進できる。
次に、本発明の第4の実施形態について、図11を用いて説明する。本実施形態は、3以上の気筒群に区分し、昇温運転される気筒群を温度状態に応じて切り換えるようにしたものである。
【0061】
直列6気筒エンジンのエンジン本体21の#1,6気筒からなる第1気筒群と、#2,5気筒からなる第2気筒群と、#3,4気筒からなる第3気筒群と、に対応した各排気管22,23,24に、それぞれHC吸着触媒25,26,27を配設し、下流側で合流させ、該合流点の下流側に排気浄化触媒28を配設する。
【0062】
HC吸着触媒25,26,27と排気浄化触媒28には、それぞれ温度センサ29〜32を配設する。
図12は、本実施形態の制御フローを示す。
S61では、排気浄化触媒28の温度Tcが、TLL未満の極低温であるかを判定する。
【0063】
極低温と判定された場合は、S62へ進んで、前記第1〜第3の3つの気筒群のうち、2つの気筒群を昇温運転する。
極低温でないと判定された場合は、S63へ進んで、温度Tcが、TL未満の低温であるかを判定する。
低温と判定された場合は、S64へ進んで、1つの気筒群について昇温運転する。
【0064】
なお、昇温運転しない気筒群は、通常運転か低排温運転を実施する。
このようにすれば、極低温時は、2つの気筒群を昇温運転することにより、排気浄化触媒28の昇温が早められ、活性がより促進される。また、排気浄化触媒28が活性温度に達する時間が早められるので、昇温運転時間を短縮でき、昇温運転する気筒群のHC吸着触媒の昇温を抑制でき、これによってもHC浄化率を向上できる。
【0065】
また、1つの気筒群のみを昇温運転する場合(温度状態によらず1つの気筒群のみ昇温運転する場合を含む)、異なる気筒群を所定時間毎に交互に昇温運転して、1個のHC吸着触媒の温度を過度に上昇させず、さらには排気浄化触媒28の活性終了時に、2個のHC吸着触媒の温度を共にHC脱離温度以下に留めておくようなことも可能となる。
【0066】
次に、本発明の第5の実施形態について、図13のフローチャートを用いて説明する。本実施形態は、昇温運転を行う気筒群と、行わない気筒群との間に、運転の相違により生じるトルク差を抑制するものである。なお、ハードウエアは、以上示したすべての実施形態のものを適用できる。
昇温運転により排気温度を高めることは、排熱量を増加しているので熱効率は低下することになり、通常運転する場合よりトルクが低下する。そこで、S71では、所定の昇温運転を実施することにより、昇温運転しない場合とのトルク差を算出する。
【0067】
S72では、昇温運転しない気筒群を、前記算出されたトルク差だけトルクを減少させる補正制御を行う。具体的には、点火時期の遅角制御等で昇温運転を行った場合、昇温運転しない気筒群の燃料噴射量を減少するようなことで実行できる。なお、第1の実施形態でも希薄空燃比制御で燃料噴射量を減少しつつ、かつ、スロットルバルブ開度を調整して、気筒群間のトルク段差を少なくしているが、本実施形態は、トルク差が抑制される程度に燃料噴射量などを減少させるものであり、希薄空燃比としなくてもよく、より一層緻密な各気筒群間のトルク段差の均一化が図れる構成としている。また、該トルク差を抑制する制御を、特にトルク変動が問題となる低回転領域のみに限定して実行するようにしてもよい。
【0068】
以上説明してきた実施形態では、昇温運転として、過濃空燃比とし、点火時期を遅角するものを示したが、この他、2次エアの供給を行っても良く、一方、可変バルブタイミング装置を備えたエンジンでは、排気バルブの開弁時期を早めて、開弁時の排気温度を上昇させる構成を用いてよい。また、圧縮着火機関では、噴射時期を遅らせて着火燃焼を遅らせたり、吸気を絞って燃焼室内の残留ガス率を増大させたりするなどして昇温運転を行うこともできる。
【図面の簡単な説明】
【図1】第1の実施形態のシステム構成を示す図。
【図2】第1の実施形態の制御ブロック図。
【図3】第1の実施形態における昇温運転許可手段のルーチンを示すフローチャート。
【図4】第1の実施形態における昇温運転気筒決定手段のルーチンを示すフローチャート。
【図5】第1の実施形態における昇温運転手段のルーチンを示すフローチャート。
【図6】第1の実施形態における低排温運転許可手段のルーチンを示すフローチャート。
【図7】第1の実施形態における低排温運転手段のルーチンを示すフローチャート。
【図8】第2の実施形態のシステム構成を示す図。
【図9】第2の実施形態における低排温運転手段のルーチンを示すフローチャート。
【図10】第3の実施形態のシステム構成を示す図。
【図11】第4の実施形態のシステム構成を示す図。
【図12】第4の実施形態における昇温運転ルーチンを示すフローチャート。
【図13】第5の実施形態におけるトルク段差回避ルーチンを示すフローチャート。
【符号の説明】
1 エンジン本体
3 第1の排気管
4 第1のHC吸着触媒
5 第2の排気管
6 第2のHC吸着触媒
7 合流点
8 排気浄化触媒
9〜11 温度センサ
21 エンジン本体
22〜24 排気管
25〜27 HC吸着触媒
28 排気浄化触媒
29〜32 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification technology for an internal combustion engine, and more particularly to a technology for efficiently purifying hydrocarbons (HC) when cold.
[0002]
[Prior art]
As this type of prior art, there is, for example, JP-A-7-91237. This prior art has two exhaust valves for each cylinder, and after joining the exhaust gas flowing out from the first exhaust valve of each cylinder, it leads to the HC adsorption catalyst, while from the second exhaust valve of each cylinder After the exhaust gas flowing out is merged, the exhaust gas is guided downstream of the HC adsorption catalyst, merged with the exhaust gas flowing out from the first exhaust valve, and led to a catalytic converter (so-called three-way catalyst).
[0003]
Here, at the time of cold start, only the first exhaust valve is operated, and the discharged HC is adsorbed by the HC adsorption catalyst. After the temperature of the HC adsorption catalyst rises and the adsorbed HC begins to be desorbed, the first exhaust valve is stopped and only the second exhaust valve is operated to be discharged in the cold state. A large amount of HC is trapped in the HC adsorption catalyst. When the temperature of the catalytic converter reaches a predetermined value or more, the first exhaust valve is operated, and hydrocarbons discharged in the cold state are guided to the catalytic converter to purify the exhaust gas, thereby efficiently purifying exhaust gas. Yes.
[0004]
Another conventional technique is disclosed in Japanese Patent Laid-Open No. 9-256840. In this prior art, an exhaust heating means, an HC adsorption catalyst, and a three-way catalyst are arranged in order from the upstream, and a large amount of HC is adsorbed by the HC adsorption catalyst at the time of starting the engine. Thus, the most downstream three-way catalyst is activated at an early stage by operating the exhaust heating means. As a result, the HC desorbed from the HC adsorption catalyst is efficiently purified by the three-way catalyst.
[0005]
Further, as another conventional technique, there is a technique disclosed in Japanese Patent Laid-Open No. 5-44447. In this prior art, the first catalyst is arranged at the most upstream, the HC adsorption catalyst is arranged downstream thereof, and a bypass path for bypassing the HC adsorption catalyst is provided, and the exhaust is led to the bypass path or HC adsorption. Switching means capable of selecting whether to lead to the catalyst is provided, and further, a second catalyst is provided downstream of the exhaust pipe joined at the downstream of the bypass passage and the downstream of the HC adsorption catalyst. When the engine is cold, such as when the engine is started, the exhaust is guided to the HC adsorption catalyst, and HC that could not be purified is adsorbed. When the first catalyst is activated, the exhaust gas is led to the bypass and directly flows into the second catalyst. By controlling the exhaust to be led to the HC adsorption catalyst when the second catalyst is activated, hydrocarbons that could not be treated in the cold are purified by the second catalyst. In addition, air is introduced from upstream of the HC adsorption catalyst for the purpose of assisting HC adsorption to the HC adsorption catalyst. By introducing air, the temperature rise of the HC adsorption catalyst is suppressed, and HC flowing in for a longer time than usual can be adsorbed.
[0006]
Another conventional technique for introducing air from the upstream side of the HC adsorption catalyst is disclosed in Japanese Patent Laid-Open No. 9-228828. In this prior art, an air introduction means is arranged at the uppermost stream, an HC adsorption catalyst is arranged downstream thereof, and a three-way catalyst is arranged downstream. When cold, the air introduction means is not operated, and the discharged HC is adsorbed by the HC adsorption catalyst. Air is introduced from the upstream of the HC adsorption catalyst when the temperature of the HC adsorption catalyst reaches a predetermined temperature at which the adsorbed HC begins to desorb. As a result, the exhaust gas is in an oxygen excess state, and HC flowing out of the HC adsorption catalyst is efficiently purified by the downstream three-way catalyst. The prior art also describes that the engine is operated lean as a method other than the introduction of secondary air. If the engine is operated lean, the exhaust is in an oxygen-excess state, so the same effect as the introduction of secondary air can be obtained.
[0007]
As a conventional technique in which an HC adsorption catalyst is applied to a V-type internal combustion engine, there is a technique disclosed in Japanese Patent Laid-Open No. 8-99033. In this prior art, a pre three-way catalyst is arranged in each bank's exhaust pipe, the exhaust from each bank is joined downstream, an HC adsorption catalyst is installed downstream, and the main three-way catalyst is further downstream. Is arranged.
[0008]
[Problems to be solved by the invention]
However, for example, in the technique disclosed in Japanese Patent Laid-Open No. 7-91237, although a high purification rate can be obtained, a high cost due to the need for a one-side valve stop mechanism becomes a problem. In addition, a complicated mechanism such as one-side valve stop and a complicated shape of the exhaust manifold section increase the heat mass, so that it takes a longer time to activate the catalyst than usual, and there is a problem that the purification rate is deteriorated. The Further, at the moment when it is determined that the temperature of the catalytic converter has become sufficiently high and the valve mechanism is controlled so that the exhaust gas passes through the HC adsorption catalyst side, the exhaust gas flowing into the catalytic converter is also at a low temperature because the HC adsorption catalyst is at a low temperature. As a result, a problem that the purification rate of hydrocarbons desorbed from the HC adsorption catalyst is temporarily reduced is also assumed.
[0009]
Further, in the technique of JP-A-9-256840, although purification efficiency is higher than usual, an exhaust heating means is installed at the most upstream, and when the heating means is operated, the HC adsorption catalyst is heated. HC desorption from the HC adsorption catalyst is also promoted, and HC desorbed before the most downstream catalyst is fully activated is released to the atmosphere. In addition, there is a conventional technique in which the most downstream catalyst itself is heated by a heating means such as an electric heater. However, if the temperature of the inflowing exhaust gas is low, the heating effect by the heating means is small and the HC purification rate is not improved so much. . When trying to increase the amount of heat generated by the heating means, a large amount of energy is required, which is not effective in terms of practicality.
[0010]
In the technique disclosed in Japanese Patent Laid-Open No. 5-44447, the purification rate is considered to be very high. However, the increase in heat mass and the cost increase due to the addition of the bypass mechanism are problems. Further, when the most upstream catalyst reaches an activation temperature of about 300 ° C., it is considered that a cooling means is inevitably required to keep the temperature of the HC adsorption catalyst below the HC desorption temperature of about 100 ° C. It is assumed to be up. Further, there are problems such as leakage of exhaust gas due to the provision of the valve mechanism and sticking due to deterioration of the valve. Similarly to the technique of Japanese Patent Laid-Open No. 7-91237, in this conventional technique, when the bypass valve is closed because the second catalyst is sufficiently active, the low-temperature exhaust gas that has passed through the HC adsorption catalyst flows into the second catalyst. Therefore, it is conceivable that the purification rate of HC flowing out from the HC adsorption catalyst is lowered due to the temperature of the second catalyst being lowered for a certain period.
[0011]
In the case of the technique of Japanese Patent Laid-Open No. 9-228828, although the purification efficiency is improved more than usual, the HC adsorption catalyst is disposed upstream of the three-way catalyst. It is considered that most of the HC desorbed from the HC adsorption catalyst is released to the atmosphere without being purified by the downstream three-way catalyst. In the technique of JP-A-8-99033, although the purification rate is improved by improving the capacity of the HC adsorption catalyst, the activation temperature of the three-way catalyst arranged downstream of the HC adsorption catalyst is reduced from the HC adsorption catalyst. Since it is higher than the desorption temperature, most of the desorbed HC is released to the atmosphere.
[0012]
[Means for Solving the Problems]
  For this reason, the invention according to claim 1
  Of a V-type internal combustion engine mounted horizontally in a vehicleAn HC adsorption catalyst that adsorbs hydrocarbons that flow in in the cold and exhausts the adsorbed hydrocarbons when the temperature exceeds a predetermined value is provided in each exhaust pipe that guides the exhaust of each of the cylinder groups divided into a plurality of sections. ,
  These exhaust pipes are joined together downstream of each HC adsorption catalyst, and an exhaust purification catalyst for purifying at least hydrocarbons is disposed in the exhaust pipe downstream from the junction,
  When the V-type internal combustion engine is cold, the exhaust temperature is controlled by the cylinder group located on the rear bank side.The temperature raising operation for raising the temperature early is performed until the temperature of the exhaust purification catalyst reaches a predetermined temperature.
[0013]
According to the invention of claim 1,
When some of the cylinder groups are heated during cold, the HC adsorption catalyst of the cylinder group that does not perform the temperature raising operation reaches a temperature at which the adsorbed HC is desorbed before the exhaust gas purification on the downstream side. An activation temperature is reached at which the catalyst can sufficiently purify the exhaust. The temperature raising operation of some of the cylinder groups may be performed until the exhaust purification catalyst reaches the activation temperature, but may be performed until a predetermined temperature close to the activation temperature is reached.
[0014]
Thereafter, when the temperature of the HC adsorption catalyst in the cylinder group not performing the temperature increasing operation further rises and reaches the HC desorption temperature, the HC desorbed from the HC adsorption catalyst is activated by the exhaust purification. Purified efficiently by the catalyst. The purification performance of HC adsorbed on the HC adsorption catalyst of the cylinder group that performs the temperature raising operation is the same as that in the case where the normal HC adsorption catalyst and the exhaust purification catalyst are arranged in series. HC purification efficiency at the time can be greatly improved.
[0015]
  Further, the valve stop mechanism and the exhaust passage switching mechanism as in the technique of Japanese Patent Laid-Open No. 7-91237 are not required, and the exhaust manifold shape is not complicated, so that the exhaust purification catalyst can be realized at low cost. Since the upstream heat mass can also be reduced, activation of the exhaust purification catalyst can be accelerated.
  Further, since the exhaust gas is always supplied to the HC adsorption catalyst of the cylinder group not performing the temperature raising operation, the exhaust gas is discharged to the HC adsorption catalyst side which is a problem in the techniques of Japanese Patent Laid-Open Nos. 7-91237 and 5-44447. When the flow path is switched, a temporary temperature drop of the downstream exhaust purification catalyst can be avoided, and HC flowing out of the HC adsorption catalyst can be efficiently purified from the beginning.
  In a normal vehicle, exhaust gas is discharged rearward. In the case of a V-type internal combustion engine mounted horizontally on the vehicle, the exhaust piping on the front bank side is longer than that on the rear bank side. Further, the front bank side is easily cooled by the vehicle speed wind.
  Therefore, the temperature rise operation is performed in the cylinder group located on the rear bank side, and the temperature rise operation is performed on the exhaust purification catalyst and the temperature rise operation is performed on the cylinder group located on the front bank side so as not to perform the temperature rise operation. The temperature increase delay of the HC adsorption catalyst of the cylinder group that does not perform the operation can be effectively performed.
[0016]
  The invention according to claim 2
  HC adsorption that adsorbs hydrocarbons that flowed in the cold to each exhaust pipe that guides the exhaust of each cylinder group divided into a plurality of cylinders of a multi-cylinder internal combustion engine, and discharges the adsorbed hydrocarbons when the temperature exceeds a predetermined value Arrange the catalyst,
  These exhaust pipes are joined together downstream of each HC adsorption catalyst, and an exhaust purification catalyst for purifying at least hydrocarbons is disposed in the exhaust pipe downstream from the junction,
  A temperature increasing operation for quickly increasing the exhaust temperature in some cylinder groups when cold is performed until the temperature of the exhaust purification catalyst reaches a predetermined temperature,
  In addition, the internal combustion engine is divided into three or more cylinder groups, and the number of cylinder groups to be heated up can be switched.
  According to the invention of claim 2,
  For example, the temperature increase can be further promoted by increasing the number of cylinder groups that are heated at extremely low temperatures according to the temperature state.
[0017]
  Further, according to claim 3The invention
  Exhaust valveThe temperature rising operation is performed by operating the valve opening time earlier.
  Claim 3According to the invention according to
  By advancing the opening timing of the exhaust valve, the temperature of the exhaust when exhausted from the combustion chamber is raised, and the temperature raising operation is performed.
  In this way, it is possible to carry out an inexpensive and efficient temperature raising operation only by controlling a normally mounted variable valve timing device or the like.
  Also,Claim 4The invention according to
  The temperature raising operation is performed by operating at a rich air-fuel ratio.
  Claim 4According to the invention according to
  By operating at a rich air / fuel ratio, the temperature of the exhaust is increased and a temperature raising operation is performed.
[0018]
  In this way, it is not necessary to add a special device, and it is possible to carry out an efficient temperature raising operation that is inexpensive and does not increase in heat mass.
  Also,Claim 5The invention according to
  The spark ignition engine is characterized in that the temperature raising operation is performed by operating with a delayed ignition timing.
[0019]
  Claim 5According to the invention according to
  By delaying the ignition timing and delaying the end of the combustion stroke, the temperature of the exhaust when discharged from the combustion chamber is raised, and the temperature raising operation is performed.
  In this way, a special mechanism is not necessary for performing the temperature raising operation, and an efficient temperature raising operation can be performed at low cost without an increase in heat mass.
[0020]
  Also,Claim 6The invention according to
  In the compression ignition engine, the temperature raising operation is performed by at least one of delaying the fuel injection timing or reducing the intake air.
  Claim 6According to the invention according to
  By delaying the ignition timing and retarding ignition combustion, and by restricting the intake air, the residual gas ratio in the combustion chamber increases, and the temperature of the exhaust when exhausted from the combustion chamber is increased, and the temperature raising operation is performed. Is done.
[0021]
In the case of a recent diesel engine having an electronically controlled injection system in which the injection timing can be controlled, no additional device is required. If the intake throttle is provided for the purpose of detailed control of the EGR rate, it can be used for temperature rise control. As described above, it is possible to perform an inexpensive and efficient heating operation without adding a special device.
[0022]
  Also,Claim 5The invention according to
  During the period in which the temperature raising operation is performed in some cylinder groups, the low exhaust temperature operation in which the exhaust temperature is lowered from the normal operation is performed in the other cylinder groups in which the temperature raising operation is not performed.
  Claim 5According to the invention according to
  The HC adsorption catalyst of the cylinder group that performs the low exhaust temperature operation in order to perform the low exhaust temperature operation in the other cylinder groups that do not perform the temperature increase operation during the period during which some cylinder group soot operation is performed The desorption of HC adsorbed on can be delayed as much as possible.
[0023]
  For this reason, it is possible to increase the time required to reach the temperature at which the downstream exhaust purification catalyst is activated, and further improve the purification efficiency of HC desorbed from the HC adsorption catalyst of the cylinder group that performs the low exhaust temperature operation. Can be improved.
  Also,Claim 8The invention according to
  A low exhaust temperature operation is performed by operating at a lean air-fuel ratio.
[0024]
  Claim 8According to the invention according to
  In order to perform low exhaust temperature operation by operating at a lean air-fuel ratio, when applied to a spark ignition engine capable of lean burn or so-called stratified combustion, no additional special equipment is required, which is costly It becomes possible to purify the exhaust gas efficiently.
  Also,Claim 9The invention according to
  A low exhaust temperature operation is performed by introducing air from upstream of the HC adsorption catalyst disposed in the corresponding exhaust pipe.
[0025]
  Claim 9According to the invention according to
  In general, there is known a description of introducing air into an exhaust pipe upstream of an exhaust purification catalyst as means for accelerating the activation of the exhaust purification catalyst. If the engine system has such a device in advance, the effect of the low exhaust temperature operation can be obtained at low cost by diverting the device.
[0026]
  Also, aboveClaims 8 and 9In the invention according to the present invention, the HC desorbed from the HC adsorption catalyst of the cylinder group performing the temperature raising operation and the surplus oxygen flowing from the exhaust pipe of the cylinder group not performing the temperature raising operation react with each other in the exhaust purification catalyst. In addition, the HC can be treated, and at the same time, the reaction heat can accelerate the activity of the exhaust purification catalyst.
  Also,Claim 10The invention according to
  The cylinder group that performs the temperature raising operation and the cylinder group that does not perform the temperature raising operation are changed according to the number of times of the temperature raising operation.
[0027]
  Claim 10According to the invention according to
  Since the temperature raising operation is performed uniformly in all cylinders, it is possible to make the use state of the variable valve timing device, the fuel injection device, the ignition device, etc. constant in all cylinders, and the devices in a specific cylinder group become abnormal It becomes difficult to cause problems such as deterioration.
  Also,Claim 11The invention according to
  A cylinder group for performing the temperature raising operation is determined in advance, and only the exhaust pipe of the cylinder group is kept warm.
[0028]
  Claim 11According to the invention according to
  Since only the exhaust pipes of the cylinder groups that perform a predetermined temperature raising operation are kept warm, the effect of the temperature raising operation is further obtained, and the effect of the low exhaust temperature operation is obtained to the maximum because there is no heat retention.
[0031]
  Also,Claim 12The invention according to
  Each of the HC adsorption catalysts is disposed in an exhaust pipe portion where exhaust from each cylinder of each cylinder group merges.
  Claim 12According to the invention, the number of HC adsorption catalysts can be reduced, the exhaust pipe structure can be simplified, and the heat mass can be reduced.
[0032]
  Also,Claim 13The invention according to
  It is divided into two cylinder groups, and one cylinder group is temperature-raised.
  Claim 13According to the invention according to
  The present invention can be applied in the simplest form.
[0033]
  Also,Claim 14The invention according to
  Control is performed to suppress a torque difference between a cylinder group that performs a temperature raising operation and a cylinder group that does not.
[0034]
  Claim 14According to the invention according to
  Since a torque difference occurs between the cylinder group that performs the temperature raising operation and the cylinder group that does not perform the temperature raising operation as it is, for example, the cylinder group that does not perform the temperature raising operation with respect to the cylinder group that performs the temperature raising operation by retarding the ignition timing The torque difference can be suppressed by correcting the amount of fuel injection to be reduced, and the rotation fluctuation in the low rotation region can be suppressed.
[0035]
  Also,Claim 15The invention according to
  The cylinder group that performs temperature rising operation and the cylinder group that does not performThe number of cylinders is the same, andThe ignition sequence is set alternately.
  Claim 15According to the invention according to
  The high concentration HC desorbed from the HC adsorption catalyst of the cylinder group not performing the temperature raising operation is dispersed and guided to the exhaust purification catalyst, so that the HC can be efficiently and efficiently purified, and due to the difference in operation When fluctuations such as torque occur at high frequencies, it is possible to reduce how the human body feels.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a system configuration of a first embodiment in which the present invention is applied to a spark ignition engine capable of lean air-fuel ratio operation (lean burn). In the present embodiment, a four-cylinder engine is shown as an example, but a multi-cylinder engine can be configured similarly.
[0037]
The exhaust pipe connected to the combustion chamber 2 of the first cylinder group consisting of # 2 and 3 cylinders of the engine main body 1 is joined to form a first exhaust pipe 3, and the first exhaust pipe 3 has a first HC adsorption. A catalyst 4 is disposed. Further, the exhaust pipe connected to the combustion chamber 2 of the second cylinder group consisting of # 1 and 4 cylinders is joined to form a second exhaust pipe 5, and the second HC adsorption catalyst 6 is connected to the second exhaust pipe 5. Is disposed. The first HC adsorption catalyst 4 and the second HC adsorption catalyst 6 have a function of adsorbing HC in the exhaust when it is cold and discharging the adsorbed HC when the temperature reaches a predetermined value or more.
[0038]
The first exhaust pipe 3 and the second exhaust pipe 5 are joined downstream of the first HC adsorption catalyst 4 and the second HC adsorption catalyst 6, and the exhaust purification catalyst is placed downstream of the junction 7. 8 is provided. The exhaust purification catalyst 8 may be a normal three-way catalyst that reduces NOx while oxidizing HC and CO.
The first HC adsorption catalyst 5, the second HC adsorption catalyst 6, and the exhaust purification catalyst 8 are provided with temperature sensors 9, 10, and 11, respectively, and each part detected by these temperature sensors 9, 10, and 11 Is input to the engine control unit (ECU). In addition to these temperature signals, the ECU 12 receives at least signals from an engine speed sensor (crank angle sensor) and an intake air amount sensor (air flow meter) (not shown).
[0039]
The engine body 1 includes a fuel injection valve 13 and a spark plug 14, and controls to inject an optimal amount of fuel and ignite at an optimal timing according to the calculation result of the ECU 12. The first throttle valve 16 is connected to the first intake pipe 15 connected to the combustion chamber 2 of the first cylinder group, and the second intake pipe 17 is connected to the second intake pipe 17 connected to the combustion chamber 2 of the second cylinder group. A throttle valve 18 is provided, and the throttle valves 16 and 18 are controlled in opening degree according to the output of an accelerator opening sensor (not shown).
[0040]
Below, the control calculated by ECU12 is demonstrated. FIG. 2 is a block diagram illustrating a control flow in the first embodiment. It is determined whether or not the temperature raising operation is performed by the temperature raising operation permitting means in accordance with the temperature of the exhaust purification catalyst 8 measured by the temperature sensor 9 and other operating conditions.
When performing the temperature raising operation, the temperature rising operation is performed in the first cylinder group (# 2, 3 cylinder) by the temperature raising operation cylinder determining means, or the temperature raising operation is performed in the second cylinder group (# 1, 4 cylinder). The temperature raising operation is performed only for the cylinders selected to perform the temperature raising operation based on the calculated value of the temperature raising operation means.
[0041]
Thereafter, whether or not to perform low exhaust temperature operation in which the exhaust gas temperature is lower than that in the normal operation in the cylinder group that is not heated is determined whether the temperature of the HC adsorption catalyst 6 or 4 installed in the cylinder group that is not heated (temperature sensor 10). Alternatively, it is determined by the low exhaust temperature operation permission means according to (detected at 11).
When the low exhaust temperature operation is performed, the low exhaust temperature operation is performed based on the result calculated by the low exhaust temperature operation means.
[0042]
Next, a specific control flow of each control means will be described in detail. FIG. 3 corresponds to a flowchart of the temperature raising operation permission means.
In S 1, the temperature TCAT of the exhaust purification catalyst 8 is read as the output value of the temperature sensor 9. When the temperature is lower than the predetermined temperature TCATSL, the process proceeds to S3.
In S3, the operation condition flag FAREA is set according to the operation region defined by the basic fuel injection amount Tp and the engine speed Ne. Set to 1 for low-load and low-speed operation, and set to 0 for high-load and high-speed operation. Here, the basic fuel injection amount Tp is a value calculated by the following equation.
[0043]
Tp = k1 × Qa / Ne (1)
k1 is a constant
If it is determined in S4 that the operation is within the permitted temperature increase operation range (FAREA = 1), the temperature increase operation permission flag FHEAT is set to 1 in S5, and if it is determined that it is out of the permitted range, FAEAT is set to 0 in S6. .
[0044]
If TCAT> TCATSL in S2, it is determined that the exhaust purification catalyst 8 is at a temperature that can sufficiently purify the exhaust, and the temperature raising operation is not performed (FHEAT = 0).
FIG. 4 is a flowchart of the temperature raising operation cylinder determining means.
In S11, it is determined whether FCYL is 0 or 1. If it is 0, it indicates that the cylinder that performed the previous heating operation was the first cylinder group (# 2, 3 cylinders), and if it was 1, it indicated that it was the second cylinder group (# 1, 4 cylinders). Show.
[0045]
If FCYL = 0, FCYL = 1 is set in S12, and if FCYL: 1, FCYL = 0 is set in S13.
As a result, the temperature increase operation can be performed in a cylinder group different from the cylinder group that has performed the temperature increase operation last time, and the deterioration of the fuel injection valves 13 and the like can be maintained almost uniformly.
[0046]
FIG. 5 is a flowchart of the temperature raising operation means.
In S21, it is confirmed whether the temperature increase is permitted (FHEAT = 1). If not permitted, this flow is terminated as it is. If permitted, the map of the basic fuel injection amount Tp and the engine speed Ne is determined in S22. Further, the ignition timing ADVH during the temperature raising operation is read. The ignition timing is matched so as to be retarded from the ignition timing during normal operation.
[0047]
Further, in S23, the fuel injection amount correction coefficient THEAT during the temperature raising operation is read from the map of the basic fuel injection amount Tp and the engine speed Ne. The map values in S22 and S23 are matched beforehand by experiments so that the engine stability, the temperature rise effect, and the like are optimized.
In S24, the fuel injection amount Ti for the temperature raising operation is calculated from the basic fuel injection amount Tp and the temperature-increasing fuel injection amount correction coefficient THEAT by the following equation.
[0048]
Ti = Tp × THEAT (2)
Here, THEEAT> 1, and the fuel is increased.
In S25, the FCYL value is determined. If FCYL = 0, the temperature rises to the first cylinder group (# 2, 3 cylinders), and if FCYL = 1, the temperature rises to the second cylinder group (# 1, 4 cylinders). Signals of the ignition timing ADVH and the fuel injection amount Ti for operation are output.
[0049]
As described above, it is possible to perform exhaust temperature increase control by retarding the ignition timing and increasing the fuel injection amount.
FIG. 6 is a flowchart of the low exhaust temperature operation permission means.
In S31, it is determined whether the temperature raising operation is permitted. If not permitted, the low exhaust temperature operation is not permitted in S35 (FCOLD = 0), and this flow is terminated.
If the temperature raising operation is permitted, the second HC adsorption catalyst temperature THCT2 is read in S32. Here, the second HC adsorption catalyst is an HC adsorption catalyst into which the exhaust of the cylinder group that does not perform the temperature raising operation flows, and is determined by whether FCYL is 0 or 1.
[0050]
In S33, THCT2 and THCTSL are compared. If THCT2> THCTSL, the low exhaust temperature operation is permitted (FCOLD = 1) in S34, and if not, the low exhaust temperature operation is prohibited (FCOLD = O) in S35.
FIG. 7 is a flowchart of the low exhaust temperature operation means.
In S41, it is determined whether the low exhaust temperature operation is permitted (FCOLD = 1) or not (FCOLD = 0). If not allowed, this flow is terminated.
[0051]
If permitted, the low exhaust temperature operation timing ADVC is read from the map of Tp and Ne in S42, and the fuel injection amount correction coefficient TCOLD in the low exhaust temperature operation is read in S43. Here, ADVC is advanced from the ignition timing during normal operation, and TCOLD is 0 <TCOLD <1.
Next, in S44, the fuel injection amount Ti for low exhaust temperature operation is calculated by the following equation.
[0052]
Ti = Tp × TCOLD (3)
Thereby, TiC is corrected to be smaller than the normal fuel injection amount, and the lean air-fuel ratio operation becomes possible. When the engine is operated at a lean air-fuel ratio, the exhaust gas temperature is lower than that during normal operation, so that low exhaust temperature operation is possible.
In S45, the throttle opening degree correction coefficient TVOCOLD at the time of low exhaust temperature operation is read from the map of the basic fuel injection amount Tp and the engine speed Ne, and in S46, the throttle valve opening degree TVOC is calculated by the following equation.
[0053]
TVOC = TVO0 × TVOCOLD
Here, TVO0 is the throttle valve opening when the low exhaust temperature operation is not performed, and is determined according to the accelerator opening. Note that the throttle valve opening of the cylinder group performing the temperature raising operation is controlled to TVO0.
Next, if FCYL = 0 in S47, the ignition timing ADVC and the fuel injection amount TiC for the low exhaust temperature operation are output to the ignition plug 14 and the fuel injection valve 13 of the second cylinder group (# 1, 4 cylinder). In addition, the TVOC for low exhaust temperature operation is output to the second throttle valve 18 that regulates the intake air to the second cylinder group.
[0054]
On the other hand, if FCYL = 1, the ignition timing ADVC and the fuel injection amount TiC for the low exhaust temperature operation are output to the spark plug 14 and the fuel injection valve 13 of the first cylinder group (# 2, 3 cylinder), and The TVOC for low exhaust temperature operation is output to the first throttle valve 17. Here, ADVC, TCOLD, and TVOCOLD determined in S42, 43, and S45 are previously matched by experiment, and adjusted so that engine stability, exhaust performance, and the like are optimized.
[0055]
By executing the above hardware configuration and flow, good exhaust performance can be realized at low cost.
Further, in this embodiment, if a general ignition sequence # 1 → # 3 → # 4 → # 2 in a four-cylinder engine is performed, a cylinder group performing a temperature raising operation and not performing (a low exhaust temperature operation is performed). The cylinder groups are alternately ignited. For this reason, since the high concentration HC desorbed from the HC adsorption catalyst of the cylinder group not performing the temperature raising operation is dispersed and guided into the exhaust purification catalyst 8, it is possible to purify the HC efficiently and without difficulty. The fluctuation of torque and the like due to the difference in driving occurs at a high frequency, thereby reducing how the human body feels.
[0056]
Next, a second embodiment of the present invention will be described. FIG. 8 is an engine system diagram of this embodiment. The difference from the first embodiment is that a secondary air pump 21 and a secondary air inlet switching valve 22 are added. Further, since the control flow is different from the first embodiment only in the low exhaust temperature operation means, only the flow of the low exhaust temperature operation means will be described with reference to FIG.
[0057]
In S51, it is determined whether or not the low exhaust temperature operation is permitted. If not permitted, the secondary air pump 21 is turned off in S56 and this flow is terminated.
If the low exhaust temperature operation is permitted in S51, the secondary air pump 21 is turned on in S52, then the FCYL state is determined in S53, and if FCYL = 0, the second cylinder group (# 1, 4 ) The switching valve 22 is switched so that the secondary air is introduced to the side. If FCYL = 1, the secondary air is introduced to the first cylinder group (# 2, 3) side.
[0058]
As described above, low exhaust temperature operation is possible regardless of lean operation. Although it is disadvantageous in terms of cost, the degree of freedom is wider than that of the first embodiment in order to keep the temperature of the HC adsorption catalyst at a lower temperature.
Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment is an example applied to a V-type horizontal engine. In addition, the same code | symbol is attached | subjected to the component which has the same function as the said 1st, 2nd embodiment. In the present embodiment, the cylinder in which the temperature raising operation is performed is not switched, the temperature raising operation is performed only in the rear side bank, and when the low exhaust temperature operation is performed, only the front side bank is performed. In a normal vehicle, exhaust is exhausted rearward, so the exhaust pipe on the front side is longer than the rear side. Further, the front side is easily cooled by the vehicle speed wind. Therefore, it is advantageous in a simple system in which the cylinder group that performs the temperature raising operation and the cylinder group that performs the low exhaust temperature operation are specified.
[0059]
That is, in the rear side bank that performs the temperature raising operation, the temperature decrease of the exhaust gas discharged from the combustion chamber is suppressed, the activity of the exhaust purification catalyst 8 is promoted, and the temperature raising operation is not performed (low exhaust temperature operation). In the front side bank, the HC desorption until the temperature rise of the HC adsorption catalyst 6 is delayed and the exhaust purification catalyst 8 reaches the activation temperature can be suppressed, so that the HC purification performance can be sufficiently improved.
[0060]
Further, if only the rear side exhaust pipe 3 that performs the temperature raising operation is kept warm by being wrapped with a heat insulating material, the temperature rise can be further promoted.
Next, a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the cylinder group is divided into three or more cylinder groups, and the cylinder group to be heated is switched according to the temperature state.
[0061]
Corresponding to the first cylinder group consisting of # 1,6 cylinders, the second cylinder group consisting of # 2,5 cylinders, and the third cylinder group consisting of # 3,4 cylinders of the engine body 21 of the in-line 6 cylinder engine The exhaust pipes 22, 23 and 24 are provided with HC adsorption catalysts 25, 26 and 27, respectively, joined at the downstream side, and the exhaust purification catalyst 28 is provided at the downstream side of the junction.
[0062]
Temperature sensors 29 to 32 are disposed on the HC adsorption catalysts 25, 26, 27 and the exhaust purification catalyst 28, respectively.
FIG. 12 shows a control flow of this embodiment.
In S61, it is determined whether the temperature Tc of the exhaust purification catalyst 28 is an extremely low temperature less than TLL.
[0063]
When it is determined that the temperature is extremely low, the process proceeds to S62, and two cylinder groups among the first to third cylinder groups are heated.
If it is determined that the temperature is not extremely low, the process proceeds to S63 to determine whether the temperature Tc is a low temperature below TL.
When it is determined that the temperature is low, the process proceeds to S64 and the temperature increasing operation is performed for one cylinder group.
[0064]
In addition, the cylinder group which does not perform the temperature increasing operation performs the normal operation or the low exhaust temperature operation.
In this way, at a very low temperature, the temperature increase operation of the exhaust purification catalyst 28 is accelerated by performing the temperature increase operation of the two cylinder groups, and the activity is further promoted. In addition, since the time for the exhaust purification catalyst 28 to reach the activation temperature is advanced, the temperature raising operation time can be shortened, and the temperature rise of the HC adsorption catalyst in the cylinder group performing the temperature raising operation can be suppressed, which also improves the HC purification rate. it can.
[0065]
Further, when only one cylinder group is heated (including the case where only one cylinder group is heated regardless of the temperature state), different cylinder groups are alternately heated at predetermined time intervals. It is also possible to keep the temperatures of the two HC adsorption catalysts below the HC desorption temperature at the end of the activation of the exhaust purification catalyst 28 without excessively raising the temperature of the individual HC adsorption catalysts. Become.
[0066]
Next, a fifth embodiment of the present invention will be described using the flowchart of FIG. In the present embodiment, a torque difference caused by a difference in operation between a cylinder group that performs a temperature raising operation and a cylinder group that does not perform a temperature increase operation is suppressed. Note that hardware can be applied to all the embodiments described above.
Increasing the exhaust temperature by the temperature raising operation increases the amount of exhaust heat, so that the thermal efficiency is lowered, and the torque is lower than that in the normal operation. Therefore, in S71, a torque difference from the case where the temperature raising operation is not performed is calculated by performing a predetermined temperature raising operation.
[0067]
In S72, correction control is performed to reduce the torque by the calculated torque difference for the cylinder group that is not operating at a temperature increase. Specifically, when the temperature raising operation is performed by retarding the ignition timing or the like, it can be executed by reducing the fuel injection amount of the cylinder group that is not temperature raising operation. In the first embodiment, the fuel injection amount is reduced by the lean air-fuel ratio control, and the throttle valve opening is adjusted to reduce the torque step between the cylinder groups. The fuel injection amount or the like is reduced to such an extent that the torque difference is suppressed, and it is not necessary to use a lean air-fuel ratio, so that a more precise torque step between the cylinder groups can be achieved. Further, the control for suppressing the torque difference may be executed only in a low rotation region where torque fluctuation is a problem.
[0068]
In the embodiment described above, the temperature increasing operation is set to the over-rich air-fuel ratio and retards the ignition timing. However, in addition to this, secondary air may be supplied, while variable valve timing is provided. In an engine equipped with the device, a configuration may be used in which the exhaust valve is opened earlier and the exhaust temperature at the time of opening is increased. Further, in a compression ignition engine, the temperature raising operation can be performed by delaying the injection timing to delay the ignition combustion, or reducing the intake air to increase the residual gas ratio in the combustion chamber.
[Brief description of the drawings]
FIG. 1 is a diagram showing a system configuration of a first embodiment.
FIG. 2 is a control block diagram according to the first embodiment.
FIG. 3 is a flowchart showing a routine of a temperature raising operation permission means in the first embodiment.
FIG. 4 is a flowchart showing a routine of a temperature raising operation cylinder determining unit in the first embodiment.
FIG. 5 is a flowchart showing a routine of a temperature raising operation unit in the first embodiment.
FIG. 6 is a flowchart showing a routine of a low exhaust temperature operation permission means in the first embodiment.
FIG. 7 is a flowchart showing a routine of low exhaust temperature operation means in the first embodiment.
FIG. 8 is a diagram showing a system configuration of a second embodiment.
FIG. 9 is a flowchart showing a routine of low exhaust temperature operation means in the second embodiment.
FIG. 10 is a diagram showing a system configuration of a third embodiment.
FIG. 11 is a diagram showing a system configuration of a fourth embodiment.
FIG. 12 is a flowchart showing a temperature raising operation routine in the fourth embodiment.
FIG. 13 is a flowchart showing a torque step avoidance routine in the fifth embodiment.
[Explanation of symbols]
1 Engine body
3 First exhaust pipe
4 First HC adsorption catalyst
5 Second exhaust pipe
6 Second HC adsorption catalyst
7 Junction
8 Exhaust gas purification catalyst
9-11 Temperature sensor
21 Engine body
22-24 Exhaust pipe
25-27 HC adsorption catalyst
28 Exhaust gas purification catalyst
29-32 temperature sensor

Claims (15)

車両に横置きに搭載したV型内燃機関の複数に区分した各気筒群の排気を導く各排気管に、それぞれ、冷間時に流入した炭化水素を吸着し、温度が所定値以上になると吸着した炭化水素を排出するHC吸着触媒を配設し、
これら各排気管同士を各HC吸着触媒の下流で合流し、該合流点より下流の排気管に少なくとも炭化水素を浄化する排気浄化触媒を配設し、
前記V型内燃機関の冷間時に、リアバンク側に位置する気筒群で排気温度を早期に上昇させる昇温運転を、前記排気浄化触媒の温度が所定温度に達するまで実施することを特徴とする内燃機関の排気浄化装置。
Each exhaust pipe that guides the exhaust of each of the cylinder groups divided into a plurality of V-type internal combustion engines mounted horizontally on the vehicle adsorbs hydrocarbons that flow in in the cold, and adsorbs when the temperature exceeds a predetermined value. An HC adsorption catalyst that discharges hydrocarbons is installed,
These exhaust pipes are joined together downstream of each HC adsorption catalyst, and an exhaust purification catalyst for purifying at least hydrocarbons is disposed in the exhaust pipe downstream from the junction,
An internal combustion engine characterized in that, when the V-type internal combustion engine is cold, a temperature raising operation for quickly raising the exhaust temperature in the cylinder group located on the rear bank side is performed until the temperature of the exhaust purification catalyst reaches a predetermined temperature. Engine exhaust purification system.
多気筒内燃機関の複数に区分した各気筒群の排気を導く各排気管に、それぞれ、冷間時に流入した炭化水素を吸着し、温度が所定値以上になると吸着した炭化水素を排出するHC吸着触媒を配設し、
これら各排気管同士を各HC吸着触媒の下流で合流し、該合流点より下流の排気管に少なくとも炭化水素を浄化する排気浄化触媒を配設し、
冷間時に一部の気筒群で排気温度を早期に上昇させる昇温運転を、前記排気浄化触媒の温度が所定温度に達するまで実施し、
かつ、前記内燃機関は、3以上の気筒群に区分され、昇温運転される気筒群の数を切換可能としたことを特徴とする内燃機関の排気浄化装置。
HC adsorption that adsorbs hydrocarbons that flowed in the cold to each exhaust pipe that guides the exhaust of each cylinder group divided into a plurality of cylinders of a multi-cylinder internal combustion engine, and discharges the adsorbed hydrocarbons when the temperature exceeds a predetermined value Arrange the catalyst,
These exhaust pipes are joined together downstream of each HC adsorption catalyst, and an exhaust purification catalyst for purifying at least hydrocarbons is disposed in the exhaust pipe downstream from the junction,
A temperature increasing operation for quickly increasing the exhaust temperature in some cylinder groups when cold is performed until the temperature of the exhaust purification catalyst reaches a predetermined temperature,
In addition, the internal combustion engine is divided into three or more cylinder groups, and the number of cylinder groups that are operated to be heated can be switched.
排気バルブの開弁時期を早めて運転することで昇温運転を実施することを特徴とする請求項1または請求項2に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2 , wherein the temperature raising operation is performed by operating the exhaust valve at an earlier opening timing. 過濃空燃比で運転することで昇温運転を実施することを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3 , wherein the temperature raising operation is performed by operating at a rich air-fuel ratio. 火花点火機関において、点火時期を遅らせて運転することで昇温運転を実施することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4 , wherein in the spark ignition engine, the temperature raising operation is performed by operating with a delayed ignition timing. 圧縮着火機関において、燃料噴射時期を遅らせ、または吸気を絞ることの少なくとも一方を行って昇温運転を実施することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気浄化装置。5. The internal combustion engine according to claim 1 , wherein in the compression ignition engine, the temperature raising operation is performed by at least one of delaying a fuel injection timing or restricting intake air. Exhaust purification equipment. 一部の気筒群で昇温運転を実施している期間、昇温運転を実施しない気筒群で通常運転より排気温度を下げる低排温運転を実施することを特徴とする請求項1〜請求項6のいずれか1つに記載の内燃機関の排気浄化装置。Period that implement the heating operation in some of cylinder groups, claims 1, characterized in that to implement the low exhaust-temperature operation to lower the exhaust gas temperature from the normal operation in the cylinder groups without carrying out heating operation 6. The exhaust gas purification apparatus for an internal combustion engine according to any one of 6 above. 希薄空燃比で運転することで低排温運転を実施することを特徴とする請求項7に記載の内燃機関の排気浄化装置。The exhaust emission control device for an internal combustion engine according to claim 7 , wherein the low exhaust temperature operation is performed by operating at a lean air-fuel ratio. 対応する排気管に配設されたHC吸着触媒の上流よりエアを導入することで低排温運転を実施することを特徴とする請求項7または請求項8に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 7 or 8 , wherein the low exhaust temperature operation is performed by introducing air from upstream of the HC adsorption catalyst disposed in the corresponding exhaust pipe. 昇温運転を実施する気筒群と、昇温運転をしない気筒群とを昇温運転の実施回数に応じて変更することを特徴とする請求項1〜請求項9のいずれか1つに記載の内燃機関の排気浄化装置。A cylinder group to carry out the heating operation, according to any one of claims 1 to 9, characterized in that to change depending on the number of times of execution of non cylinder group and a raised operating Atsushi Nobori operation An exhaust purification device for an internal combustion engine. 昇温運転を実施する気筒群をあらかじめ定めておき、その気筒群の排気管のみ保温を施すことを特徴とする請求項1、請求項3〜請求項9のいずれか1つに記載の内燃機関の排気浄化装置。10. The internal combustion engine according to claim 1, wherein a cylinder group for performing the temperature raising operation is determined in advance, and only the exhaust pipe of the cylinder group is kept warm. Exhaust purification equipment. 前記各HC吸着触媒は、気筒群毎の各気筒からの排気が合流する排気管部分に配設されることを特徴とする請求項1〜請求項11のいずれか1つに記載の内燃機関の排気浄化装置。The internal combustion engine according to any one of claims 1 to 11 , wherein each HC adsorption catalyst is disposed in an exhaust pipe portion where exhaust from each cylinder in each cylinder group merges. Exhaust purification device. 2つの気筒群に区分され、一方の気筒群が昇温運転されることを特徴とする請求項1、請求項3〜請求項12のいずれか1つに記載の内燃機関の排気浄化装置。 13. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purification apparatus is divided into two cylinder groups, and one of the cylinder groups is operated to rise in temperature. 昇温運転を行う気筒群と、行わない気筒群とのトルク差を低減する制御を行うことを特徴とする請求項1〜請求項13のいずれか1つに記載の内燃機関の排気浄化装置。The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 13 , wherein control is performed to reduce a torque difference between a cylinder group that performs a temperature raising operation and a cylinder group that does not. 昇温運転を行う気筒群と、行わない気筒群とは、互いの気筒数が同一であり、かつ、点火順序が交互に設定されていることを特徴とする請求項1、請求項3〜請求項14のいずれか1つに記載の内燃機関の排気浄化装置。A cylinder group that performs heating operation, the cylinder group is not performed, the same number of cylinders to one another, and, according to claim 1, firing order, characterized in that it is set alternately claim 3 wherein Item 15. The exhaust emission control device for an internal combustion engine according to any one of Items 14 to 14 .
JP2000353327A 2000-11-20 2000-11-20 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4058897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353327A JP4058897B2 (en) 2000-11-20 2000-11-20 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353327A JP4058897B2 (en) 2000-11-20 2000-11-20 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002155738A JP2002155738A (en) 2002-05-31
JP4058897B2 true JP4058897B2 (en) 2008-03-12

Family

ID=18826106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353327A Expired - Fee Related JP4058897B2 (en) 2000-11-20 2000-11-20 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4058897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893986B1 (en) * 2005-11-30 2008-01-04 Inst Francais Du Petrole METHOD FOR CONTROLLING THE ADMISSION OF AN INTERNAL COMBUSTION ENGINE, ESPECIALLY OF PETROL OR DIESEL TYPE, AND MOTORS USING SUCH A METHOD
JP7293958B2 (en) * 2019-08-06 2023-06-20 スズキ株式会社 engine and vehicle

Also Published As

Publication number Publication date
JP2002155738A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US7753039B2 (en) Exhaust gas control apparatus of an internal combustion engine
US20110265455A1 (en) Ammonia burning internal combustion engine
JP2008095542A (en) Control system of internal combustion engine
US20060201137A1 (en) Engine control equipment
JP2007332867A (en) Control device of internal combustion engine
US6170260B1 (en) Exhaust emission control apparatus for combustion engine
WO2013080858A1 (en) Exaust gas purification device for internal combustion engine
JP2007239493A (en) Internal combustion engine with supercharger
EP1650419B1 (en) Air/Fuel ratio control method
JPWO2011048706A1 (en) Air-fuel ratio control device for internal combustion engine
JP4058897B2 (en) Exhaust gas purification device for internal combustion engine
JP3757668B2 (en) Engine exhaust purification system
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP4127585B2 (en) Exhaust gas purification device for internal combustion engine
JP3835664B2 (en) In-cylinder injection engine catalyst temperature control method and engine control apparatus
JP3956107B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JP4333264B2 (en) Diesel engine control device
JP3724369B2 (en) Control device for direct-injection spark ignition engine
JP3351359B2 (en) Exhaust gas purification device for internal combustion engine
JP2008075492A (en) Control device of internal combustion engine
JP4231969B2 (en) In-cylinder internal combustion engine
JP2008121510A (en) Internal combustion engine
JP2007231792A (en) Air/fuel ratio control device of internal-combustion engine
JPH08303232A (en) Nitrogen oxides clarification device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees