JPH05851B2 - - Google Patents

Info

Publication number
JPH05851B2
JPH05851B2 JP57068192A JP6819282A JPH05851B2 JP H05851 B2 JPH05851 B2 JP H05851B2 JP 57068192 A JP57068192 A JP 57068192A JP 6819282 A JP6819282 A JP 6819282A JP H05851 B2 JPH05851 B2 JP H05851B2
Authority
JP
Japan
Prior art keywords
film
oxide film
gate
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57068192A
Other languages
Japanese (ja)
Other versions
JPS58184765A (en
Inventor
Nobuo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6819282A priority Critical patent/JPS58184765A/en
Publication of JPS58184765A publication Critical patent/JPS58184765A/en
Publication of JPH05851B2 publication Critical patent/JPH05851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置の製造方法、特にMIS型半
導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, particularly a method of manufacturing a MIS type semiconductor device.

(b) 技術の背景 近時MOS半導体ICに於ては、その動作速度を
向上せしめるためにチヤネル長が極めて短くな
り、且つその集積度を向上せしめるためにトラン
ジスタ領域の面積も極度に微小化されて来てい
る。
(b) Background of the technology In recent years, in MOS semiconductor ICs, the channel length has become extremely short in order to improve the operating speed, and the area of the transistor region has also been extremely miniaturized in order to improve the degree of integration. It's coming.

(c) 従来技術と問題点 従来のMOSトランジスタは通常第1図に示す
ような構造を有してなつていた。同図に於て、1
はp型シリコン(Si)基板、2はフイールド絶縁
膜、3はゲート酸化膜、4はN+型Siゲート電極、
5はN+型ソース領域、6はN+型ドレイン領域、
7はりん珪酸ガラス(PSG)膜、8は電極窓、
9はソース引出し電極、10はドレイン引出し電
極、11はチヤネル領域、Lはチヤネル長、Xj
はソース・ドレイン領域の接合深さを示す。
(c) Prior art and problems Conventional MOS transistors usually had a structure as shown in FIG. In the same figure, 1
is a p-type silicon (Si) substrate, 2 is a field insulating film, 3 is a gate oxide film, 4 is an N + type Si gate electrode,
5 is an N + type source region, 6 is an N + type drain region,
7 is a phosphosilicate glass (PSG) membrane, 8 is an electrode window,
9 is a source extraction electrode, 10 is a drain extraction electrode, 11 is a channel region, L is a channel length, and X j
indicates the junction depth of the source/drain region.

このような従来構造に於ては、ソース・ドレイ
ン領域5,6がチヤネル領域11の側面に配設さ
れ、且つその深さXjも比較的深く(>0.3〔μm〕)
形成される。そのためチヤネル長Lが1〔μm〕以
下になると一般に知られる短チヤネル効果によつ
て、MOSトランジスタの閾値電圧Vthが急な下
降カーブを画く。従つてゲート電極4及びソー
ス・ドレイン領域5,6の形成寸法誤差によるチ
ヤネル長の僅かな変化がVthを変動せしめるの
で、該従来構造で均一な特性を有する高速MOS
トランジスタを形成することは極めて困難であつ
た。
In such a conventional structure, the source/drain regions 5 and 6 are arranged on the side surface of the channel region 11, and the depth X j is also relatively deep (>0.3 [μm]).
It is formed. Therefore, when the channel length L becomes 1 [μm] or less, the threshold voltage Vth of the MOS transistor shows a steep downward curve due to the generally known short channel effect. Therefore, a slight change in the channel length due to dimensional errors in the formation of the gate electrode 4 and the source/drain regions 5 and 6 causes Vth to fluctuate.
It has been extremely difficult to form transistors.

上記チヤネル効果はXjを浅くすることにより
改善されるが、従来構造に於てXjを上記値より
浅くした場合ソース・ドレイン領域5,6のシー
ト抵抗が高くなり、この面で素子特性が損なわれ
る。
The above channel effect can be improved by making X j shallower, but in the conventional structure, if X j is made shallower than the above value, the sheet resistance of the source/drain regions 5 and 6 will increase, and the device characteristics will be affected in this respect. be damaged.

又上記従来構造に於ては、ソース・ドレイン領
域5,6上の絶縁膜例えばPSG膜7に電極窓8
を形成し、該電極窓8を介してアルミニウム(A
)等からなるソース引出し電極9及びドレイン
引出し電極10が形成される。そのため電極窓8
形成の際の位置合わせ誤差及びサイド・エツチン
グ等を考慮して、ゲート電極4と前記電極窓8の
間隔は通常3〔μm〕程度以上もうける必要があ
る。従つて素子領域の面積が拡大し、素子の高集
積化が妨げられるという問題もあつた。
Further, in the above conventional structure, an electrode window 8 is formed in the insulating film, for example, the PSG film 7 on the source/drain regions 5 and 6.
Aluminum (A) is formed through the electrode window 8.
) and the like are formed. Therefore, the electrode window 8
In consideration of alignment errors and side etching during formation, it is usually necessary to provide an interval of about 3 [μm] or more between the gate electrode 4 and the electrode window 8. Therefore, there is a problem in that the area of the element region is expanded, and high integration of the elements is hindered.

(d) 発明の目的 本発明の目的は、接合深さが殆んど0のソー
ス・ドレイン領域を有するMOSトランジスタ及
びその製造方法を提供し、上記問題点を除去する
ことにある。
(d) Object of the Invention An object of the invention is to provide a MOS transistor having a source/drain region with a junction depth of almost 0 and a method for manufacturing the same, thereby eliminating the above-mentioned problems.

(e) 発明の構成 即ち本発明は、第1導電型半導体基体上にゲー
ト絶縁膜を形成する工程と、酸化性材料からな
り、該ゲート絶縁膜上のゲート電極形成予定領域
に形成され、その側面がほぼ垂直となる形状を有
し、且つその上部に耐酸化膜を有する仮設パター
ンを形成する工程と、該仮設パターンの側面を該
耐酸化膜をマスクにして酸化し該仮設パターンの
側面に側壁酸化膜を形成する工程と、該耐酸化膜
及び該基体上に表出しているゲート絶縁膜を除去
する工程と、該側壁酸化膜を残して該仮設パター
ンを除去する工程と、該基体上の、該側壁酸化膜
とゲート酸化膜で囲まれるゲート電極形成領域、
及び該ゲート電極形成領域の両側のソース・ドレ
イン形成領域に第2導電型半導体層を形成するこ
とにより、ゲート電極及び、該ゲート電極と該側
壁酸化膜によつて電気的に分離されたソース・ド
レイン領域を形成する工程とを有することを特徴
とする半導体装置の製造方法に関するものであ
る。
(e) Structure of the Invention That is, the present invention comprises a step of forming a gate insulating film on a semiconductor substrate of a first conductivity type, and a step of forming an oxidizing material on a region where a gate electrode is to be formed on the gate insulating film. A step of forming a temporary pattern having a substantially vertical side surface and an oxidation-resistant film on the top thereof, and oxidizing the side surface of the temporary pattern using the oxidation-resistant film as a mask to form a temporary pattern on the side surface of the temporary pattern. a step of forming a sidewall oxide film; a step of removing the oxidation-resistant film and the gate insulating film exposed on the base; a step of removing the temporary pattern while leaving the sidewall oxide film; and a step of removing the temporary pattern on the base. a gate electrode formation region surrounded by the sidewall oxide film and the gate oxide film;
A second conductivity type semiconductor layer is formed in the source/drain formation regions on both sides of the gate electrode formation region, thereby forming a gate electrode and a source/drain region electrically isolated from the gate electrode by the sidewall oxide film. The present invention relates to a method of manufacturing a semiconductor device, comprising a step of forming a drain region.

(f) 発明の実施例 以下本発明を実施例について、第2図に示す一
実施例の断面構造図、及び第3図イ乃至チに示す
工程断面図と第4図に示すその変形例を用いて詳
細に説明する。
(f) Embodiments of the Invention The present invention will be described below with reference to the cross-sectional structural diagram of one embodiment shown in FIG. 2, the process cross-sectional diagrams shown in FIGS. This will be explained in detail using

本発明の方法により形成されるMOS型半導体
は、例えば第2図に示すような構造を有してい
る。
A MOS type semiconductor formed by the method of the present invention has a structure as shown in FIG. 2, for example.

同図に於て、21はp型シリコン(Si)基板、
22はフイールド酸化膜、23はゲート酸化膜、
26は酸化アルミニウム(Al2O3)膜、28は
N+型Siソース領域、29はN+型Siドレイン領
域、30はN+型Siゲート電極、31はりん珪酸
ガラス(PSG)絶縁膜、33はソース配線、3
4はドレイン配線を示す。
In the figure, 21 is a p-type silicon (Si) substrate,
22 is a field oxide film, 23 is a gate oxide film,
26 is aluminum oxide (Al 2 O 3 ) film, 28 is
N + type Si source region, 29 N + type Si drain region, 30 N + type Si gate electrode, 31 phosphosilicate glass (PSG) insulating film, 33 source wiring, 3
4 indicates a drain wiring.

上記構造を有するMOS型半導体装置を形成す
るに際し本発明の方法においては、例えば第3図
イに示すようにp型シリコンSi基板21上に通常
の選択酸化法(LOCOS)によつて素子形成領域
面を表出するフイールド酸化膜22を形成し、次
いで熱酸化によりSi基板21の素子形成領域面に
500〔Å〕程度の通常厚さのゲート酸化膜23を形
成する。次いで蒸着法等により該主面上に、酸化
性を有する材料例えば5000〔Å〕程度の厚さのア
ルミニウム(Al〕層を形成し、次いで通常の化
学気相成長(CVD)法により該Al層上に厚さ
1000〔Å〕程度の耐酸化膜例えば窒化シリコン
(Si3N4)膜を形成する。次いで通常のリアクテ
イブ・イオンエツチング法によりSi3N4膜及びAl
層を順次所定の幅にパターンニングして、上部に
Si3N4耐酸化膜24を有するAl仮設パターン25
を形成する。
When forming a MOS type semiconductor device having the above structure, in the method of the present invention, for example, as shown in FIG. A field oxide film 22 is formed to expose the surface, and then thermal oxidation is applied to the surface of the element formation region of the Si substrate 21.
A gate oxide film 23 having a normal thickness of about 500 Å is formed. Next, an oxidizing material such as an aluminum (Al) layer with a thickness of about 5000 [Å] is formed on the main surface by a vapor deposition method or the like, and then the Al layer is formed by a normal chemical vapor deposition (CVD) method. thickness on top
An oxidation-resistant film, such as a silicon nitride (Si 3 N 4 ) film, with a thickness of about 1000 Å is formed. Next, the Si 3 N 4 film and Al
The layers are sequentially patterned to the desired width and the top
Al temporary pattern 25 with Si 3 N 4 oxidation resistant film 24
form.

次いでSi3N4耐酸化膜24をマスクにしてAl仮
設パターン25の側面を、通常用いられる温水酸
化、プラズマ酸化、陽極酸化等所望の方法により
選択的に酸化して、第3図ロに示すようにAl仮
設パターン25の側面に例えば3000〜5000〔Å〕
程度の厚さの酸化アルミニウム(Al2O3)膜26
を形成する。なお前記Al2O3膜26を含んだ仮設
パターンの幅が、素子完成時のゲート長になる。
従つて前工程に於てパターンニングする際Al仮
設パターン25の幅は、前記酸化による増加を見
込んでその分だけゲート長より狭くパターンニン
グして置かねばならない。
Next, using the Si 3 N 4 oxidation-resistant film 24 as a mask, the side surface of the Al temporary pattern 25 is selectively oxidized by a desired method such as hot water oxidation, plasma oxidation, or anodic oxidation, which is commonly used, as shown in FIG. 3B. For example, 3000 to 5000 [Å] on the side surface of the Al temporary pattern 25.
Aluminum oxide (Al 2 O 3 ) film 26 with a thickness of
form. Note that the width of the temporary pattern including the Al 2 O 3 film 26 becomes the gate length when the device is completed.
Therefore, during patterning in the previous step, the width of the temporary Al pattern 25 must be made narrower than the gate length by an amount corresponding to the increase due to oxidation.

次いで熱りん酸(H3PO4)でSi3N4耐酸化膜2
4を、ふつ化アンモン(NH4F)+ふつ酸(HF)
系の液により仮設パターンの側方に表出している
ゲート酸化膜23を選択的にエツチング除去し
て、第3図ハに示すように、Al仮設パターン2
5の上面及び仮設パターン側方のp型Si基板21
を表出させる。なお上記Si3N4耐酸化膜24及び
ゲート酸化膜23の除去はドライ・エツチング法
で行つても良い。又順序はいずれが先でもさしつ
かえない。
Next, Si 3 N 4 oxidation-resistant film 2 was formed using hot phosphoric acid (H 3 PO 4 ).
4, ammonium fluoride (NH 4 F) + hydrofluoric acid (HF)
The gate oxide film 23 exposed on the sides of the temporary pattern is selectively etched away using the system liquid, and the Al temporary pattern 2 is formed as shown in FIG. 3C.
p-type Si substrate 21 on the top surface of 5 and on the side of the temporary pattern
express it. Note that the Si 3 N 4 oxidation-resistant film 24 and gate oxide film 23 may be removed by dry etching. Also, it does not matter which order comes first.

次いで水酸化カリウム(KOH)液、塩酸
(NCl)、りん酸(H3PO4)等からなる通常のアル
ミニウムのエツチング液を用いAl仮設パターン
25を溶解除去して、第2図ニに示すように5000
〔Å〕程度の高さを有し、厚さ3000〜5000〔Å〕程
度の壁状のAl2O3膜26を縁部上に有するゲート
酸化膜23を形成する。
Next, the Al temporary pattern 25 is dissolved and removed using an ordinary aluminum etching solution consisting of potassium hydroxide (KOH) solution, hydrochloric acid (NCl), phosphoric acid (H 3 PO 4 ), etc., as shown in FIG. 2D. 5000 to
A gate oxide film 23 having a wall-like Al 2 O 3 film 26 having a height of about [Å] and a thickness of about 3000 to 5000 [Å] on its edge is formed.

次いで10〔Torr〕程度に減圧したモノシラン
(SiH4)中で1000〔℃〕程度の温度で行う通常の
高温気相成長法により、第3図ホに示すように、
該主面上に前記壁状Al2O3膜26の上部のみが表
出される厚さ例えば5000〔Å〕程度のノンドープ
Si層27′を形成する。なおこの気相成長に於て
幅の極めて狭い壁状Al2O3膜26の上面にはSi層
27は堆積されず、Al2O3膜26の間に挟まれた
ゲート酸化膜23上、ゲート酸化膜23側方に表
出するp型Si基板21上及びフイールド酸化膜2
2上に堆積する。
Next, as shown in Fig. 3 E, a normal high-temperature vapor phase growth method is carried out at a temperature of about 1000 [°C] in monosilane (SiH 4 ) at a reduced pressure of about 10 [Torr].
A non-doped film having a thickness of, for example, about 5000 [Å] so that only the upper part of the wall-like Al 2 O 3 film 26 is exposed on the main surface.
A Si layer 27' is formed. In this vapor phase growth, the Si layer 27 is not deposited on the upper surface of the extremely narrow wall-shaped Al 2 O 3 film 26, but on the gate oxide film 23 sandwiched between the Al 2 O 3 films 26. On the p-type Si substrate 21 exposed to the side of the gate oxide film 23 and on the field oxide film 2
Deposit on 2.

次いで第3図ヘに示すように、前記Si層に例え
ば150〔KeV〕・4×1015〔atm/cm3〕・30〔分〕程度
の注入条件でひ素イオン(As+)を高濃度に注入
した後、1050〔℃〕程度のアニール処理を施して
前記Si層を、1021〔atm/cm3〕程度の高As濃度を
有し、高電気伝導率を有するN+型Si層27とす
る。なお上記アニール処理はこの時点で行わず、
後工程に於てりん珪酸ガラス(PSG)膜に形成
したコンタクト窓の側面をリフローする際に同時
に行われるのが一般的であるが、説明の都合上本
実施例に於ては上記時点でアニール処理を行つて
いる。又上記N+型Si層27は酸化膜上で公知の
ように多結晶層となるが、特に単結晶化する必要
はない。
Next, as shown in Figure 3, arsenic ions (As + ) are implanted into the Si layer at a high concentration under conditions of, for example, 150 [KeV], 4×10 15 [atm/cm 3 ], and 30 [minutes]. After the implantation, annealing treatment is performed at about 1050 [°C] to transform the Si layer into an N + type Si layer 27 having a high As concentration of about 10 21 [atm/cm 3 ] and high electrical conductivity. do. Note that the above annealing treatment is not performed at this point.
Generally, this is done at the same time as reflowing the side surface of the contact window formed on the phosphosilicate glass (PSG) film in the later process, but for the sake of explanation, in this example, annealing is performed at the above point. Processing is in progress. Further, the N + type Si layer 27 becomes a polycrystalline layer on the oxide film as is known in the art, but it is not particularly necessary to form it into a single crystal layer.

次いで第3図トに示すように、通常のフオト・
エツチング方法により前記N+型Si層27のパタ
ーンニングを行つて、N+型Siソース領域28及
びN+型Siドレイン領域29を形成する。なおゲ
ート酸化膜23上に前記ソース領域28及びドレ
イン領域29と壁状のAl2O3膜26によつて隔離
されて堆積されているN+型Si層はN+型Siゲート
電極30となる。
Next, as shown in Figure 3, the normal photo
The N + type Si layer 27 is patterned by an etching method to form an N + type Si source region 28 and an N + type Si drain region 29. Note that the N + type Si layer deposited on the gate oxide film 23 while being separated from the source region 28 and drain region 29 by the wall-shaped Al 2 O 3 film 26 becomes the N + type Si gate electrode 30. .

以下通常の方法に従つて第3図チに示すよう
に、該主面上にPSG絶縁膜31を形成し、該
PSG絶縁膜31にコンタクト窓32を形成し、
該コンタクト窓32側面のリフロー処理を行つた
後、Al等からなるソース配線33及びドレイン
配線34等を形成する。そして図示しないが該主
面上にカバー絶縁膜の形成等がなされて、本発明
の方法によるMOS型半導体装置が提供される。
Thereafter, a PSG insulating film 31 is formed on the main surface as shown in FIG.
A contact window 32 is formed in the PSG insulating film 31,
After performing a reflow process on the side surface of the contact window 32, a source wiring 33, a drain wiring 34, etc. made of Al or the like are formed. Although not shown, a cover insulating film is formed on the main surface, and a MOS type semiconductor device according to the method of the present invention is provided.

第4図はN+型Siソース領域28及びN+型Siド
レイン領域34をフイールド酸化膜22上に長く
引き出し、これを引出し電極配線に利用する構造
を示したもので、図中の各記号は第3図チと同一
領域を表わしている。
FIG. 4 shows a structure in which the N + type Si source region 28 and the N + type Si drain region 34 are extended out onto the field oxide film 22 and used for the lead electrode wiring. Each symbol in the figure is It represents the same area as FIG.

(g) 発明の効果 上記実施例に示した本発明の方法により形成さ
れたMOS型半導体装置に於ては、ソース及びド
レイン領域が半導体基体上にゲートと並設される
ので、短チヤネル効果に利くソース・ドレイン領
域の接合深さが0になる。
(g) Effects of the Invention In the MOS type semiconductor device formed by the method of the present invention shown in the above embodiments, the source and drain regions are arranged on the semiconductor substrate in parallel with the gate, so short channel effects are avoided. The junction depth of the effective source/drain regions becomes 0.

従つて本発明によれば、チヤネル長が〔μm〕
以下の高速MOSトランジスタに於ても、閾値電
圧Vthが低下することがない。
Therefore, according to the present invention, the channel length is [μm]
Even in the following high-speed MOS transistors, the threshold voltage Vth does not decrease.

又本発明によれば、ゲートと電極機能を兼ね備
えたソース・ドレイン領域とが薄い絶縁膜を介し
てセルフアラインされるので、素子面積を縮小す
ることができる。
Further, according to the present invention, the gate and the source/drain regions, which also function as electrodes, are self-aligned via a thin insulating film, so that the device area can be reduced.

以上の説明から明らかなように、本発明は
MOSICの高速・高集積化に有効である。
As is clear from the above explanation, the present invention
It is effective for increasing the speed and integration of MOSIC.

なお前記実施例の方法に於て、ゲート電極に対
応する仮設パターンは、アルミニウム等の金属材
料に限らず、シリコン等の半導体材料が形成する
こともできる。
In the method of the above embodiment, the temporary pattern corresponding to the gate electrode is not limited to a metal material such as aluminum, but may also be formed of a semiconductor material such as silicon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMOSトランジスタの断面図、
第2図は本発明の方法により形成されるMOS型
半導体装置に於ける一実施例の断面図で、第3図
イ乃至チは本発明の方法に於ける一実施例の工程
断面図、第4図はその変形例である。 図に於いて、21はp型シリコン基板、22は
フイールド酸化膜、23はゲート酸化膜、24は
窒化シリコン耐酸化膜、25はアルミニウム仮設
パターン、26は酸化アルミニウム膜、27′は
N+型シリコン層、27はN+型シリコン層、28
はN+型シリコン・ソース領域、29はN+型シリ
コン・ドレイン領域、30はN+型シリコン・ゲ
ート電極、31はりん珪酸ガラス絶縁膜、32は
コンタクト窓、33はソース配線、34はドレイ
ン配線を示す。
Figure 1 is a cross-sectional view of a conventional MOS transistor.
FIG. 2 is a sectional view of an embodiment of a MOS type semiconductor device formed by the method of the present invention, and FIGS. Figure 4 shows a modified example. In the figure, 21 is a p-type silicon substrate, 22 is a field oxide film, 23 is a gate oxide film, 24 is a silicon nitride oxidation-resistant film, 25 is an aluminum temporary pattern, 26 is an aluminum oxide film, and 27' is an aluminum oxide film.
N + type silicon layer, 27 is N + type silicon layer, 28
29 is an N + type silicon source region, 29 is an N + type silicon drain region, 30 is an N + type silicon gate electrode, 31 is a phosphosilicate glass insulating film, 32 is a contact window, 33 is a source wiring, and 34 is a drain Shows the wiring.

Claims (1)

【特許請求の範囲】 1 第1導電型半導体基体上にゲート絶縁膜を形
成する工程と、 酸化性材料からなり、該ゲート絶縁膜上のゲー
ト電極形成予定領域に形成され、その側面がほぼ
垂直となる形状を有し、且つその上部に耐酸化膜
を有する仮設パターンを形成する工程と、 該仮設パターンの側面を該耐酸化膜をマスクに
して酸化し該仮設パターンの側面に側壁酸化膜を
形成する工程と、 該耐酸化膜及び該基体上に表出しているゲート
絶縁膜を除去する工程と、 該側壁酸化膜を残して該仮設パターンを除去す
る工程と、 該基体上の、該側壁酸化膜とゲート酸化膜で囲
まれるゲート電極形成領域、及び該ゲート電極形
成領域の両側のソース・ドレイン形成領域に第2
導電型半導体層を形成することにより、ゲート電
極及び、該ゲート電極と該側壁酸化膜によつて電
気的に分離されたソース・ドレイン領域を形成す
る工程とを有することを特徴とする半導体装置の
製造方法。
[Scope of Claims] 1. A step of forming a gate insulating film on a semiconductor substrate of a first conductivity type, the gate insulating film is made of an oxidizing material, is formed in a region where a gate electrode is to be formed on the gate insulating film, and the side surfaces of the gate insulating film are substantially vertical. forming a temporary pattern having a shape of a step of removing the oxidation-resistant film and the gate insulating film exposed on the base; a step of removing the temporary pattern leaving the sidewall oxide film; and a step of removing the temporary pattern on the sidewall on the base. A second layer is formed in the gate electrode formation region surrounded by the oxide film and the gate oxide film, and in the source/drain formation regions on both sides of the gate electrode formation region.
A semiconductor device comprising a step of forming a gate electrode and a source/drain region electrically isolated from the gate electrode by the sidewall oxide film by forming a conductive semiconductor layer. Production method.
JP6819282A 1982-04-23 1982-04-23 Semiconductor device and manufacture thereof Granted JPS58184765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6819282A JPS58184765A (en) 1982-04-23 1982-04-23 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6819282A JPS58184765A (en) 1982-04-23 1982-04-23 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58184765A JPS58184765A (en) 1983-10-28
JPH05851B2 true JPH05851B2 (en) 1993-01-06

Family

ID=13366669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6819282A Granted JPS58184765A (en) 1982-04-23 1982-04-23 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58184765A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196577A (en) * 1985-02-26 1986-08-30 Nec Corp Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547883A (en) * 1977-06-20 1979-01-20 Nec Corp Semiconductor device and its manufacture
JPS5745281A (en) * 1980-07-08 1982-03-15 Ibm Method of producing field effect transistor
JPS58130569A (en) * 1982-01-28 1983-08-04 Toshiba Corp Manufacture of semiconductor device
JPS58162064A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547883A (en) * 1977-06-20 1979-01-20 Nec Corp Semiconductor device and its manufacture
JPS5745281A (en) * 1980-07-08 1982-03-15 Ibm Method of producing field effect transistor
JPS58130569A (en) * 1982-01-28 1983-08-04 Toshiba Corp Manufacture of semiconductor device
JPS58162064A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS58184765A (en) 1983-10-28

Similar Documents

Publication Publication Date Title
US4750971A (en) Method of manufacturing a semiconductor device
JPH0923010A (en) Semiconductor element and its preparation
US4402128A (en) Method of forming closely spaced lines or contacts in semiconductor devices
JPH06163532A (en) Method for isolation of semiconductor element
US4722912A (en) Method of forming a semiconductor structure
US4170500A (en) Process for forming field dielectric regions in semiconductor structures without encroaching on device regions
US4148133A (en) Polysilicon mask for etching thick insulator
JPS6228591B2 (en)
JPS6252950B2 (en)
JPH05851B2 (en)
JPH10303313A (en) Manufacture of cmos circuit
JP2720911B2 (en) Method for preparing substrate surface for semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPH0640549B2 (en) Method for manufacturing MOS semiconductor device
US6743690B2 (en) Method of forming a metal-oxide semiconductor transistor
JP2707536B2 (en) Method for manufacturing semiconductor device
KR930001565B1 (en) Manufacturing method of c-mos transistor
JPH05326497A (en) Manufacture of semiconductor device
JPH09129876A (en) Manufacture of semiconductor device
JPH10294457A (en) Manufacture of semiconductor device
JPH11176959A (en) Manufacture of semiconductor device
JPS62131538A (en) Manufacture of semiconductor device
JPH0217931B2 (en)
JPH04106982A (en) Manufacture of semiconductor device
JPS5851534A (en) Manufacture of semiconductor device