JPH0585972B2 - - Google Patents

Info

Publication number
JPH0585972B2
JPH0585972B2 JP59053843A JP5384384A JPH0585972B2 JP H0585972 B2 JPH0585972 B2 JP H0585972B2 JP 59053843 A JP59053843 A JP 59053843A JP 5384384 A JP5384384 A JP 5384384A JP H0585972 B2 JPH0585972 B2 JP H0585972B2
Authority
JP
Japan
Prior art keywords
memory element
optical memory
glass substrate
film
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59053843A
Other languages
Japanese (ja)
Other versions
JPS60197960A (en
Inventor
Kenji Oota
Toshihisa Deguchi
Akira Takahashi
Tetsuya Inui
Junji Hirokane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5384384A priority Critical patent/JPS60197960A/en
Priority to EP85102922A priority patent/EP0155000B1/en
Priority to DE8585102922T priority patent/DE3583754D1/en
Priority to CA000476648A priority patent/CA1225467A/en
Publication of JPS60197960A publication Critical patent/JPS60197960A/en
Priority to US07/017,456 priority patent/US4778747A/en
Publication of JPH0585972B2 publication Critical patent/JPH0585972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は光学的に情報を記録再生する光メモリ
素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a method of manufacturing an optical memory element for optically recording and reproducing information.

<従来技術> 近年、光メモリ装置は高密度で大容量のメモリ
装置として注目されている。この光メモリが高密
度及び大容量となる理由は、情報の記録単位であ
るビツトが光のビーム径だけで決まるため、その
形状を1μm程度の大きさにすることができるから
である。しかしこの事は光メモリ装置に多くの制
限を加える事になる。即ちある定まつた場所に情
報を記録したり、あるいはある定まつた場所に記
録された情報を再生したりするためには光ビーム
を極めて正確に位置決めしなければならなくな
る。一般に再生専用の光メモリでは記録したビツ
トに予め番地情報を入れておく事ができるので記
録情報を再生しながら光ビームの位置決めをする
ことができるが、追加記録メモリあるいは書き換
え可能なメモリにおいては情報記録時に番地情報
まで一緒に記録する事は極めて困難である。従つ
て追加記録メモリあるいは書き換え可能なメモリ
では基板に予め何等かのガイドトラツク及びガイ
ド番地を入れておくという方法が採られている。
例えば第7図に従来の追加記録メモリあるいは書
き換え可能なメモリのメモリ基板の一部斜視図を
示すが同図に示す如く基板に凹凸の溝を形成して
おきこの溝に添つて情報を記録あるいは再生する
方法が一般的である。上記凹凸の溝は円周方向に
断続した形状を有してこれが溝の番地を示すビツ
ト情報を与える。この凹凸の溝の形成方法はすで
に何種類か提案されており、大きく分けて次の3
種類がある。即ち、 (i) アクリル樹脂又はポリカーボネイト樹脂を用
い、射出成形によつて上記溝を作成する方法。
この成形によりガイドトラツク及びガイド番地
を予め形成したNiスタンパーの形状を写し取
る。
<Prior Art> In recent years, optical memory devices have attracted attention as high-density, large-capacity memory devices. The reason why this optical memory has a high density and large capacity is because the bit, which is the unit of recording information, is determined only by the beam diameter of the light, so its shape can be reduced to a size of about 1 μm. However, this imposes many limitations on the optical memory device. That is, in order to record information at a fixed location or to reproduce information recorded at a fixed location, the light beam must be positioned extremely accurately. In general, in read-only optical memory, address information can be stored in the recorded bits in advance, so the position of the light beam can be determined while reproducing the recorded information, but in additional recording memory or rewritable memory, information can be recorded. Sometimes it is extremely difficult to record even address information. Therefore, in the case of an additional recording memory or a rewritable memory, a method is adopted in which some guide tracks and guide addresses are previously written on the board.
For example, FIG. 7 shows a partial perspective view of a memory board of a conventional additional recording memory or rewritable memory.As shown in the figure, uneven grooves are formed on the board and information is recorded or A common method is to regenerate it. The uneven groove has a shape that is interrupted in the circumferential direction, and this provides bit information indicating the address of the groove. Several methods have already been proposed for forming these uneven grooves, and they can be roughly divided into the following three types.
There are different types. That is, (i) a method of creating the grooves by injection molding using acrylic resin or polycarbonate resin.
Through this molding, the shape of the Ni stamper on which guide tracks and guide addresses have been previously formed is copied.

(ii) アクリル樹脂を上記ガイドトラツク及びガイ
ド番地を予め形成したNiスタンパーに流し込
み温度をかけて固まらせるキヤステイング法。
(ii) A casting method in which acrylic resin is poured into a Ni stamper on which guide tracks and guide addresses have been formed in advance and hardened by applying temperature.

(iii) アクリル樹脂基板やガラス基板等の基板と上
記ガイドトラツク及びガイド番地を予め形成し
たNiスタンパーとの間に紫外線硬化形の樹脂
を流し込み、上記基板ごしに紫外線を照射し、
その樹脂を硬化させ、その後で上記Niスタン
パーを取りはずす、所謂2p法。
(iii) An ultraviolet curing resin is poured between a substrate such as an acrylic resin substrate or a glass substrate and the Ni stamper on which the guide tracks and guide addresses have been formed in advance, and ultraviolet rays are irradiated through the substrate;
The so-called 2P method involves curing the resin and then removing the Ni stamper.

である。It is.

しかし、これらの方法はいずれも樹脂を用いる
のでその樹脂を通して酸素あるいは水分等が記録
媒体に達する危険性がある。この為記録媒体の品
質が劣化するという欠点を有する。この欠点に対
処する為に本発明者は既にガラス基板上にフオト
レジスト材を塗布し、該フオトレジスト材に対し
てレーザ光を照射してガイドパターン(ガイドト
ラツク及びガイド番地)を記録し、その後エツチ
ングによつてガイドパターン状に溝を形成する方
法を特願昭58−84613号によつて提案している。
しかしこの方法ではレーザ光によつて各ガイドパ
ターンをトラツク毎に順次記録していかねばなら
ないのでその記録に長い時間を要し、量産には不
向きであるという欠点がある。
However, since all of these methods use resin, there is a risk that oxygen, moisture, etc. may reach the recording medium through the resin. This has the disadvantage that the quality of the recording medium deteriorates. In order to deal with this drawback, the present inventor has already coated a photoresist material on a glass substrate, irradiated the photoresist material with laser light to record a guide pattern (guide track and guide address), and then A method of forming grooves in the shape of a guide pattern by etching was proposed in Japanese Patent Application No. 84613/1983.
However, this method has the disadvantage that each guide pattern must be sequentially recorded track by track using a laser beam, which requires a long time for recording, and is therefore unsuitable for mass production.

<目的> 本発明は以上の点に鑑みてなされたものであ
り、紫外線の透過性がよく且つ密着性の高い光メ
モリ素子製造用のマスク板を用いて、酸素あるい
は水分により劣化する記録媒体を有する光メモリ
素子のガラス基板に凹凸状のガイドパターンを形
成して光メモリ素子を製造することによつて、光
メモリ素子のガラス基板に対するガイドトラツ
ク、ガイド番地等の情報を示す溝の形成を短時間
で、しかも密度に行い得る新規な光メモリ素子の
製造方法を提供することを目的とする。
<Purpose> The present invention has been made in view of the above points, and uses a mask plate for manufacturing an optical memory element that has good ultraviolet transmittance and high adhesion, and has a recording medium that deteriorates due to oxygen or moisture. By manufacturing an optical memory element by forming an uneven guide pattern on the glass substrate of the optical memory element, it is possible to form grooves indicating information such as guide tracks and guide addresses on the glass substrate of the optical memory element in a short time. It is an object of the present invention to provide a novel method for manufacturing an optical memory element that can be performed with high density.

<実施例> 以下本発明に係る光メモリ素子の製造方法の実
施例を図面を用いて詳細に説明する。
<Example> Hereinafter, an example of the method for manufacturing an optical memory element according to the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係る光メモリ素子の基板の
製法を工程順に示す説明図である。
FIG. 1 is an explanatory diagram showing, in order of steps, a method for manufacturing a substrate of an optical memory element according to the present invention.

次に同図に従い本発明に係る光メモリ素子の基
板の製法の一実施例を工程順に説明する。
Next, an embodiment of a method for manufacturing a substrate of an optical memory element according to the present invention will be explained in the order of steps with reference to the same figure.

工程(i)……酸素、水分等の通過に対して信頼性の
高い(酸素、水分等を通過させない)光メモ
リ素子用のガラス基板を洗浄し、そのガラス
基板1の上にフオトレジスト膜2を塗布する
(第1図a)。このフオトレジスト膜2の膜厚
は100nm〜500nm程度が好ましい。
Step (i)... A glass substrate for an optical memory element that is highly reliable against the passage of oxygen, moisture, etc. (does not allow oxygen, moisture, etc. to pass through) is cleaned, and a photoresist film 2 is formed on the glass substrate 1. Apply (Figure 1a). The thickness of this photoresist film 2 is preferably about 100 nm to 500 nm.

工程(ii)……上記フオトレジスト膜2を塗布したガ
ラス基板1上に後述するガイドトラツク及び
ガイド情報をパターン化したマスク板3を密
着せしめ、該マスク板3ごしに赤外線Aを照
射しマスク板3のマスクパターンを上記フオ
トレジスト膜2に転写する(第1図b)。こ
こで光メモリ素子は円板状であるので上記マ
スク板3も円板状であことが望ましい。
Step (ii)...A mask plate 3 patterned with guide tracks and guide information (to be described later) is brought into close contact with the glass substrate 1 coated with the photoresist film 2, and infrared rays A are irradiated through the mask plate 3 to form a mask. The mask pattern on the plate 3 is transferred onto the photoresist film 2 (FIG. 1b). Here, since the optical memory element is disk-shaped, it is desirable that the mask plate 3 is also disk-shaped.

工程(iii)……上記マスクパターンを書き込んだフオ
トレジスト膜2を現像工程に通すことで上記
フオトレジスト膜2に溝を形成する(第1図
c)。
Step (iii): Grooves are formed in the photoresist film 2 by passing the photoresist film 2 with the mask pattern written thereon through a development process (FIG. 1c).

工程(iv)……上記溝を形成したフオトレジスト膜2
の被覆状態において、ウエツトエツチング若
しくはCF4,CHF3等のエツチングガイド中
でのスパツタリング(リアクテイブイオンエ
ツチング)等のドライエツチングを行なうガ
ラス基板1に溝4を形成する(第1図d)。
Step (iv)...Photoresist film 2 with the grooves formed
In the coated state, grooves 4 are formed in the glass substrate 1 by wet etching or dry etching such as sputtering (reactive ion etching) in an etching guide such as CF 4 or CHF 3 (FIG. 1d).

工程(v)……上記レジスト膜2をアセトン等の溶
媒、O2中でスパツタリング等により除去す
る。この結果ガラス基板1に溝4が残る(第
1図e)。
Step (v): The resist film 2 is removed by sputtering or the like in a solvent such as acetone or O2 . As a result, grooves 4 remain in the glass substrate 1 (FIG. 1e).

以上の工程によつてガイドトラツク及びガイド
番地の情報を示す溝を有するガイド基板が完成す
る。この工程によれば予めガイドトラツク及びガ
イド情報をパターン化したマスク板を作成してお
き、該マスク板をフオトレジスト膜が塗布された
ガラス基板上に順次密着せしめてマスク板のパタ
ーンを転写して行けばよいのでガイドパターンの
記録時間を極めて短縮化できるものである。ここ
で上記マスク板と上記フオトレジスト膜が塗布さ
れたガラス基板とはパターンを高精度に転写する
ために密着させる必要がある。同時に、このマス
ク板には紫外線の透過性が充分に良いことも要求
される。マスク板に用いる基板材料には、一般
に、樹脂とガラスとがあるが、ガラスの方が樹脂
に比べて紫外線の透過性が良いので、マスク板の
基板材料としてはガラスの方が優れている。とこ
ろが、信頼性の点から光メモリ素子の基板として
ガラス基板を用い、マスク板の基板としてもガラ
ス基板を用いると、ガラス基板には一般的に数
10μm以上の反りがあるのでマスク板のガラス基
板と光メモリ素子のガラス基板との間に圧力を加
えても両者を密着させることは困難である。そこ
で、本発明で使用するマスク板は以下に示す独特
の構造によつてこの問題点を解決している。
Through the above steps, a guide substrate having grooves indicating guide tracks and guide address information is completed. According to this process, a mask plate patterned with guide tracks and guide information is created in advance, and the mask plate is sequentially brought into close contact with a glass substrate coated with a photoresist film to transfer the pattern of the mask plate. This allows the recording time of the guide pattern to be extremely shortened. Here, the mask plate and the glass substrate coated with the photoresist film need to be in close contact with each other in order to transfer the pattern with high precision. At the same time, this mask plate is also required to have sufficiently good transmittance to ultraviolet rays. Substrate materials used for mask plates generally include resin and glass, but glass has better UV transmittance than resin, so glass is better as a substrate material for mask plates. However, from the viewpoint of reliability, when a glass substrate is used as the substrate of an optical memory element and also as a substrate of a mask plate, the glass substrate generally has a
Since there is a warp of 10 μm or more, it is difficult to bring the glass substrate of the mask plate and the glass substrate of the optical memory element into close contact even if pressure is applied between the two. Therefore, the mask plate used in the present invention has a unique structure shown below to solve this problem.

次に上記マスク板の製法について工程順に詳細
に説明する。
Next, the manufacturing method of the mask plate described above will be explained in detail in the order of steps.

第2図はマスク板の製法を示す説明図である。 FIG. 2 is an explanatory diagram showing a method of manufacturing a mask plate.

工程(i)……まず円板状の低反射Crマスクブラン
ク5を準備する。第2図aはそのマスクブラ
ンク5の一部側面断面図である。6は紫外線
を良く通す石英ガラス基板(紫外線Aの種類
によつては通常のソーダライムガラスを精度
良く研磨したものでも良い)、7は該ガラス
基板6より充分な可撓性を有する紫外線硬化
形の樹脂層、8aはCrOx膜、9はCr膜、8
bはCrOOx膜である。このマスクブラング
5の構造としては、Cr単層膜やCr膜、CrOx
膜の2層膜の構造であつても構わない。
Step (i)... First, a disc-shaped low-reflection Cr mask blank 5 is prepared. FIG. 2a is a partial side sectional view of the mask blank 5. FIG. 6 is a quartz glass substrate that allows ultraviolet rays to pass through (depending on the type of ultraviolet ray A, it may be made by polishing ordinary soda lime glass with high precision), and 7 is an ultraviolet curing type that has sufficient flexibility than the glass substrate 6. resin layer, 8a is CrOx film, 9 is Cr film, 8
b is a CrOOx film. The structure of this mask blank 5 includes a Cr single layer film, Cr film, CrOx
The film may have a two-layer structure.

工程(ii)……上記マスクブランク5上にフオトレジ
スト膜10をコートする(第2図b)。この
フオトレジスト膜10としては例えば
shipley社製のAZ−1400等のポジ型のものを
使用すればよい。このフオトレジスト膜10
の厚みは次の工程(iii)において用いるレーザ光
のパワーにもよるが塗布の容易さを考えると
100nm〜500nm程度が適当である。
Step (ii): A photoresist film 10 is coated on the mask blank 5 (FIG. 2b). As this photoresist film 10, for example,
A positive type such as AZ-1400 manufactured by Shipley may be used. This photoresist film 10
The thickness of the coating depends on the power of the laser beam used in the next step (iii), but considering the ease of coating,
Approximately 100 nm to 500 nm is appropriate.

工程(iii)……上記フオトレジスト膜10をコートし
たマスクブランク5にArレーザの光を集光
してガイドトラツク及びガイド番地を記録す
る(第2図c)。波長が4579ÅのArレーザを
用いN.A.が0.75の対物レンズ11で0.5μmφ
程度のスポツト径を持つようArレーザ光を
集光した場合、上記フオトレジスト膜10面
上で約10mWのレーザパワーを得、0.6μm巾
のトラツクを記録することができる。ここで
上記パターン形成用の光としては5000Åより
短い波長のレーザであることが上記ガイドト
ラツク及びガイド番地のパターンを微細化す
る為及びフオトレジスト膜10の感度の為に
適切であり、Arレーザ以外にはクリプトン
レーザが有用である。
Step (iii)...Ar laser light is focused on the mask blank 5 coated with the photoresist film 10 to record a guide track and a guide address (FIG. 2c). Using an Ar laser with a wavelength of 4579 Å, the objective lens 11 with an NA of 0.75 has a diameter of 0.5 μm.
When the Ar laser beam is focused to have a spot diameter of about 100 nm, it is possible to obtain a laser power of about 10 mW on the surface of the photoresist film 10 and record a track with a width of 0.6 μm. Here, as the light for forming the pattern, it is appropriate to use a laser with a wavelength shorter than 5000 Å in order to miniaturize the pattern of the guide track and guide address and to increase the sensitivity of the photoresist film 10, and other than Ar laser. Krypton lasers are useful for this purpose.

工程(iv)……工程()によつてフオトレジスト膜
10にガイドトラツク及びガイド番地が記録
されたマスクブランク5を現像工程に通すこ
とで上記フオトレジスト膜10に溝を形成す
る(第2図d)。尚、この第2図d以下第2
図fまでは横方向の倍率を大きくしている。
Step (iv)...Grooves are formed in the photoresist film 10 by passing the mask blank 5 on which the guide track and guide address have been recorded in the photoresist film 10 in step () to a developing step (Fig. 2). d). In addition, from this figure 2 d onwards,
The magnification in the horizontal direction is increased up to Figure f.

工程(v)……上記溝を形成したフオトレジスト膜1
0の被覆状態においてエツチングを行ない、
ガラス基板6上の所定の部分のCr膜9及び
CrOx膜8a,8bを除去する(第2図e)。
Step (v)...Photoresist film 1 with the above grooves formed
Etching is performed in the coating state of 0,
Cr film 9 and a predetermined portion on glass substrate 6
The CrOx films 8a and 8b are removed (FIG. 2e).

工程(vi)……残存した上記フオトレジスト膜10を
アセント等の溶媒、O2中でのスパツタリン
グ等により除去する(第2図f)。この結果、
ガラス基板6上にガイドトラツク及びガイド
番地の情報を示す溝を有したCr膜9及び
CrOx膜8a,8bの積層膜を得ることがで
きる。
Step (vi): The remaining photoresist film 10 is removed by sputtering in a solvent such as Ascent or O2 (FIG. 2f). As a result,
A Cr film 9 having grooves indicating guide track and guide address information on a glass substrate 6;
A laminated film of CrOx films 8a and 8b can be obtained.

以上の工程によつて例えば2μmピツチ、1μm幅
のらせん状のガイドトラツクとガイドトラツクの
継続形状によるトラツク番地が記録された円板状
のマスク板を得る。尚、トラツク番地部の巾の方
を狭くした方がガラス基板1への溝形成後番地信
号品質が良くなる。
Through the above steps, a disk-shaped mask plate is obtained, in which track addresses are recorded, for example, in the form of a spiral guide track with a pitch of 2 μm and a width of 1 μm, and a continuation of the guide track. Note that the quality of the address signal after forming the groove on the glass substrate 1 will be better if the width of the track address portion is made narrower.

第3図は完成したマスク板12の外観斜視図、
第4図aはその一部拡大平面図、第4図bはその
a−a′線での切断断面図を示す。第3図に示され
る如くマスク板12には中央に穴13が形成され
る。この穴13によつてマスク板12の製造の際
の回転駆動が容易な様に工夫されている。即ちマ
スク板12の上記中央の穴13を利用してネジ押
えやマグネツトチヤツクを行ない、その固定保持
によりマスク板12の回転動作を安定的に行なう
ことができるものである。但し、マスク板12の
外周部分を保持する機構や真空吸引によりマスク
板12の面全体を保持する機構を採用する場合は
必ずしも上記マスク板の中央の穴13は必要でな
い。14には光メモリ素子のガイドトラツクのパ
ターンが形成され、15には光メモリ素子のガイ
ド番地のパターンが形成される。
FIG. 3 is an external perspective view of the completed mask plate 12,
FIG. 4a shows a partially enlarged plan view thereof, and FIG. 4b shows a cross-sectional view taken along line a-a'. As shown in FIG. 3, a hole 13 is formed in the center of the mask plate 12. This hole 13 is designed to facilitate rotational driving during manufacturing of the mask plate 12. That is, the hole 13 at the center of the mask plate 12 is used to hold screws or a magnetic chuck, and by holding the mask plate 12 in place, the rotation operation of the mask plate 12 can be performed stably. However, if a mechanism for holding the outer peripheral portion of the mask plate 12 or a mechanism for holding the entire surface of the mask plate 12 by vacuum suction is employed, the hole 13 in the center of the mask plate is not necessarily required. At 14, a pattern of a guide track of the optical memory element is formed, and at 15, a pattern of a guide address of the optical memory element is formed.

以上のマスク板12の構成はガラス基板6上に
該ガラス基板1より充分な可撓性を有する樹脂層
7を設け、その上に紫外線が通過するようにガイ
ドパターン状にくり抜きがなされたCr膜等の反
射性金属膜を積層した構造である。上記樹脂層7
はガラス基板6及びガラス基板1よりも可撓性が
高いので、マスク板3を光メモリ素子の基板1上
のフオトレジスト2に、機械的な圧力を加えたり
真空に引くことによつて、圧接した際に樹脂層7
が光メモリ素子の表面の形状に応じて変形するの
で、マスク板3と光メモリ素子の基板1上のフオ
トレジスト2とを密着させることができる。
The structure of the mask plate 12 described above is such that a resin layer 7 having sufficient flexibility than the glass substrate 1 is provided on a glass substrate 6, and a Cr film is formed on the resin layer 7, which is hollowed out in a guide pattern so that ultraviolet rays can pass therethrough. It has a structure in which reflective metal films such as the following are laminated. The resin layer 7
Since the mask plate 3 is more flexible than the glass substrate 6 and the glass substrate 1, the mask plate 3 was pressure-bonded to the photoresist 2 on the substrate 1 of the optical memory element by applying mechanical pressure or drawing a vacuum. At the same time, resin layer 7
is deformed according to the shape of the surface of the optical memory element, so that the mask plate 3 and the photoresist 2 on the substrate 1 of the optical memory element can be brought into close contact.

次に第2図cにおいて示した、Arレーザを集
光してマスクブランク5上にコートしたフオトレ
ジスト膜10にガイドトラツク及びガイド番地を
記録する工程を行なう装置構成について説明す
る。第5図にその装置構成の構成説明図を示す。
Arレーザ光源16から出た波長4579Åのレーザ
光は光変調器17の効率を上げるレンズ18、光
変調器17、光変調器17の効率を上げるレンズ
19を介してビームスプリツタ20に入射する。
該ビームスプリツタ20で光の一部が取り出され
て光検出器21でパワーモニタされる。この光検
出器21の出力により上記変調器17が制御され
レーザ光の出射パワーが一定になるように調整さ
れる。これはレーザ光の出射パワーが室温等の環
境条件の変動で変化するので、これを抑制する為
に行なわれるものである。22はレーザ光の光路
を変えるミラー、23は上述したフオトレジスト
膜10にガイド番地を記録する為に光を変調する
変調器、24,25は該変調器23の効率を上げ
る為のレンズである。レーザ光はミラー26で更
に光路を変えられ、変調光モニタ用ビームスプリ
ツタ27に入射する。該変調光モニタ用ビームス
プリツタ27で光の一部が取り出されて光検出器
28でパワーモニタされる。29は2色性ミラー
であり、レーザ光は該2色性ミラー29を通つた
後にスポツトレンズ30で集光され偏光ビームス
プリツター31により対物レンズ32に導かれ
る。33は後述するサーボ用のHe−Neレーザ3
4の波長に合わせた4分の1波長板、35は対物
レンズを上下に動かしてマスク板12の表面に常
に光が集光されるようサーボをかけるための対物
レンズ駆動部である。34はサーボ用レーザとし
て使用されるHe−Neレーザである。該He−Ne
レーザ34から出た光はミラー36で光路を変え
られ、2色性ミラー29でArレーザ光源16に
よるレーザ光路と同一の光路に至る。ここで2色
性ミラー29としてはArレーザ波長光(4579Å)
を通過せしめHe−Neレーザ波長光(6328Å)を
全反射せしめるものを用いる。又上記偏光ビーム
スプリツター31としてはHe−Neレーザ光のS
波を反射し且つP波を通過せしめ、Arレーザ光
を全反射せしめるものを用いる。37はシリンド
リカルレンズ、38は4分割検出器である。該4
分割検出器38にはマスク板12から反射された
光が入射しこの4分割検出器38の出力によつて
フオーカスサーボがかけられる。同図の点線に囲
まれた部分39はエアースライダー等の移動装置
に乗つて移動できるようになつている。そして回
転するマスク板12の半径方向にこの移動装置を
移動しながらArレーザを操作すればらせん状の
ガイドトラツクとガイド番地を潜像の形でフオト
レジスト膜10に記録できる。
Next, a description will be given of the configuration of an apparatus that performs the step of recording guide tracks and guide addresses on the photoresist film 10 coated on the mask blank 5 by condensing an Ar laser as shown in FIG. 2c. FIG. 5 shows an explanatory diagram of the device configuration.
Laser light with a wavelength of 4579 Å emitted from the Ar laser light source 16 enters the beam splitter 20 via a lens 18 that increases the efficiency of the optical modulator 17, an optical modulator 17, and a lens 19 that increases the efficiency of the optical modulator 17.
A portion of the light is taken out by the beam splitter 20 and its power is monitored by the photodetector 21. The modulator 17 is controlled by the output of the photodetector 21, and the output power of the laser beam is adjusted to be constant. This is done to suppress the fact that the output power of the laser beam changes due to fluctuations in environmental conditions such as room temperature. 22 is a mirror that changes the optical path of the laser beam; 23 is a modulator that modulates the light to record the guide address on the photoresist film 10; and 24 and 25 are lenses that increase the efficiency of the modulator 23. . The optical path of the laser beam is further changed by a mirror 26 and enters a beam splitter 27 for monitoring modulated light. A part of the light is taken out by the modulated light monitoring beam splitter 27 and its power is monitored by the photodetector 28. 29 is a dichroic mirror, and after passing through the dichroic mirror 29, the laser beam is focused by a spot lens 30 and guided to an objective lens 32 by a polarizing beam splitter 31. 33 is a He-Ne laser 3 for servo which will be described later.
A quarter wavelength plate 35 is adapted to the wavelength of 4, and 35 is an objective lens drive unit that moves the objective lens up and down and applies servo so that the light is always focused on the surface of the mask plate 12. 34 is a He-Ne laser used as a servo laser. The He-Ne
The optical path of the light emitted from the laser 34 is changed by the mirror 36 and reaches the same optical path as the laser optical path by the Ar laser light source 16 by the dichroic mirror 29. Here, the dichroic mirror 29 uses Ar laser wavelength light (4579 Å).
A device that allows the He-Ne laser wavelength light (6328 Å) to pass through and totally reflects the light is used. In addition, as the polarized beam splitter 31, S of the He-Ne laser beam is used.
A device that reflects waves, allows P waves to pass, and totally reflects Ar laser light is used. 37 is a cylindrical lens, and 38 is a four-part detector. Part 4
The light reflected from the mask plate 12 enters the divided detector 38, and focus servo is applied by the output of this four-divided detector 38. A portion 39 surrounded by a dotted line in the figure can be moved by riding on a moving device such as an air slider. By operating the Ar laser while moving this moving device in the radial direction of the rotating mask plate 12, the spiral guide track and guide address can be recorded on the photoresist film 10 in the form of a latent image.

以上の光メモリ素子の基板に対するガイドトラ
ツク、ガイド番地の溝の形成に際し、該溝の形状
は同心円状でも良く、又ガイド番地の情報は1周
に1度に限らず、2周あるいは3周に1度に設け
ても良く、更に1周に数度設けても構わない。
When forming guide tracks and guide address grooves on the substrate of the optical memory element described above, the shape of the grooves may be concentric circles, and the guide address information is not limited to once per round, but once every two or three rounds. It may be provided once or several times per round.

第6図は第1図に示した製法によつて得た基板
を用いて構成した光メモリ素子の一部側面断面図
を示す。同図においてガラス基板1上に凹凸の溝
4(即ちガイドトラツク)が形成され、該ガラス
基板1上に該ガラス基板1の屈折率より大きな屈
折率を有する例えばAlN膜、SiO膜等の誘電体膜
40が被覆される。この誘電体膜40の膜厚は
500〜1000Å程度である。上記誘電体膜40上に
GdTbFe,TbFe,GdCoFe等の希土類と遷移金
属との合金薄膜41(記録媒体)が被覆される。
この合金薄膜41の膜厚は50〜400Å程度である。
この合金薄膜41の膜厚の下限は垂直磁化膜の作
成条件から決まり、上限は磁気光学効果の増大条
件から決まる。よつて上記合金薄膜41の適正膜
厚は膜生成方法に依存する。上記合金薄膜41を
スパツタリングによつて膜生成する場合その膜厚
が50Å程度以下だと垂直磁化膜を得る事が困難で
あるのでその膜厚は50Å程度より大であることが
必要である。上記合金薄膜41の上にはAlN,
SiO2等の誘電体膜42、及びCu,Al、ステンレ
ス、Ni等の金属からなる反射膜43が形成され
る。上記誘電体膜42及び反射膜43は磁気光学
効果の特性向上を促すとともに上記合金薄膜41
への酸素及び水分の到達を防止する作用を有す
る。44は接着層、45は該接着層44より接着
されるガラス、アクリル等からなる保護板であ
る。この保護板45の代わりにメモリ素子の2枚
の背中合わせに貼り合わせて両面使用のメモリ素
子にすることも可能である。
FIG. 6 shows a partial side sectional view of an optical memory element constructed using a substrate obtained by the manufacturing method shown in FIG. In the figure, uneven grooves 4 (i.e. guide tracks) are formed on a glass substrate 1, and a dielectric film such as an AlN film or a SiO film having a refractive index higher than that of the glass substrate 1 is formed on the glass substrate 1. A membrane 40 is coated. The film thickness of this dielectric film 40 is
It is about 500 to 1000 Å. on the dielectric film 40
A thin alloy film 41 (recording medium) of a rare earth metal such as GdTbFe, TbFe, or GdCoFe and a transition metal is coated.
The thickness of this alloy thin film 41 is approximately 50 to 400 Å.
The lower limit of the film thickness of this alloy thin film 41 is determined by the conditions for forming the perpendicularly magnetized film, and the upper limit is determined by the conditions for increasing the magneto-optic effect. Therefore, the appropriate thickness of the alloy thin film 41 depends on the film formation method. When the alloy thin film 41 is formed by sputtering, it is difficult to obtain a perpendicularly magnetized film if the film thickness is less than about 50 Å, so the film thickness must be greater than about 50 Å. On the alloy thin film 41, AlN,
A dielectric film 42 such as SiO 2 and a reflective film 43 made of metal such as Cu, Al, stainless steel, and Ni are formed. The dielectric film 42 and the reflective film 43 promote improvement of the characteristics of the magneto-optic effect, and the alloy thin film 41
It has the effect of preventing oxygen and moisture from reaching the body. 44 is an adhesive layer, and 45 is a protective plate made of glass, acrylic, etc. that is adhered by the adhesive layer 44. Instead of this protective plate 45, it is also possible to make a double-sided memory element by pasting two sheets of the memory element back to back.

以上の説明の光メモリ素子の例は反射膜構造の
光磁気メモリ素子について示したが、本発明は第
6図に示した合金薄膜41の膜厚を厚くして反射
膜43を除去した構造を有する単層膜構造の光磁
気メモリ素子、あるいはTe,TeS,TeOx等を記
録媒体とする追加記録型の光メモリ素子において
も適用可能である。
Although the example of the optical memory element described above is a magneto-optical memory element having a reflective film structure, the present invention has a structure in which the alloy thin film 41 shown in FIG. 6 is thickened and the reflective film 43 is removed. It is also applicable to a magneto-optical memory element with a single layer film structure or an optical memory element of an additional recording type using Te, TeS, TeOx, etc. as a recording medium.

<効果> 以上のように、本願発明による光メモリ素子の
製造方法では、紫外線を透過するマスク用ガラス
基板上に可撓性を有する樹脂層と該樹脂層上に設
けられた光メモリ素子に形成されるべき凹凸状の
ガイドパターンに応じて整形された反射性金属層
とを備えてマスク板を用いるので、紫外線の透過
性のよいガラス基板を用いたマスク板でありなが
ら光メモリ素子用ガラス基板との充分な密着性を
確保することができる。また、本願発明は光メモ
リ素子用ガラス基板上にフオトレジスト膜を塗布
し、上述のマスク板を前記フオトレジスト膜が塗
布された光メモリ素子用ガラス基板上に重ね、前
記マスク板を介して前記フオトレジスト膜に紫外
線を照射し、前記マスク板のガイドパターンを前
記フオトレジスト膜に転写し、該フオトレジスト
膜を現像した後でエツチングにより前記光メモリ
素子用ガラス基板にガイドトラツクやガイド番地
を形成するので、樹脂材ではなくガラス製の基板
ガイドパターンあるいはガイド番地を容易に効率
よく形成することができるので光メモリ素子の量
産製を大いに高めることができ、また、これによ
つて量産品の光メモリ素子の基板としてガラス材
を利用することができるようになるので、光メモ
リ素子に用いられる酸素あるいは水分等に弱い記
録媒体の劣化を防ぐことのできる構造を備えた光
メモリ素子を提供することできる。
<Effects> As described above, in the method for manufacturing an optical memory element according to the present invention, a flexible resin layer is formed on a glass substrate for a mask that transmits ultraviolet rays, and an optical memory element provided on the resin layer is formed. Since the mask plate is equipped with a reflective metal layer shaped according to the uneven guide pattern, the mask plate is made of a glass substrate with good ultraviolet transmittance, but is not compatible with the glass substrate for optical memory elements. It is possible to ensure good adhesion. The present invention also provides a method in which a photoresist film is coated on a glass substrate for an optical memory element, the above-mentioned mask plate is placed on the glass substrate for an optical memory element coated with the photoresist film, and the photoresist film is applied to the glass substrate for an optical memory element through the mask plate. The film is irradiated with ultraviolet rays, the guide pattern of the mask plate is transferred to the photoresist film, and after the photoresist film is developed, guide tracks and guide addresses are formed on the glass substrate for optical memory element by etching. Since guide patterns or guide addresses can be easily and efficiently formed on substrates made of glass instead of resin, mass production of optical memory devices can be greatly improved. Since glass material can be used, it is possible to provide an optical memory element having a structure that can prevent deterioration of the recording medium used in the optical memory element, which is sensitive to oxygen or moisture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光メモリ素子の製法の一
実施例の基板の製法を工程順に示す説明図、第2
図はマスク板の製法を示す説明図、第3図はマス
ク板の外観斜視図、第4図aはマスク板の一部拡
大平面図、第4図bはそのa−a′線での切断断面
図、第5図はガイドトラツク及びガイド番地を記
録する工程を行なう装置構成の構成説明図、第6
図は光メモリ素子の一部側面断面図、第7図は従
来のメモリ基板の一部斜視図を示す。 図中、1……ガラス基板、2……フオトレジス
ト膜、3……マスク板、4……溝、5……マスク
プランク、6……ガラス基板、7……樹脂膜、8
a,8b……CrOx膜、9……Cr膜、10……フ
オトレジスト膜。
FIG. 1 is an explanatory diagram showing the manufacturing method of a substrate according to an embodiment of the method for manufacturing an optical memory element according to the present invention in the order of steps;
The figure is an explanatory diagram showing the manufacturing method of the mask plate, Fig. 3 is an external perspective view of the mask plate, Fig. 4 a is a partially enlarged plan view of the mask plate, and Fig. 4 b is a cut along line a-a'. FIG. 5 is a cross-sectional view, and FIG.
The figure shows a partial side sectional view of an optical memory element, and FIG. 7 shows a partial perspective view of a conventional memory board. In the figure, 1...Glass substrate, 2...Photoresist film, 3...Mask plate, 4...Groove, 5...Mask plank, 6...Glass substrate, 7...Resin film, 8
a, 8b...CrOx film, 9...Cr film, 10...photoresist film.

Claims (1)

【特許請求の範囲】 1 光メモリ素子用ガラス基板上にフオトレジス
ト膜を塗布し、 紫外線を透過するマスク用ガラス基板上に可撓
性を有する樹脂層と該樹脂層上に設けられた光メ
モリ素子に形成されるべき凹凸状のガイドパター
ンに応じて整形された反射性金属層とを備えたマ
スク板を前記フオトレジスト膜が塗布された光メ
モリ素子用ガラス基板上に重ね、 前記マスク板を介して前記フオトレジスト膜に
紫外線を照射し、 前記マスク板のガイドパターンを前記フオトレ
ジスト膜に転写し、 該フオトレジスト膜を現像した後でエツチング
により前記光メモリ素子用ガラス基板にガイドパ
ターンを掘り込むことを特徴とする光メモリ素子
の製造方法。
[Claims] 1. A photoresist film is coated on a glass substrate for an optical memory element, a flexible resin layer is applied to a glass substrate for a mask that transmits ultraviolet rays, and an optical memory element provided on the resin layer is coated with a photoresist film. A mask plate provided with a reflective metal layer shaped according to the uneven guide pattern to be formed is placed on the glass substrate for an optical memory element coated with the photoresist film, and the The photoresist film is irradiated with ultraviolet rays to transfer the guide pattern of the mask plate onto the photoresist film, and after the photoresist film is developed, the guide pattern is dug into the optical memory element glass substrate by etching. A method for manufacturing an optical memory element.
JP5384384A 1984-03-16 1984-03-19 Manufacture of optical memory element Granted JPS60197960A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5384384A JPS60197960A (en) 1984-03-19 1984-03-19 Manufacture of optical memory element
EP85102922A EP0155000B1 (en) 1984-03-16 1985-03-14 Method of manufacturing optical memory element
DE8585102922T DE3583754D1 (en) 1984-03-16 1985-03-14 METHOD FOR PRODUCING AN OPTICAL STORAGE ELEMENT.
CA000476648A CA1225467A (en) 1984-03-16 1985-03-15 Method of manufacturing optical memory element
US07/017,456 US4778747A (en) 1984-03-16 1987-02-24 Method of manufacturing optical memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5384384A JPS60197960A (en) 1984-03-19 1984-03-19 Manufacture of optical memory element

Publications (2)

Publication Number Publication Date
JPS60197960A JPS60197960A (en) 1985-10-07
JPH0585972B2 true JPH0585972B2 (en) 1993-12-09

Family

ID=12954056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5384384A Granted JPS60197960A (en) 1984-03-16 1984-03-19 Manufacture of optical memory element

Country Status (1)

Country Link
JP (1) JPS60197960A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506123B2 (en) * 1987-09-29 1996-06-12 シャープ株式会社 optical disk
CN104668894B (en) * 2013-12-03 2017-02-08 宁波江丰电子材料股份有限公司 Method for manufacturing suspension mask plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529353A (en) * 1975-07-11 1977-01-24 Matsushita Electric Ind Co Ltd Solid-state oscillator
JPS5477105A (en) * 1977-12-01 1979-06-20 Pioneer Electronic Corp Method of producing optical signal recording carrier
JPS5532250A (en) * 1978-08-25 1980-03-06 Matsushita Electric Ind Co Ltd Duplicating method for fine pattern
JPS57189893A (en) * 1981-05-20 1982-11-22 Fuji Photo Film Co Ltd Duplication of optical information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529353A (en) * 1975-07-11 1977-01-24 Matsushita Electric Ind Co Ltd Solid-state oscillator
JPS5477105A (en) * 1977-12-01 1979-06-20 Pioneer Electronic Corp Method of producing optical signal recording carrier
JPS5532250A (en) * 1978-08-25 1980-03-06 Matsushita Electric Ind Co Ltd Duplicating method for fine pattern
JPS57189893A (en) * 1981-05-20 1982-11-22 Fuji Photo Film Co Ltd Duplication of optical information

Also Published As

Publication number Publication date
JPS60197960A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
US4778747A (en) Method of manufacturing optical memory element
US7136349B2 (en) Multi-layer optical information recording medium with pits or grooves
JPH09326136A (en) Optical recording medium and its production
JPS60170045A (en) Production of optical disk with address and guide groove
JP2000231745A (en) Optical recording medium, original disk for manufacturing optical recording medium, and its manufacture
JPH04935B2 (en)
JPH10302321A (en) Optical disk and manufacture of the same
JPS60195751A (en) Manufacture of optical memory element
JP2665281B2 (en) Method for manufacturing optical memory device
JPH0585972B2 (en)
JP2566111B2 (en) Magneto-optical memory device
JPS60147946A (en) Manufacture of optical memory element
JPH10106047A (en) Production of optical recording medium
JPS59210547A (en) Manufacture of optical memory element
JPH10241214A (en) Manufacture of stamper for optical disk
JPH0935334A (en) Optical disk and method for accessing optical disk
JPS6371957A (en) Manufacture of stamper for manufacturing optical information recording medium disk with guide groove having v-shaped section
JPH0660436A (en) Production of optical disk
JPH10149593A (en) Magneto-optical memory element
JPH06282890A (en) Magneto-optical memory cell
JPS6275952A (en) Production of optical memory element
JPH11238256A (en) Device and method for the production of optical record medium
JPS6266445A (en) Production of optical memory element
JPH07334869A (en) Recording member for information
JPH05135411A (en) Optical recording medium