JPH0585515B2 - - Google Patents

Info

Publication number
JPH0585515B2
JPH0585515B2 JP63204778A JP20477888A JPH0585515B2 JP H0585515 B2 JPH0585515 B2 JP H0585515B2 JP 63204778 A JP63204778 A JP 63204778A JP 20477888 A JP20477888 A JP 20477888A JP H0585515 B2 JPH0585515 B2 JP H0585515B2
Authority
JP
Japan
Prior art keywords
mold
quartz
crucible
heating
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63204778A
Other languages
Japanese (ja)
Other versions
JPH0255285A (en
Inventor
Shin Takeshita
Nobuyuki Tateno
Nobuya Watanabe
Arekisandaa Uintaaban Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20477888A priority Critical patent/JPH0255285A/en
Publication of JPH0255285A publication Critical patent/JPH0255285A/en
Publication of JPH0585515B2 publication Critical patent/JPH0585515B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、半導体用シリコン単結晶を製造する
際に用いられる石英ルツボの製造方法と装置に関
する。 〔従来技術と問題点〕 多結晶シリコンからシリコン単結晶を製造する
際に、多結晶シリコンを溶融するために石英ルツ
ボが用いられる。 石英ルツボの製造に関し、従来幾つかの製造方
法が知られている。その一例によると、回転可能
な中空のモールドに、原料の石英粉体が該モール
ドの内周面に沿つて充填され、モールドを回転し
ながら石英粉体を加熱溶融することにより遠心力
の作用により溶融又は半溶融の石英充填層がモー
ルド内周面に押圧されルツボの形状に焼結され
る。この方法によつて製造される石英ルツボはそ
の壁体内部に気泡が多数残留する欠点がある。壁
体(周壁及び底壁)に気泡が多いとルツボの強度
が低下する。更にルツボの加熱時にルツボ内周面
付近の気泡が熱膨張して該内周面を部分的に剥離
させ、剥離した石英小片が溶融シリコンに混入し
て単結晶化率(シリコン多結晶が単結晶になる割
合)が低下する。 其処で、内部気泡の少ないルツボが求められ、
その製造法として、モールドに充填した石英粉体
を減圧下で加熱溶融する方法が知られている(特
公昭59−34659号)。この方法によると、モールド
に充填した石英層の内部気泡が溶融時に吸引除去
されるので、肉眼では壁体内部に気泡が殆ど観察
されないルツボが得られる。然し乍ら、この製造
方法においては、製造時に、回転するモールドの
内側で石英充填層が加熱溶融されるに伴い、石英
に比べて格段に比重の小さい気泡が次第に回転軸
側つまり石英充填層の内周面側に移動し、肉眼で
は観察出来ない微小な気泡(マイクロバブル)が
壁体内周面の近傍に偏在することになる。該微小
気泡はルツボ加熱時に熱膨張して前述と同様の問
題を生じる。 〔発明の目的及び構成〕 本発明は、ルツボ壁体外周側部分に気泡が残存
する一方壁体内周面近傍に気泡が少ない石英ルツ
ボの製造方法およびその装置を提供することを目
的とする。 本発明によれば、回転するガス透過性モールド
の内周面に沿つて石英粉体を充填し、該石英粉体
充填層をその内周面側から加熱溶融し、該溶融時
にモールドの外周を減圧して石英粉体の内部ガス
をガス透過性モールドの壁を通じて吸引排気しな
がらルツボの形状に成形する製造方法において、
上記加熱溶融の途中で減圧を停止することにより
内周側部分に比較して外周側部分の気泡含有率が
大きい石英ルツボを製造する方法が提供される。 また、本発明によれば、回転自在なガス透過性
モールドと、該モールドの回転手段と、該モール
ドの外周を減圧する手段と、該モールドの内側に
装入される取外し自在な中子及び加熱手段とを有
する石英ルツボ製造装置において、モールドがモ
ールドホルダに脱着自在に嵌着しており、該モー
ルドホルダは該モールドを支持して回転し且つ該
モールドの外周に減圧室を形成することを特徴と
する装置が提供される。 本発明の製造方法において、ボウル(椀)状で
あり壁面に排気用の小孔を有するガス透過性の回
転可能なモールドが用いられる。該モールドの中
空な内側中央に中子を挿入し、モールドを回転し
ながらモールドと中子の間に原料の石英粉体を供
給する。石英粉体は回転するモールドの遠心力の
作用によりモールド内周面に押しつけられ、該内
周面に沿つて堆積し石英充填層を形成する。次に
中子を引き上げ、アーク電極などの加熱源を挿入
し、石英充填層をその内周面側から加熱溶融す
る。該加熱により先ず石英充填層の内周面に薄い
溶融乃至半溶融の被覆が形成される。一方、該加
熱の際にモールドを減圧し、ガス透過性内周面を
通じて石英充填層内部のガスを吸引排気する。加
熱の進行に伴い、石英充填層はその内周面から外
表面付近まで次第に溶融し焼結する。以上述べた
石英粉体の充填から減圧下での加熱溶融までの工
程は、従来の製造方法と共通する。 本発明の製造方法は、上記減圧操作を加熱溶融
の途中で停止し、減圧停止後、更に石英充填層を
その内周面から加熱する点において、従来の製造
方法と根本的に異なる。上記減圧操作によりルツ
ボ壁体内部の気泡は外周側部分に引き寄せられて
おり、該減圧の停止により外周側部分は気泡が残
留したまま焼結する。一方内周面側部分は、微小
気泡が残留するものの比較的大きな気泡は外周側
部分に引き寄せられて内周側部分には存在しない
ため気泡の少ない状態で焼結する。この結果、ル
ツボ外周側部分の気泡含有率が内周側部分より大
きいルツボが得られる。 減圧停止時間については、加熱溶融をt分間行
なう場合、加熱開始から0.2t分後〜0.9t分後に上
記吸引排気を停止するのが良い。0.2t分より前に
減圧を停止すると、単結晶シリコンの引上げに必
要な溶融厚みを有する透明層が形成されない。
0.9t分より長く減圧を継続すると排気孔に溶融層
が吹込まれて外周面に凸部が生じるので好ましく
ない。石英充填層の外表面に薄い未溶融状態の剥
離層を残して上記加熱を終了し、冷却固化後、モ
ールドから取り出す。なお、減圧力の大きさによ
り内周側部分の気泡含有率が変化し、減圧力が大
きいほど気泡含有率が小さい。 上記製造方法を実施するための装置として、回
転自在なガス透過性モールドと、該モールドの回
転手段と、該モールドの外周を減圧する手段と、
該モールドの内側に装入される取外し自在な中子
及び上下動自在な加熱手段とを有する石英ルツボ
製造装置であつて、モールドがモールドホルダに
脱着自在に嵌着しており、該モールドホルダは該
モールドを支持して回転し且つ該モールドの外周
に減圧室を形成することを特徴とする装置を用い
ることが出来る。 本発明に係る製造装置の一例を図に示す。該製
造装置10は、回転自在なモールド形成部分20
と、該モールド形成部分20を回転する回転手段
(図示省略)と、該モールド形成部分20に接続
する減圧手段30とを有する。モールド形成部分
20は石英粉体が装入されるモールド21と該モ
ールド21を支持するモールドホルダ22とから
形成される。モールド21及びモールドホルダ2
2は何れも中空であり、筒状の周壁21a,22
aと底壁21b,22bとを有し、此れ等は気密
な減圧室23を形成して脱着自在に嵌合してい
る。モールド21及びモールドホルダ22は回転
手段により一体に回転される。モールド21には
複数本の排気孔24が穿設されており、該排気孔
24はモールド21の壁21cを通じて上記減圧
室23に連通している。モールド21の下端外周
にモールドホルダ22の上端22cが挿入する嵌
合溝を設け、且つ該外周縁部にモールドホルダ2
2の上部内周面に密着する凸部21dを形成する
と良い。モールドホルダ22の底壁22bには減
圧機構30に通じる孔25が設けられている。減
圧機構30は真空ポンプ31、フイルター32及
び電磁バルブ33を含む配管系により構成されて
いる。 モールド21の上方には上下動自在な中子40
とアーク放電を行なう上下動自在な電極50が配
設されている。これら中子40及び電極50は従
来のものを用いることができる。 〔発明の効果〕 本発明の製造方法によれば、壁体内周面付近の
気泡含有率が小さく且つ外周側部分の気泡含有率
の大きなルツボが得られる。本発明の製造方法に
係るルツボは、ルツボの使用時に加熱されても、
内周側部分の微小気泡が気泡含有率の大きな外周
側部分に吸収され、此の結果、内周側部分の気泡
の熱膨張が抑制されるのでルツボ内周面の部分的
な剥離を生じる虞がない。従つて、従来の方法で
製造されたルツボに比べ、単結晶化率が格段に良
い。 本発明に係る製造装置によれば、上記減圧停止
後に、モールドとモールドホルダとの間の微小間
隙から大気が侵入して減圧室内部が直ちに大気圧
に復帰するので石英充填層の吸引が迅速に停止さ
れ、外周側部分に気泡を残存させるのが容易であ
る。また、本発明の装置においては、モールドと
モールドホルダとを分離できるので、口径の異な
るルツボを製造する際、モールドのみを取替えて
使用できる。減圧機構を有する製造装置において
は、該減圧機構に接続されている部分の交換が煩
雑であり、本発明装置のように減圧機構が接続さ
れているモールドホルダを交換せずに使用できる
実用上の利点は大きい。 〔実施例〕 実施例 1 図に示す装置を用い、回転するモールド21に
中子40を挿入し、これらの間の石英粉体を充填
し、モールド21の内周面に沿つて、石英充填層
を形成した。引き続き中子40を引き上げて電極
50をモールド内側の中央部に挿入し、アーク放
電を行なつて、石英充填層をその内周面側から加
熱溶融した。16インチ径のルツボの場合、加熱開
始から45秒後に石英充填層の内周面に薄い溶融層
が形成され、この時点で減圧機構30の真空ポン
プ31を作動させ、石英充填層内部のガスをモー
ルド10の通気孔24を通じ、−600mmHgの圧力
で吸引排気した。減圧開始から180秒後に減圧を
停止し、アーク放電を継続した。減圧停止後、モ
ールド21とモールドホルダ22との隙間からエ
アーが漏入して減圧室23が大気圧に復帰し、減
圧停止後の加熱は大気圧下で継続された。アーク
溶融開始から15分後にアーク放電を終了し冷却し
て石英ルツボを得た(試料No.1)。 実施例 2 減圧停止時間を減圧開始から540秒後に変えた
他は実施例1と同条件で石英ルツボを製造した
(試料No.2)。 実施例 3 減圧力を−650mmHgに変えた他は実施例1と同
条件で石英ルツボを製造した(試料No.3)。 比較例 1 溶融時の全時間を通じて減圧を行つた他は実施
例1と同条件で石英ルツボを製造した(試料No.
4)。 比較例 2 減圧停止時間を減圧開始から150秒後に変え、
他は実施例1と同条件で内側透明層の極端に薄い
石英ルツボを製造した(試料No.5)。 比較例 3 減圧力を−100mmHgに変えた他は実施例1と同
条件で石英ルツボを製造した(試料No.6)。 上記石英ルツボを用いて多結晶シリコンを溶融
し、単結晶シリコンを引き上げた。この場合の単
結晶化率を石英ルツボの気泡含有率と共に次表に
示す。
[Industrial Application Field] The present invention relates to a method and apparatus for manufacturing a quartz crucible used in manufacturing silicon single crystals for semiconductors. [Prior Art and Problems] When producing silicon single crystals from polycrystalline silicon, a quartz crucible is used to melt the polycrystalline silicon. Several manufacturing methods are conventionally known for manufacturing quartz crucibles. According to one example, raw quartz powder is filled into a rotatable hollow mold along the inner peripheral surface of the mold, and by heating and melting the quartz powder while rotating the mold, the quartz powder is heated and melted by the action of centrifugal force. A molten or semi-molten quartz filling layer is pressed against the inner peripheral surface of the mold and sintered into the shape of a crucible. The quartz crucible manufactured by this method has the disadvantage that many air bubbles remain inside the wall. If there are many bubbles in the walls (peripheral wall and bottom wall), the strength of the crucible will decrease. Furthermore, when the crucible is heated, bubbles near the inner circumferential surface of the crucible expand thermally, causing the inner circumferential surface to partially peel off, and the peeled off quartz pieces mix into the molten silicon, increasing the single crystallization rate (silicon polycrystalline becomes single crystal). ) will decrease. Therefore, a crucible with few internal bubbles is required.
As a manufacturing method, a method is known in which quartz powder filled in a mold is heated and melted under reduced pressure (Japanese Patent Publication No. 34659/1983). According to this method, since the air bubbles inside the quartz layer filled in the mold are removed by suction during melting, a crucible with almost no air bubbles observed inside the wall can be obtained with the naked eye. However, in this manufacturing method, as the quartz filling layer is heated and melted inside the rotating mold during manufacturing, air bubbles, which have a much lower specific gravity than quartz, gradually move toward the rotating shaft side, that is, the inner periphery of the quartz filling layer. Microbubbles that move toward the surface and cannot be observed with the naked eye become unevenly distributed near the inner peripheral surface of the wall. The microbubbles thermally expand when the crucible is heated, causing the same problem as described above. [Objective and Structure of the Invention] An object of the present invention is to provide a method and apparatus for manufacturing a quartz crucible in which air bubbles remain on the outer circumferential side of the crucible wall while fewer air bubbles are present near the inner circumferential surface of the wall. According to the present invention, quartz powder is filled along the inner peripheral surface of a rotating gas permeable mold, the quartz powder filled layer is heated and melted from the inner peripheral surface side, and the outer periphery of the mold is In a manufacturing method in which the internal gas of quartz powder is sucked and exhausted through the wall of a gas-permeable mold by reducing the pressure and molding it into the shape of a crucible,
There is provided a method for manufacturing a quartz crucible in which the outer circumferential portion has a higher bubble content than the inner circumferential portion by stopping the depressurization in the middle of the heating and melting. Further, according to the present invention, there is provided a rotatable gas permeable mold, a means for rotating the mold, a means for reducing the pressure around the outer periphery of the mold, a removable core inserted into the inside of the mold, and a heating member. In the quartz crucible manufacturing apparatus, the mold is detachably fitted into a mold holder, the mold holder rotates while supporting the mold, and forms a decompression chamber around the outer periphery of the mold. A device is provided. In the manufacturing method of the present invention, a rotatable, gas-permeable mold that is bowl-shaped and has small holes for exhaust air in the wall surface is used. A core is inserted into the hollow center of the mold, and the raw material quartz powder is supplied between the mold and the core while rotating the mold. The quartz powder is pressed against the inner peripheral surface of the mold by the centrifugal force of the rotating mold, and is deposited along the inner peripheral surface to form a quartz filled layer. Next, the core is pulled up, a heating source such as an arc electrode is inserted, and the quartz filling layer is heated and melted from the inner peripheral surface side. The heating first forms a thin molten or semi-molten coating on the inner peripheral surface of the quartz filling layer. On the other hand, during the heating, the pressure of the mold is reduced, and the gas inside the quartz packed layer is sucked and exhausted through the gas-permeable inner circumferential surface. As the heating progresses, the quartz filled layer gradually melts and sinters from the inner peripheral surface to the vicinity of the outer surface. The steps described above from filling quartz powder to heating and melting under reduced pressure are common to conventional manufacturing methods. The manufacturing method of the present invention is fundamentally different from conventional manufacturing methods in that the decompression operation is stopped midway through heating and melting, and after the depressurization is stopped, the quartz packed bed is further heated from its inner peripheral surface. The air bubbles inside the crucible wall are drawn to the outer circumference side by the pressure reduction operation, and when the pressure reduction is stopped, the outer circumference side is sintered with the air bubbles remaining. On the other hand, in the inner circumferential surface side, although small bubbles remain, relatively large bubbles are attracted to the outer circumferential side and do not exist in the inner circumferential side, so that the sintering is performed in a state with few bubbles. As a result, a crucible is obtained in which the bubble content in the outer circumferential portion of the crucible is higher than in the inner circumferential portion. Regarding the depressurization stop time, when heating and melting is performed for t minutes, it is preferable to stop the suction and exhaust after 0.2 t minutes to 0.9 t minutes from the start of heating. If the vacuum is stopped before 0.2 t minutes, a transparent layer having the melt thickness necessary for pulling single crystal silicon will not be formed.
Continuing the depressurization for longer than 0.9 t is not preferable because a molten layer will be blown into the exhaust hole and a convex portion will be formed on the outer peripheral surface. The above heating is completed leaving a thin unmelted peeling layer on the outer surface of the quartz filled layer, and after cooling and solidifying, it is taken out from the mold. Note that the bubble content in the inner circumferential portion changes depending on the magnitude of the reduced pressure, and the larger the reduced pressure, the smaller the bubble content. As an apparatus for carrying out the above manufacturing method, a rotatable gas permeable mold, a means for rotating the mold, a means for reducing pressure around the outer periphery of the mold,
A quartz crucible manufacturing apparatus having a removable core inserted into the inside of the mold and a heating means that can be moved up and down, the mold being removably fitted into a mold holder, the mold holder being It is possible to use an apparatus that supports and rotates the mold and forms a vacuum chamber around the outer periphery of the mold. An example of a manufacturing apparatus according to the present invention is shown in the figure. The manufacturing apparatus 10 includes a rotatable mold forming section 20.
, a rotating means (not shown) for rotating the mold forming part 20 , and a pressure reducing means 30 connected to the mold forming part 20 . The mold forming portion 20 is formed from a mold 21 into which quartz powder is charged and a mold holder 22 that supports the mold 21. Mold 21 and mold holder 2
2 are both hollow and have cylindrical peripheral walls 21a, 22.
a and bottom walls 21b and 22b, which form an airtight decompression chamber 23 and are removably fitted together. The mold 21 and mold holder 22 are rotated together by a rotating means. A plurality of exhaust holes 24 are bored in the mold 21, and the exhaust holes 24 communicate with the decompression chamber 23 through the wall 21c of the mold 21. A fitting groove into which the upper end 22c of the mold holder 22 is inserted is provided on the outer periphery of the lower end of the mold 21, and the mold holder 2 is provided on the outer periphery of the mold 21.
It is preferable to form a convex portion 21d that closely contacts the upper inner circumferential surface of No.2. A hole 25 communicating with the pressure reducing mechanism 30 is provided in the bottom wall 22b of the mold holder 22. The pressure reducing mechanism 30 is composed of a piping system including a vacuum pump 31, a filter 32, and an electromagnetic valve 33. Above the mold 21 is a core 40 that is vertically movable.
A vertically movable electrode 50 is provided to perform arc discharge. Conventional cores 40 and electrodes 50 can be used. [Effects of the Invention] According to the manufacturing method of the present invention, a crucible can be obtained in which the bubble content near the inner circumferential surface of the wall is small and the bubble content is large in the outer circumference side portion. Even if the crucible according to the manufacturing method of the present invention is heated during use,
The microbubbles on the inner circumferential side are absorbed by the outer circumferential side, which has a large bubble content, and as a result, the thermal expansion of the bubbles on the inner circumferential side is suppressed, which may cause partial peeling of the inner circumferential surface of the crucible. There is no. Therefore, compared to crucibles manufactured by conventional methods, the single crystallization rate is much better. According to the manufacturing apparatus according to the present invention, after the depressurization is stopped, the atmosphere enters through the minute gap between the mold and the mold holder, and the inside of the decompression chamber immediately returns to atmospheric pressure, so that the suction of the quartz packed layer is quickly performed. It is easy to stop the air bubbles and leave bubbles on the outer peripheral side. Furthermore, in the apparatus of the present invention, the mold and mold holder can be separated, so when manufacturing crucibles with different diameters, only the mold can be used by replacing it. In manufacturing equipment that has a pressure reduction mechanism, it is complicated to replace the parts connected to the pressure reduction mechanism. The benefits are great. [Example] Example 1 Using the apparatus shown in the figure, insert the core 40 into the rotating mold 21, fill the space between them with quartz powder, and form a quartz filling layer along the inner peripheral surface of the mold 21. was formed. Subsequently, the core 40 was pulled up, the electrode 50 was inserted into the center inside the mold, and arc discharge was performed to heat and melt the quartz filling layer from the inner peripheral surface side. In the case of a 16-inch diameter crucible, a thin molten layer is formed on the inner peripheral surface of the quartz packed bed 45 seconds after the start of heating, and at this point, the vacuum pump 31 of the pressure reduction mechanism 30 is activated to remove the gas inside the quartz packed bed. The air was sucked and exhausted through the vent hole 24 of the mold 10 at a pressure of -600 mmHg. Depressurization was stopped 180 seconds after the start of depressurization, and arc discharge was continued. After the decompression was stopped, air leaked through the gap between the mold 21 and the mold holder 22, and the decompression chamber 23 returned to atmospheric pressure, and the heating after the decompression was stopped was continued under atmospheric pressure. Fifteen minutes after the start of arc melting, arc discharge was terminated and cooled to obtain a quartz crucible (Sample No. 1). Example 2 A quartz crucible was manufactured under the same conditions as in Example 1, except that the decompression stop time was changed to 540 seconds after the start of decompression (Sample No. 2). Example 3 A quartz crucible was manufactured under the same conditions as in Example 1 except that the reduced pressure was changed to -650 mmHg (Sample No. 3). Comparative Example 1 A quartz crucible was manufactured under the same conditions as Example 1, except that the pressure was reduced throughout the melting period (Sample No.
4). Comparative example 2 The decompression stop time was changed to 150 seconds after the start of decompression,
A quartz crucible with an extremely thin inner transparent layer was manufactured under the same conditions as in Example 1 (Sample No. 5). Comparative Example 3 A quartz crucible was manufactured under the same conditions as in Example 1 except that the reduced pressure was changed to -100 mmHg (Sample No. 6). Polycrystalline silicon was melted using the above quartz crucible, and single crystal silicon was pulled up. The single crystallization rate in this case is shown in the following table along with the bubble content of the quartz crucible.

【表】 (注) ◎:良好、×:不良
[Table] (Note) ◎: Good, ×: Bad

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る製造装置の一例を示す模式的
な部分断面図である。 図面中、20……モールド形成部分、21……
モールド、22……モールドホルダ、23……減
圧室、30……減圧機構、40……中子、50…
…電極。
The figure is a schematic partial sectional view showing an example of a manufacturing apparatus according to the present invention. In the drawings, 20...mold forming part, 21...
Mold, 22... Mold holder, 23... Decompression chamber, 30... Decompression mechanism, 40... Core, 50...
…electrode.

Claims (1)

【特許請求の範囲】 1 回転するガス透過性モールドの内周面に沿つ
て石英粉体を充填し、該石英粉体充填層をその内
周面側から加熱溶融し、該溶融時にモールドの外
周を減圧して石英粉体の内部ガスをガス透過性モ
ールドの壁を通じて吸引排気しながらルツボの形
状に成形する製造方法において、上記加熱溶融の
途中で減圧を停止することにより内周側部分に比
較して外周側部分の気泡含有率が大きい石英ルツ
ボを製造する方法。 2 加熱溶融をt分間行なう際に、加熱開始から
0.2t分後〜0.9t分後に吸引排気を停止して、外周
側部分の気泡含有率を内周側部分より大きくする
第1請求項の方法。 3 回転自在なガス透過性モールドと、該モール
ドの回転手段と、該モールドの外周を減圧する手
段と、該モールドの内側に装入される取外し自在
な中子及び加熱手段とを有する石英ルツボ製造装
置において、モールドがモールドホルダに脱着自
在に嵌着しており、該モールドホルダは該モール
ドを支持して回転し且つ該モールドの外周に減圧
室を形成することを特徴とする装置。
[Claims] 1. Filling quartz powder along the inner peripheral surface of a rotating gas permeable mold, heating and melting the quartz powder filled layer from the inner peripheral surface side, and at the time of melting, the outer periphery of the mold. In this production method, the internal gas of the quartz powder is sucked and exhausted through the wall of a gas-permeable mold and molded into a crucible shape. A method of manufacturing a quartz crucible with a high bubble content in the outer circumference. 2 When heating and melting for t minutes, from the start of heating
The method according to claim 1, wherein suction and exhaust are stopped after 0.2 t minutes to 0.9 t minutes, and the bubble content in the outer circumference side portion is made larger than that in the inner circumference side portion. 3. Production of a quartz crucible having a rotatable gas permeable mold, a means for rotating the mold, a means for reducing pressure around the outer periphery of the mold, a removable core inserted into the inside of the mold, and a heating means. An apparatus characterized in that the mold is removably fitted into a mold holder, the mold holder rotates while supporting the mold, and forms a decompression chamber around the outer periphery of the mold.
JP20477888A 1988-08-19 1988-08-19 Method and appartus for producing quartz crucible Granted JPH0255285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20477888A JPH0255285A (en) 1988-08-19 1988-08-19 Method and appartus for producing quartz crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20477888A JPH0255285A (en) 1988-08-19 1988-08-19 Method and appartus for producing quartz crucible

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9067778A Division JP2736969B2 (en) 1997-03-21 1997-03-21 Quartz crucible manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0255285A JPH0255285A (en) 1990-02-23
JPH0585515B2 true JPH0585515B2 (en) 1993-12-07

Family

ID=16496192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20477888A Granted JPH0255285A (en) 1988-08-19 1988-08-19 Method and appartus for producing quartz crucible

Country Status (1)

Country Link
JP (1) JPH0255285A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011866B2 (en) * 1994-11-30 2000-02-21 信越石英株式会社 Single wafer processing equipment
US5651827A (en) * 1996-01-11 1997-07-29 Heraeus Quarzglas Gmbh Single-wafer heat-treatment apparatus and method of manufacturing reactor vessel used for same
JP5273512B2 (en) 2007-10-25 2013-08-28 株式会社Sumco Quartz glass crucible and its manufacturing method and application
EP2264226A4 (en) 2008-03-31 2011-07-27 Japan Super Quartz Corp Quartz glass crucible and process for producing the same
JP5042971B2 (en) 2008-11-28 2012-10-03 株式会社Sumco Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP5058138B2 (en) 2008-12-09 2012-10-24 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystals
US8272234B2 (en) * 2008-12-19 2012-09-25 Heraeus Shin-Etsu America, Inc. Silica crucible with pure and bubble free inner crucible layer and method of making the same
JP4975012B2 (en) 2008-12-29 2012-07-11 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
KR102443802B1 (en) * 2020-09-25 2022-09-19 주식회사 솔레드 Manufacturing apparatus of semiconductor ring and manufacturing method of semiconductor ring using the same
KR102443805B1 (en) * 2020-11-03 2022-09-19 주식회사 솔레드 Manufacturing apparatus of semiconductor ring and manufacturing method of semiconductor ring using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850955A (en) * 1981-09-22 1983-03-25 株式会社フオ−ブレイン Resin capsule and apparatus for molding resin floor denture and crown
JPS5934659A (en) * 1982-08-20 1984-02-25 Toshiba Corp Solid-state image pickup device
JPH01157426A (en) * 1987-12-15 1989-06-20 Toshiba Ceramics Co Ltd Manufacturing device for quartz glass crucible
JPH01160836A (en) * 1987-12-17 1989-06-23 Tokyo Ceramics Kk Production of quartz glass crucible

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850955A (en) * 1981-09-22 1983-03-25 株式会社フオ−ブレイン Resin capsule and apparatus for molding resin floor denture and crown
JPS5934659A (en) * 1982-08-20 1984-02-25 Toshiba Corp Solid-state image pickup device
JPH01157426A (en) * 1987-12-15 1989-06-20 Toshiba Ceramics Co Ltd Manufacturing device for quartz glass crucible
JPH01160836A (en) * 1987-12-17 1989-06-23 Tokyo Ceramics Kk Production of quartz glass crucible

Also Published As

Publication number Publication date
JPH0255285A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
JP4285788B2 (en) Manufacturing method of large diameter quartz crucible for single crystal pulling
KR101174812B1 (en) Quartz glass crucible for pulling silicon single crystal and method for producing the same
EP2199262B1 (en) Method of making a silica crucible with pure and bubble free inner crucible layer
JPS5934659B2 (en) Manufacturing method of quartz glass crucible and its equipment
US20020166341A1 (en) Technique for quartz crucible fabrication having reduced bubble content in the wall
US20100319608A1 (en) Silica glass crucible, method of manufacturing the same and pulling method
JPH0585515B2 (en)
JP4398527B2 (en) Silica glass crucible for pulling silicon single crystals
JP3798849B2 (en) Quartz crucible manufacturing apparatus and method
JPH0920586A (en) Production of quartz glass crucible for pulling silicon single crystal
JP2009040680A (en) Method for producing silica glass crucible
JP2736969B2 (en) Quartz crucible manufacturing equipment
JP4548682B2 (en) Manufacturing method of quartz glass crucible
JP4054434B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP5639264B2 (en) Method for producing a quartz glass crucible
JP4236750B2 (en) Quartz crucible production equipment
JPH08301693A (en) Quartz crucible for pulling up single crystal of silicon
JP2002003228A (en) Apparatus for producing quartz glass crucible
JP6795461B2 (en) Manufacturing method of quartz glass crucible
JP2006096616A (en) Silica glass crucible and method for manufacturing the same
JP2001302391A (en) Method of producing quartz glass crucible for pulling silicon single crystal
JP2000169164A (en) Process and device for producing quartz glass crucible
JP3807785B2 (en) Hollow mold for quartz crucible production
JPH0859262A (en) Production of quartz glass crucible
JP6659408B2 (en) Method for producing silica glass crucible for pulling silicon single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 15