JPH0584824B2 - - Google Patents

Info

Publication number
JPH0584824B2
JPH0584824B2 JP27768786A JP27768786A JPH0584824B2 JP H0584824 B2 JPH0584824 B2 JP H0584824B2 JP 27768786 A JP27768786 A JP 27768786A JP 27768786 A JP27768786 A JP 27768786A JP H0584824 B2 JPH0584824 B2 JP H0584824B2
Authority
JP
Japan
Prior art keywords
amount
gas turbine
cleaning
air compressor
compression ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27768786A
Other languages
Japanese (ja)
Other versions
JPS63131834A (en
Inventor
Masayuki Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Construction Corp
Original Assignee
Toshiba Plant Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Construction Corp filed Critical Toshiba Plant Construction Corp
Priority to JP27768786A priority Critical patent/JPS63131834A/en
Publication of JPS63131834A publication Critical patent/JPS63131834A/en
Publication of JPH0584824B2 publication Critical patent/JPH0584824B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン発電装置に於ける空気圧
縮機及びガスタービンの内部の汚染を検出する装
置、及び該装置による汚染量検出信号によつて、
それら内部の洗浄レベルが制御される洗浄装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting contamination inside an air compressor and a gas turbine in a gas turbine power generation device, and a contamination amount detection signal from the device. ,
The present invention relates to cleaning devices in which the cleaning level inside them is controlled.

〔従来技術〕[Prior art]

ガスタービン発電装置は、一般にターボ型の空
気圧縮機によつて加圧された空気と、軽油、重油
などの液体燃料もしくはLNG、LPGなどの気体
燃料とを燃焼器に噴射し、得られた高温高圧の燃
焼ガス噴流によつてガスタービンを回転させ、そ
れに結合された発電機を駆動して発電を行うもの
である。
Gas turbine power generation equipment generally injects air pressurized by a turbo-type air compressor and liquid fuel such as light oil or heavy oil or gaseous fuel such as LNG or LPG into a combustor, and the resulting high temperature A gas turbine is rotated by a jet of high-pressure combustion gas, and a generator connected to the turbine is driven to generate electricity.

空気圧縮機の空気導入通路には通常空気濾過器
が設けられるが、空気中に浮遊している微細な粒
子や化学物質、例えばホコリ、塩分、油脂分、炭
化物などは十分に補集することが困難である。そ
のためこれらの物質が空気圧縮機内に入り静翼、
動翼及び空気通路などに付着堆積する。一方、ガ
スタービンの静翼、動翼及び空気通路などには空
気圧縮機から飛散してくるこれらホコリなどに加
え、燃焼ガス中の不燃物質や未燃物質などが同様
に付着堆積する。
An air filter is usually installed in the air intake passage of an air compressor, but it cannot sufficiently collect fine particles and chemical substances floating in the air, such as dust, salt, oil, fat, and carbonized substances. Have difficulty. Therefore, these substances enter the air compressor and the stator blades,
It adheres and accumulates on moving blades and air passages. On the other hand, in addition to the dust scattered from the air compressor, non-combustible substances and unburned substances in the combustion gas also adhere and accumulate on the stationary blades, rotor blades, air passages, etc. of the gas turbine.

空気圧縮機やガスタービン内に汚染物質が付着
堆積すると、圧縮機の風量低下やガスタービン排
気温度上昇、更に発電量の減少などプラント効率
を低下させることになるので好ましくない。そこ
である程度の汚染量となつたとき、発電を停止し
内部洗浄を行う必要がある。しかし、汚染の量は
プラントの設置環境と、その変化、運転負荷の大
きさと時間、運転方法及び使用燃料の種類など多
くの変動要因によつて左右され、必ずしも一定時
間運転後に一定量となるものではない。
It is undesirable that contaminants adhere and accumulate in the air compressor or gas turbine, since this will reduce the air volume of the compressor, increase the temperature of the gas turbine exhaust gas, and further reduce the amount of power generated, thereby reducing plant efficiency. When the amount of contamination reaches a certain level, it is necessary to stop power generation and clean the inside. However, the amount of pollution depends on many variable factors, such as the environment in which the plant is installed, changes in that environment, the size and duration of the operating load, the operating method, and the type of fuel used. isn't it.

そこで実際に付着、堆積した汚染物質の量を正
確に測定し、それによつて洗浄開始時期を決定す
るシステムが要求されている。
Therefore, there is a need for a system that accurately measures the amount of contaminants that have actually adhered or accumulated and determines when to start cleaning based on this.

この要望に答えるものとして例えば、空気圧縮
気の空気導入路にバイパス路を設けて、そこに汚
染物質の一種である塩分堆積検知用のフイルター
を取付け、塩分の堆積量を光学的方法により検出
することが提案されている。(特開昭52−47112公
報) 〔発明が解決しようとする問題点〕 しかしながら、かかる汚染量の検出方法は、検
出設備としてバイパス路などの特別な設備を必要
とする上、汚染量検出−洗浄サイクル毎にフイル
ターを交換しなければならない。また、測定の再
現性を維持するためには、フイルターのバラツキ
の管理を厳しくする必要がある上、特定の汚染物
質に対応出来るのみでガスタービン自体の総合的
な汚染量の把握は直接的には不可能である。
To meet this demand, for example, a bypass path is provided in the air introduction path for compressed air, and a filter for detecting the accumulation of salt, which is a type of pollutant, is installed there, and the amount of accumulated salt is detected using an optical method. It is proposed that. (Japanese Unexamined Patent Publication No. 52-47112) [Problems to be solved by the invention] However, such a method of detecting the amount of contamination requires special equipment such as a bypass path as the detection equipment, and also requires a process between detection of the amount of contamination and cleaning. The filter must be replaced every cycle. In addition, in order to maintain measurement reproducibility, it is necessary to strictly control filter variations, and while it is only possible to deal with specific pollutants, it is not possible to directly grasp the overall amount of pollution in the gas turbine itself. is not possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ガスタービン発電装置に通常設けら
れている運転管理用の計測手段をそのまま利用す
ることにより、再現性よく、且つ、精度の高い汚
染量の検出装置を提供することができ、また、そ
の検出装置を汚染除去のための洗浄手段と有機的
に結合することにより、極めて効率的な空気圧縮
機及びガスタービン内部の洗浄装置を提供するこ
とができるという知見に基づいてなされたもので
ある。
The present invention can provide a contamination amount detection device with good reproducibility and high accuracy by directly utilizing the measurement means for operation management normally provided in a gas turbine power generation device, and This invention was based on the knowledge that by organically combining the detection device with cleaning means for decontamination, it is possible to provide extremely efficient cleaning devices for the interior of air compressors and gas turbines. .

一般に空気圧縮機の圧縮比は種々の要因によつ
て定まるが、運転経過によつて生ずる変化の値は
圧縮機内部の汚染の量に比較的再現性よく対応す
ること、及び、ガスタービンの運転経過によつて
生ずる内部汚染の量は、空気圧縮機の内部汚染量
にほぼ比例関係にあり、且つ、これらは理想的燃
焼条件の燃焼器で発生すべき熱量(投入燃料量の
熱量換算)とそのときの発電量から算出される熱
効率の変化量と比較的再現性よく対応することが
判つた。またガスタービンの内部汚染の進行は、
ガスタービン排気温度の上昇をもたらすことも判
つた。
Generally, the compression ratio of an air compressor is determined by various factors, but it is important to note that the value of the change that occurs over the course of operation corresponds to the amount of contamination inside the compressor with relatively good reproducibility, and that it also depends on the operation of the gas turbine. The amount of internal contamination that occurs over time is almost proportional to the amount of internal contamination in the air compressor, and these are equal to the amount of heat that should be generated in the combustor under ideal combustion conditions (converted amount of input fuel into heat amount). It was found that this corresponds with the amount of change in thermal efficiency calculated from the amount of power generated at that time with relatively good reproducibility. Furthermore, the progress of internal contamination in gas turbines is
It was also found that this resulted in an increase in gas turbine exhaust temperature.

ガスタービン発電装置の洗浄は、通常1000rpm
またはそれより低速でクランク運転している空気
圧縮機の空気吸込側より、洗浄液を霧状に噴霧
し、噴霧された洗浄液ミストを低速の空気流によ
つて、空気圧縮機、燃焼器を経由してガスタービ
ン内に流通させて洗浄する方法が多く用いられて
いる。このように空気圧縮機とガスタービンの内
部洗浄を共通して行う場合の洗浄開始時期を定め
るにあたつて使用する汚染検出装置の検出部とし
ては、前述した圧縮比の変化量又は熱効率の変化
量のいずれかを用いれば足りる。しかし、これら
の変化量をガスタービン発電装置の内部汚染量の
指標として使用しても実用上ほぼ満足できる結果
は得られるが、燃料の種類、運転状況、環境等の
状況によつて空気圧縮機、或いはガスタービンの
いずれか一方の汚染量の増加率が大となる場合へ
の対処や、他の種々の変動要因による影響をでき
るだけ除去し、より高い精度及び再現性を得るた
めには、圧縮比と熱消費率の両者の変化量を総合
して汚染量を算定することが好ましい。
Cleaning of gas turbine generators is usually done at 1000rpm.
Alternatively, the cleaning liquid is sprayed in a mist form from the air suction side of an air compressor that is cranked at a lower speed, and the sprayed cleaning liquid mist is passed through the air compressor and combustor using a low-speed air flow. A method of cleaning the gas turbine by flowing it through the gas turbine is often used. In this way, when the internal cleaning of the air compressor and the gas turbine are performed in common, the detection part of the contamination detection device used to determine the cleaning start time detects the amount of change in the compression ratio or the change in thermal efficiency as described above. It is sufficient to use either amount. However, although practically satisfactory results can be obtained by using these changes as indicators of the amount of internal contamination in gas turbine power generation equipment, air compressor , or to deal with cases where the rate of increase in the amount of contamination in either one of the gas turbines is large, to eliminate the effects of various other fluctuation factors as much as possible, and to obtain higher accuracy and reproducibility. It is preferable to calculate the amount of contamination by integrating the amount of change in both the ratio and the heat consumption rate.

従つて、かかる知見に基づく本発明の第1発明
であるガスタービン発電装置の空気圧縮機及びガ
スタービンの内部の汚染検出装置の要旨は、空気
圧縮機の空気吸込側と吐出側の圧力から算出され
る圧縮比の値をその正常値と比較し圧縮比の変化
量を検出する圧縮比変化検出部と、燃焼器に供給
された燃料量から換算した発生すべき熱量と発電
量から算出される熱効率の値をその正常値と比較
し、熱効率の変化量を検出する熱効率変化検出部
と、これら検出部からの出力信号を入力して汚染
量を算定する汚染量演算部とを有することを特徴
とするものである。本発明汚染量検出装置として
は主体的に説明している圧縮比及び熱効率の外
に、圧縮機の断熱効率または、ガスタービンの排
気温度の変化を用いることも出来る。
Therefore, the gist of the first invention of the present invention based on such knowledge, which is an air compressor for a gas turbine power generator and a contamination detection device inside the gas turbine, is to calculate the air pressure from the air suction side and the discharge side of the air compressor. A compression ratio change detection unit that compares the compression ratio value to its normal value and detects the amount of change in the compression ratio, and the amount of heat and power generation that should be generated converted from the amount of fuel supplied to the combustor. It is characterized by having a thermal efficiency change detection section that compares the value of thermal efficiency with its normal value and detects the amount of change in thermal efficiency, and a pollution amount calculation section that inputs output signals from these detection sections and calculates the amount of pollution. That is. In addition to the compression ratio and thermal efficiency which are mainly explained as the pollution amount detection device of the present invention, it is also possible to use the adiabatic efficiency of the compressor or the change in the exhaust gas temperature of the gas turbine.

また、本発明の第2発明であるガスタービン発
電装置の空気圧縮機及びガスタービンの内部の洗
浄装置の要旨は、かかる第1発明の汚染検出装置
を具備し、該汚染検出装置の汚染量算定値に対応
した複数の洗浄レベルを設定する洗浄レベル設定
部及び該設定部の設定値により、空気圧縮機の空
気吸込側へ噴霧する洗浄液を制御する洗浄液制御
部を有することを特徴とするものである。
Further, the second aspect of the present invention is an air compressor for a gas turbine power generation device and a cleaning device for the inside of the gas turbine, which is equipped with the pollution detection device of the first invention, and is capable of calculating the amount of contamination of the pollution detection device. It is characterized by having a cleaning level setting section for setting a plurality of cleaning levels corresponding to the cleaning level, and a cleaning liquid control section for controlling the cleaning liquid sprayed to the air suction side of the air compressor based on the setting value of the setting section. be.

〔実施例及び作用〕[Examples and effects]

次に図面を基に本発明の実施例を説明する。第
1図は本発明の空気圧縮機及びガスタービン内部
の汚染検出装置、及びそれを用いた洗浄装置の例
を説明する系統図である。
Next, embodiments of the present invention will be described based on the drawings. FIG. 1 is a system diagram illustrating an example of a contamination detection device inside an air compressor and gas turbine of the present invention, and a cleaning device using the same.

ガスタービン発電装置はターボ型の空気圧縮機
1、燃焼器2、ガスタービン3及び発電機4を主
要部分として構成され、燃焼器2を除いて回転軸
は互いに結合されている。
The gas turbine power generation device is composed of a turbo-type air compressor 1, a combustor 2, a gas turbine 3, and a generator 4 as main parts, and except for the combustor 2, the rotating shafts are connected to each other.

空気圧縮機1の吸込側は空気吸込室5に連通し
ており、空気吸込室5の空気導入通路には濾過器
6が設けられている。空気圧縮機1の吐出側は燃
焼器2に連通しており、圧縮された空気を燃焼器
2に吐出するようになつている。燃焼器2には燃
料配管7から、燃料を噴射するための燃料導入部
8及び燃焼ガスをガスタービン3へ導くガスター
ビン入口部9が設けられている。また、ガスター
ビン3のガス排出側は排気室10に連通されてい
る。
The suction side of the air compressor 1 communicates with an air suction chamber 5, and a filter 6 is provided in the air introduction passage of the air suction chamber 5. A discharge side of the air compressor 1 is connected to a combustor 2, and compressed air is discharged to the combustor 2. The combustor 2 is provided with a fuel introduction part 8 for injecting fuel from a fuel pipe 7 and a gas turbine inlet part 9 for guiding combustion gas to the gas turbine 3. Further, a gas discharge side of the gas turbine 3 is communicated with an exhaust chamber 10.

空気圧縮機1の吸込側及び吐出側には圧力発信
器11及び12、温度発信器13及び14が設け
られ、それらの発信機の出力信号は圧縮比演算部
15へ入力されている。圧縮比演算部15に於い
て圧力発信器11と12の出力信号は減算されて
圧縮比に比例した信号が出力される。温度発信器
13及び14は圧縮比を算出する際、吸込側及び
吐出側のそれぞれの圧力の温度補正を行うための
ものである。
Pressure transmitters 11 and 12 and temperature transmitters 13 and 14 are provided on the suction side and the discharge side of the air compressor 1, and the output signals of these transmitters are input to the compression ratio calculation section 15. In the compression ratio calculating section 15, the output signals of the pressure transmitters 11 and 12 are subtracted, and a signal proportional to the compression ratio is output. The temperature transmitters 13 and 14 are used to perform temperature correction on the respective pressures on the suction side and the discharge side when calculating the compression ratio.

圧縮比演算部15の出力信号は圧縮比変化検出
部16へ入力され、ここで正常値設定器17から
の圧縮比の正常値信号と比較されて圧縮比変化量
に比例した信号が出力される。正常値設定器17
には空気圧縮機1を据付けた直後、もしくは定期
点検直後の運転、または十分な洗浄を行つた直後
の運転に於ける圧縮比演算部15の出力を圧縮比
の正常値として記憶設定させておく。また、この
正常値は計算により手動により設定することも可
能である。
The output signal of the compression ratio calculation section 15 is input to the compression ratio change detection section 16, where it is compared with the normal value signal of the compression ratio from the normal value setting device 17, and a signal proportional to the amount of change in the compression ratio is output. . Normal value setting device 17
The output of the compression ratio calculation unit 15 during operation of the air compressor 1 immediately after installation, immediately after periodic inspection, or immediately after thorough cleaning is stored and set as the normal value of the compression ratio. . Further, this normal value can also be set manually by calculation.

燃料配管7中には燃料の流量発信器18が設け
られ、その出力信号は熱率演算部19へ入力され
る。一方、発電機4の出力は電力計20によつて
測定されて同様に熱効率演算部19へ入力され
る。熱効率は単位時間当たりの〔発電量
(Kcal)/燃焼器での発熱量(Kcal)〕であるが、
時間遅れや短時間の変動を考慮して一定期間の平
均値をとることが好ましい。すなわち、燃料流量
を例えば15分間積算しカロリー換算を行つて発熱
量を算出し、同様にそのときの発電機出力を15分
間積算して発生電力量を算出し、これをカロリー
換算し、両者の比を演算することによつて行う。
従つてこの場合の熱効率演算部19の出力は過去
15分間の平均値となる。
A fuel flow rate transmitter 18 is provided in the fuel pipe 7, and its output signal is input to a heat rate calculating section 19. On the other hand, the output of the generator 4 is measured by the wattmeter 20 and similarly input to the thermal efficiency calculation section 19. Thermal efficiency is the amount of electricity generated (Kcal)/the amount of heat generated in the combustor (Kcal) per unit time.
It is preferable to take an average value over a certain period of time in consideration of time delays and short-term fluctuations. In other words, calculate the amount of heat generated by integrating the fuel flow rate for 15 minutes, for example, and converting it into calories.Similarly, calculate the amount of generated electricity by integrating the generator output at that time for 15 minutes, converting this into calories, and calculate the amount of heat generated. This is done by calculating the ratio.
Therefore, the output of the thermal efficiency calculation section 19 in this case is
Average value for 15 minutes.

このようにして算出された熱効率は熱効率演算
部19から熱効率変化検出部21へ入力され、こ
こで正常値設定器22からの熱効率の正常値信号
と比較されて熱効率変化量に比例した信号が出力
される。熱効率の正常値設定器22には、前述し
た圧縮比の正常値設定器17と同様に据付直後の
運転に於ける熱効率演算部19の出力などを熱効
率の正常値として記憶設定させておく。
The thermal efficiency calculated in this way is input from the thermal efficiency calculation section 19 to the thermal efficiency change detection section 21, where it is compared with the normal value signal of thermal efficiency from the normal value setting device 22, and a signal proportional to the amount of change in thermal efficiency is output. be done. The thermal efficiency normal value setter 22 stores and sets the output of the thermal efficiency calculation section 19 during operation immediately after installation as the normal value of thermal efficiency, similar to the compression ratio normal value setter 17 described above.

圧縮比変化検出部16及び熱効率変化検出部2
1の出力信号は汚染量演算部23へ入力され、こ
こで両者の信号が加算され汚染量信号として表示
部24へ出力される。これは前述したように、空
気圧縮機1の汚染量とガスタービン3の汚染量は
通常時間と共に同傾向で増加して行くが、運転状
況によりいずれか一方の増加率が大となつたと
き、それを取込んだ汚染量信号を得ることが好ま
しいこと、及び圧縮比と熱効率に影響する変動要
因による影響をできるだけ除去して精度の向上を
図ることが好ましいことなどの理由から、これら
両者の変化量を加算し、それぞれの影響度を平均
化しているのである。
Compression ratio change detection section 16 and thermal efficiency change detection section 2
The output signal of No. 1 is input to the contamination amount calculation section 23, where both signals are added and outputted to the display section 24 as a contamination amount signal. This is because, as mentioned above, the amount of contamination in the air compressor 1 and the amount of contamination in the gas turbine 3 usually increase with the same trend over time, but when the rate of increase in either one becomes large depending on the operating conditions, It is desirable to obtain a contamination amount signal that incorporates this, and it is also desirable to improve accuracy by removing as much as possible the influence of fluctuation factors that affect the compression ratio and thermal efficiency. The amounts are added together and the influence of each is averaged.

第2図は運転時間tに対する圧縮比変化量ΔΡ
及び熱効率変化量Δηの傾向の1例を示すもので、
この例においては、この両者にそれぞれ係数Κ1
及びΚ2を乗じて加算して総合的な汚染量算定線
Κ1ΔΡ+Κ2Δηを算出している。Κ1及びΚ2は空気圧
縮機の汚染量に対応する圧縮比変化量と、ガスタ
ービンの汚染量に対応する熱効率変化量のそれぞ
れの全体に対応する影響度を予め定める定数であ
り、例えば0.1〜10の任意の範囲で経験的に定め
ることができる。
Figure 2 shows the amount of change in compression ratio ΔΡ with respect to operating time t.
This shows an example of the trend of the thermal efficiency change amount Δη,
In this example, both have a coefficient Κ 1
and Κ 2 are multiplied and added to calculate the comprehensive pollution amount calculation line Κ 1 ΔΡ + Κ 2 Δη. Κ 1 and Κ 2 are constants that predetermine the overall influence of the compression ratio change corresponding to the air compressor pollution amount and the thermal efficiency change corresponding to the gas turbine pollution amount, for example, 0.1. It can be determined empirically in any range of ~10.

汚染量演算部23の出力は表示部24へ入力さ
れ、ここで汚染量が指示もしくは記録されると共
に、洗浄レベル設定部25へ入力される。洗浄レ
ベル設定部25に於いて、汚染量演算部23の出
力が本例では3個の汚染段階設定器26a,26
b、及び26cの設定値S1,S2及びS3と比較さ
れ、設定値以上となつとき、その値に対応した洗
浄レベル設定値信号が出力される。第2図には汚
染量演算器出力と汚染段階設定値S1,S2及びS3
関係が示されている。汚染段階設定器は3個に限
らず任意の数とすることができ、設定器の数に対
応した洗浄レベル設定値信号を得ることができ
る。
The output of the contamination amount calculating section 23 is input to the display section 24, where the amount of contamination is indicated or recorded, and is also input to the cleaning level setting section 25. In the cleaning level setting section 25, the output of the contamination amount calculation section 23 is set to three contamination level setting devices 26a and 26 in this example.
b, and set values S 1 , S 2 and S 3 of 26c, and when the set values are greater than or equal to the set values, a cleaning level set value signal corresponding to the value is output. FIG. 2 shows the relationship between the contamination amount calculator output and the contamination stage set values S 1 , S 2 and S 3 . The number of contamination stage setters is not limited to three, but any number can be used, and a cleaning level set value signal corresponding to the number of setters can be obtained.

洗浄レベル設定部25の出力は洗浄液制御部2
7へ入力される。洗浄液制御部27は空気圧縮機
1の吸込側へ噴霧する洗浄液を制御するものであ
り、入力された洗浄レベル設定値に対応した制御
方法を自動的に選択する。例えば、汚染段階設定
値をS1,S2及びS3の3段階とした場合に於いて、 A 汚染段階がS1以上S2未満のときの洗浄レベル
設定値の場合…水のみの洗浄液で洗浄する。
The output of the cleaning level setting section 25 is transmitted to the cleaning liquid control section 2.
7. The cleaning liquid control unit 27 controls the cleaning liquid sprayed onto the suction side of the air compressor 1, and automatically selects a control method corresponding to the input cleaning level setting value. For example, when the contamination stage setting value is set to three levels S 1 , S 2 and S 3 , A. If the cleaning level setting value is when the contamination stage is S 1 or more and less than S 2 ...with only water as a cleaning solution. Wash.

B 汚染段階がS2以上S3未満のときの洗浄レベル
設定値の場合…洗剤を含む洗浄液で洗浄し、次
に水のみの洗浄液で洗浄(リンス)する。
B: If the cleaning level is set when the contamination stage is S2 or higher and less than S3 ...Clean with a cleaning solution containing detergent, and then clean (rinse) with a cleaning solution containing only water.

C 汚染段階がS3以上のときの洗浄レベル設定値
の場合…上記Bの場合と同様な洗浄工程を行う
が、洗浄時間をより長時間にする。
C. When the cleaning level setting value is set when the contamination stage is S3 or higher...The same cleaning process as in case B above is carried out, but the cleaning time is made longer.

のような3段階の異なる制御方法を選択すること
ができる。更に多段階設定とし、洗浄液の流量や
噴射圧力を変更させるなどの多様な制御方法を組
み込むこともできる。
Three different control methods can be selected. Furthermore, it is possible to incorporate various control methods such as multi-stage setting and changing the flow rate and injection pressure of the cleaning liquid.

汚染段階がS1以上になつた場合、直ちに発電を
停止して洗浄装置を作動させることができない場
合がある。例えば負荷を直ぐには切り離せないよ
うな場合、経済上もう少し汚染量が大きくなるの
を待つて他の段階で洗浄した方がよい場合、など
が考えられる。また直ちに発電を停止した場合に
於いても、燃料を遮断しガスタービンを一旦停止
し、次いでセルモータなどにより低速でクランク
運転に入つて、洗浄条件が整うまである程度の時
間が必要である。そのため、洗浄液制御部27に
は洗浄開始信号28を入力し得るようになつてお
り、この信号28が入力された後でなければ、洗
浄液制御部27から洗浄指令が出されないようイ
ンターロツクすることができる。この洗浄開始指
令は発電装置制御回路29から発電機停止完了信
号、ガスタービンクランク運転信号、あるいは更
に手動による洗浄停止解除スイツチからの信号等
を有機的に選択結合して形成することができる。
発電装置制御回路29へ汚染段階を知らせ、停止
判断を行わせるために、洗浄レベル設定部25の
出力は連絡線30によつて発電装置制御回路29
と結合することができる。
If the contamination stage reaches S 1 or higher, it may not be possible to immediately stop power generation and operate the cleaning equipment. For example, there may be cases where it is not possible to remove the load immediately, or cases where it is economically better to wait until the amount of contamination increases and clean it at another stage. Furthermore, even if power generation is stopped immediately, it is necessary to cut off the fuel, temporarily stop the gas turbine, and then start cranking at a low speed using a starter motor, etc., and it will take some time until cleaning conditions are established. Therefore, a cleaning start signal 28 can be input to the cleaning liquid control unit 27, and an interlock is performed so that a cleaning command is not issued from the cleaning liquid control unit 27 until after this signal 28 is input. can. This cleaning start command can be formed by organically selectively combining a generator stop completion signal from the generator control circuit 29, a gas turbine crank operation signal, or a signal from a manual cleaning stop release switch.
In order to notify the power generator control circuit 29 of the contamination stage and make a shutdown decision, the output of the cleaning level setting section 25 is sent to the power generator control circuit 29 through a communication line 30.
Can be combined with

洗剤を含んだ洗浄液はタンク31から配管32
を通つて集合管33に入り、集合管33に設けた
多数の洗浄ノズル34から空気吸込室5内へ噴霧
される。配管32中に設けられた35はフイル
タ、36はポンプ、37は圧力調節弁、38は流
量調節弁、39は流量発信器、40は逆止弁であ
る。なお圧力調節弁37は圧力調節器41、流量
調節弁38は流量調節器42によつてコントロー
ルされるようになつている。
The cleaning liquid containing detergent is sent from the tank 31 to the pipe 32.
It enters the collecting pipe 33 through the collecting pipe 33 and is sprayed into the air suction chamber 5 from a large number of cleaning nozzles 34 provided in the collecting pipe 33. 35 provided in the pipe 32 is a filter, 36 is a pump, 37 is a pressure regulating valve, 38 is a flow regulating valve, 39 is a flow transmitter, and 40 is a check valve. Note that the pressure regulating valve 37 is controlled by a pressure regulator 41, and the flow rate regulating valve 38 is controlled by a flow rate regulator 42.

一方洗剤を含まない洗浄液(通常は水)はタン
ク43から配管44を通つて配管32に合流して
いる。配管44中に設けられた45はフイルタ、
46はポンプ、47は圧力調節弁、48は流量調
節弁、49は流量発信器、50は逆止弁であり、
更に51は圧力調節器、52は流量調節器であ
る。
On the other hand, a cleaning liquid (usually water) that does not contain detergent flows from a tank 43 through a pipe 44 to join the pipe 32. 45 provided in the pipe 44 is a filter;
46 is a pump, 47 is a pressure control valve, 48 is a flow rate control valve, 49 is a flow rate transmitter, 50 is a check valve,
Furthermore, 51 is a pressure regulator, and 52 is a flow regulator.

これら洗浄回路におけるポンプ36,46、圧
力調節弁37,47、流量調節弁38,48は洗
浄液制御部27によつて制御される。
The pumps 36, 46, pressure control valves 37, 47, and flow rate control valves 38, 48 in these washing circuits are controlled by the washing liquid control section 27.

空気吸込室5の底部、燃焼器2の底部及びガス
タービン3の排気室10の底部にはそれぞれ排水
管53,54,55及び56が取付けられてお
り、各排水管中には開閉弁57,58,59及び
60が設けられ、これらの開閉弁は洗浄液制御部
27によつて制御される。61は排水用のタンク
である。
Drain pipes 53, 54, 55, and 56 are installed at the bottom of the air suction chamber 5, the bottom of the combustor 2, and the bottom of the exhaust chamber 10 of the gas turbine 3, respectively, and an on-off valve 57, 58, 59, and 60 are provided, and these on-off valves are controlled by the cleaning liquid control section 27. 61 is a tank for drainage.

第1図に示した例においては、圧縮比演算部1
5、圧縮比変化検出部16、正常値設定器17、
熱効率演算部19、熱効率変化検出部21、正常
値設定器22などは別個のユニツトとしてブロツ
ク的に示してあるが、それに制限されるものでは
なく、任意の組み合わせでユニツト化することが
できることは明らかである。また、これらと汚染
量演算部23を含めた全ての演算機構をコンピユ
ータに行わせることもできる。洗浄レベル設定部
25及び洗浄液制御部27の演算、制御は種々の
条件変更に迅速に対応するためには、ハード的に
構成するより、コンピユータ化しプログラム変更
により対処した方が好ましい。
In the example shown in FIG.
5, compression ratio change detection section 16, normal value setting device 17,
Although the thermal efficiency calculating section 19, the thermal efficiency change detecting section 21, the normal value setting device 22, etc. are shown in block form as separate units, it is clear that they are not limited to this and can be combined into a unit in any combination. It is. Further, all calculation mechanisms including these and the contamination amount calculation section 23 can be performed by a computer. In order to quickly respond to various changes in conditions, the calculations and controls of the cleaning level setting unit 25 and the cleaning liquid control unit 27 are preferably computerized and handled by changing programs rather than being configured in hardware.

次に第1図の洗浄装置の作用を第3図の動作タ
イムチヤートを参照しながら説明する。
Next, the operation of the cleaning device shown in FIG. 1 will be explained with reference to the operation time chart shown in FIG. 3.

空気圧縮機1及びガスタービン3の内部の汚染
が進行して汚染量演算部23の出力が増加し、例
えば汚染段階値S2以上になつたとすれば、洗浄レ
ベル設定部25の出力はそれに対応した洗浄レベ
ル信号を出力する。この出力は洗浄液制御部27
へ入力されると共に、発電装置制御回路29へ伝
えられ、発電停止の判断に供される。発電が停止
され洗浄可能状態になると、洗浄開始信号28が
洗浄液制御部27へ入力される。これによつて洗
浄液制御部27はポンプ36を起動し、圧力調節
器41及び流量調節器42へ信号を送り、洗浄液
の圧力及び流量を所定の値に保つ。これにより洗
剤を含む洗浄液は空気吸込室5内に噴霧され、空
気圧縮機1のクランク運転によつて吸込まれる空
気流に乗つて洗浄液ミストが空気圧縮機1の吸込
側から吐出側へ運ばれる。その際、動翼、静翼及
び空気通路に洗浄液ミストは付着し流下して汚染
物質を洗い流す。次いで洗浄ミストの残部は燃焼
器2を通過してガスタービン3へ入りその動翼等
を洗浄するのに費やされ最後に排気室10へ排出
される。各機器の底部に流下した洗浄液は、洗浄
開始と同時に開けられた排水用の開閉弁57〜6
0を通りタンク61へ排出される。
If the contamination inside the air compressor 1 and the gas turbine 3 progresses and the output of the contamination amount calculation unit 23 increases, for example, if it reaches the contamination stage value S 2 or more, the output of the cleaning level setting unit 25 will change accordingly. outputs a cleaning level signal. This output is from the cleaning liquid control section 27.
and is transmitted to the power generation device control circuit 29, where it is used to determine whether to stop power generation. When power generation is stopped and the state becomes ready for cleaning, a cleaning start signal 28 is input to the cleaning liquid control section 27. Accordingly, the cleaning liquid control section 27 starts the pump 36 and sends a signal to the pressure regulator 41 and the flow rate regulator 42 to maintain the pressure and flow rate of the cleaning liquid at predetermined values. As a result, the cleaning liquid containing the detergent is sprayed into the air suction chamber 5, and the cleaning liquid mist is carried from the suction side to the discharge side of the air compressor 1 on the air flow sucked in by the crank operation of the air compressor 1. . At this time, the cleaning liquid mist adheres to the moving blades, stationary blades, and air passages and flows down to wash away contaminants. Next, the remainder of the cleaning mist passes through the combustor 2 and enters the gas turbine 3, where it is spent cleaning its rotor blades and the like, and finally is discharged into the exhaust chamber 10. The cleaning liquid that has flowed down to the bottom of each device is drained from the drainage on-off valves 57 to 6, which are opened at the same time as cleaning starts.
0 and is discharged to the tank 61.

一定時間経過後ポンプ36を停止し、洗剤を含
む洗浄液の噴霧を終了させ、次にポンプ46を起
動し、前述の洗浄回路と同様な手順で洗浄剤を含
まない洗浄水を空気吸込室5内に噴霧してリンス
を行う。リンスを一定時間行つた後、ポンプ46
を停止し、次いで排水用の開閉弁57〜60を閉
じる。
After a certain period of time has elapsed, the pump 36 is stopped to finish spraying the detergent-containing cleaning liquid, and then the pump 46 is started to supply cleaning water that does not contain a cleaning agent into the air suction chamber 5 in the same manner as in the above-mentioned cleaning circuit. Spray and rinse. After rinsing for a certain period of time, the pump 46
, and then close the drain valves 57 to 60.

所定の洗浄動作が完了すると手動もしくは自動
により発電開始指令が出され、発電が再開される
ことになる。
When the predetermined cleaning operation is completed, a power generation start command is issued manually or automatically, and power generation is restarted.

〔発明の効果〕〔Effect of the invention〕

本発明の汚染検出装置は、ガスタービン発電装
置の管理用として設けられる空気圧縮機の吸込側
及び吐出側圧力計及び温度計よりの信号、発電機
出力信号、燃料消費量信号等を利用し、これらか
ら空気圧縮機の圧縮比及び熱効率の変化量を検出
し、それらを総合して空気圧縮機及びガスタービ
ンの内部汚染量を演算することを特徴とするもの
であるから、従来の装置のように特別な検出設備
を設ける必要がなく、また、洗浄サイクル毎に検
出設備を更新する必要もないので、再起動後直ち
に洗浄後の汚染度、すなわち洗浄効果を確認でき
る。更に高い精度及び再現性を有しており、信頼
性の高い洗浄開始時期の指標として使用すること
により、ガスタービン発電装置の性能を常に目標
とするレベルにコントロールすることが出来る。
The contamination detection device of the present invention utilizes signals from the suction side and discharge side pressure gauges and thermometers of the air compressor provided for managing the gas turbine power generator, the generator output signal, the fuel consumption signal, etc. It is characterized by detecting the amount of change in the compression ratio and thermal efficiency of the air compressor from these and calculating the amount of internal contamination of the air compressor and gas turbine by integrating them, so it is different from conventional equipment. There is no need to provide special detection equipment for the system, and there is no need to update the detection equipment for each cleaning cycle, so the degree of contamination after cleaning, that is, the cleaning effect, can be confirmed immediately after restarting. Furthermore, it has high accuracy and reproducibility, and by using it as a highly reliable indicator of when to start cleaning, the performance of the gas turbine power generator can be controlled at the target level at all times.

また、本発明の洗浄装置は、このような汚染検
出装置からの汚染量信号を複数の汚染段階に区分
し、それによつて洗浄レベルを設定して洗浄液を
制御するようにしたので、信頼性が高く、きめの
細かい洗浄方法を自動的に行うことができ、且
つ、洗浄に要する発電停止時間を必要最小限度に
短縮でき、プラント運転効率の向上及び経費の軽
減に寄与できる。
In addition, the cleaning device of the present invention classifies the contamination amount signal from such a contamination detection device into a plurality of contamination stages, sets the cleaning level based on the contamination level, and controls the cleaning liquid, thereby improving reliability. A highly detailed cleaning method can be automatically performed, and the power generation stop time required for cleaning can be shortened to the minimum necessary, contributing to improved plant operating efficiency and reduced costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空気圧縮機及びガスタービン
内部の汚染検出装置及びそれを用いた洗浄装置の
一例を説明するための系統図、第2図は運転時間
tに対する圧縮比変化量ΔΡ及び、熱効率変化量
Δηの傾向の一例を示す図、第3図は第1図に示
した洗浄装置の動作タイムチヤート。 1……空気圧縮機、2……燃焼器、3……ガス
タービン、4……発電機、5……空気吸込室、6
……濾過器、7……燃料配管、8……燃料導入
部、9……ガスタービン入口部、10……ガスタ
ービン排気室、11,12……圧力発信器、1
3,14……温度発信器、13a……ガスタービ
ン入口温度発信器、14a……ガスタービン排気
温度発信器、15……圧縮比演算部、16……圧
縮比変化検出部、17,22……正常値設定器、
18……流量発信器、19……熱効率演算部、2
0……電力計、21……熱効率変化検出部、23
……汚染量演算部、24……表示部、25……洗
浄レベル設定部、26a,26b,26c……汚
染段階設定器、27……洗浄液制御部、28……
洗浄開始信号、29……発電装置制御回路、30
……連絡線、31,43……タンク、32,44
……配管、33……集合管、34……洗浄ノズ
ル、35,45……フイルタ、36,46……ポ
ンプ、37,47……圧力調節弁、38,48…
…流量調節弁、39,49……流量発信器、4
0,50……逆止弁、41,51……圧力調節
器、42,52……流量調節器、53,54,5
5,56……排水管、57,58,59,60…
…開閉弁、61……タンク。
FIG. 1 is a system diagram for explaining an example of the air compressor and gas turbine internal contamination detection device and cleaning device using the same according to the present invention, and FIG. 2 shows the amount of change in compression ratio ΔΡ with respect to operating time t, A diagram showing an example of the trend of the thermal efficiency change amount Δη, and FIG. 3 is an operation time chart of the cleaning device shown in FIG. 1. 1... Air compressor, 2... Combustor, 3... Gas turbine, 4... Generator, 5... Air suction chamber, 6
... Filter, 7 ... Fuel piping, 8 ... Fuel introduction section, 9 ... Gas turbine inlet section, 10 ... Gas turbine exhaust chamber, 11, 12 ... Pressure transmitter, 1
3, 14... Temperature transmitter, 13a... Gas turbine inlet temperature transmitter, 14a... Gas turbine exhaust temperature transmitter, 15... Compression ratio calculation section, 16... Compression ratio change detection section, 17, 22... ...normal value setting device,
18...Flow rate transmitter, 19...Thermal efficiency calculation section, 2
0... Wattmeter, 21... Thermal efficiency change detection section, 23
... Contamination amount calculation section, 24 ... Display section, 25 ... Cleaning level setting section, 26a, 26b, 26c ... Contamination stage setting device, 27 ... Cleaning liquid control section, 28 ...
Cleaning start signal, 29... Generator control circuit, 30
...Communication line, 31,43...Tank, 32,44
... Piping, 33 ... Collection pipe, 34 ... Cleaning nozzle, 35, 45 ... Filter, 36, 46 ... Pump, 37, 47 ... Pressure control valve, 38, 48 ...
...Flow rate control valve, 39, 49...Flow rate transmitter, 4
0,50...Check valve, 41,51...Pressure regulator, 42,52...Flow rate regulator, 53,54,5
5, 56...Drain pipe, 57, 58, 59, 60...
...Opening/closing valve, 61...Tank.

Claims (1)

【特許請求の範囲】 1 ガスタービン発電装置の空気圧縮機1及びガ
スタービン3内部の汚染検出装置に於いて、空気
圧縮機1の空気吸込側と吐出側の圧力を基本とし
て算出される圧縮比またはこの圧縮比を基本とし
て算出される断熱効率(以下圧縮比という)の値
をその正常値と比較し圧縮比の変化量を検出する
圧縮比変化検出部16と、燃焼器2に供給された
燃料量から換算した熱量とそのときの発電機4の
発電量とを基本として算出されるガスタービンの
熱効率または熱消費率の値をその正常値と比較
し、これら(以下熱効率という)の変化量を検出
する熱効率変化検出部21と、これら検出部1
6,21からの出力信号を入力して空気圧縮機と
ガスタービンの汚染量を算定する汚染量演算部2
3とを有することを特徴とする空気圧縮機及びガ
スタービン内部の汚染検出装置。 2 ガスタービン発電装置の空気圧縮機1及びガ
スタービン3内部の洗浄装置に於いて、空気圧縮
機1の空気吸込側と吐出側の圧力を基本として算
出される圧縮比の値をその正常値と比較し圧縮比
の変化量を検出する圧縮比変化検出部16と、燃
焼器2で発生する熱量とそのそきの発電量から算
出される熱効率の値をその正常値と比較し熱効率
の変化量を検出する熱効率変化検出部21と、こ
れら検出部16,21からの出力信号を入力して
汚染量を算定する汚染量演算部23とを有する汚
染検出装置を具備し、該汚染検出装置の汚染量算
定値に対応した複数の洗浄レベルを設定する洗浄
レベル設定部25及び該設定部25の設定値によ
り空気圧縮機1の空気吸込側へ噴霧する洗浄液を
制御する洗浄液制御部27を有することを特徴と
する空気圧縮機及びガスタービン内部の洗浄装
置。
[Claims] 1. In a contamination detection device inside an air compressor 1 and a gas turbine 3 of a gas turbine power generation device, a compression ratio calculated based on the pressure on the air suction side and the discharge side of the air compressor 1. Alternatively, a compression ratio change detection unit 16 that compares the value of adiabatic efficiency (hereinafter referred to as compression ratio) calculated based on this compression ratio with its normal value and detects the amount of change in the compression ratio; The value of the thermal efficiency or heat consumption rate of the gas turbine, which is calculated based on the amount of heat converted from the amount of fuel and the amount of power generated by the generator 4 at that time, is compared with its normal value, and the amount of change in these (hereinafter referred to as thermal efficiency) is determined. Thermal efficiency change detection section 21 detects
A pollution amount calculation unit 2 that calculates the pollution amount of the air compressor and gas turbine by inputting the output signals from 6 and 21.
3. An apparatus for detecting contamination inside an air compressor and a gas turbine, comprising: 2. In the cleaning device inside the air compressor 1 and gas turbine 3 of the gas turbine power generator, the value of the compression ratio calculated based on the pressure on the air suction side and the discharge side of the air compressor 1 is determined as its normal value. The compression ratio change detection unit 16 compares and detects the amount of change in the compression ratio, and the value of thermal efficiency calculated from the amount of heat generated in the combustor 2 and the amount of power generated at that time is compared with its normal value to determine the amount of change in thermal efficiency. The contamination detection device includes a thermal efficiency change detection section 21 that detects a change in thermal efficiency, and a contamination amount calculation section 23 that inputs output signals from these detection sections 16 and 21 to calculate the amount of contamination. The present invention includes a cleaning level setting section 25 that sets a plurality of cleaning levels corresponding to the calculated amount, and a cleaning liquid control section 27 that controls the cleaning liquid sprayed to the air suction side of the air compressor 1 based on the setting value of the setting section 25. A cleaning device for the inside of an air compressor and gas turbine.
JP27768786A 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device Granted JPS63131834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27768786A JPS63131834A (en) 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27768786A JPS63131834A (en) 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device

Publications (2)

Publication Number Publication Date
JPS63131834A JPS63131834A (en) 1988-06-03
JPH0584824B2 true JPH0584824B2 (en) 1993-12-03

Family

ID=17586900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27768786A Granted JPS63131834A (en) 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device

Country Status (1)

Country Link
JP (1) JPS63131834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529155A (en) * 2008-07-25 2011-12-01 ユナイテッド テクノロジーズ コーポレイション Tracking engine cleaning improvement
KR20150086783A (en) * 2014-01-20 2015-07-29 대우조선해양 주식회사 Ventilating device and pipe welding method using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634722B2 (en) * 1991-12-25 1997-07-30 川崎製鉄株式会社 Method for reducing nitrogen oxides in flue gas in gas turbine
JP2756396B2 (en) * 1992-11-16 1998-05-25 川崎製鉄株式会社 Method for cleaning blades of fuel-fired gas turbine device
JP3583461B2 (en) * 1994-04-01 2004-11-04 株式会社東芝 Cleaning device for air compressor and cleaning liquid therefor
JP2005133583A (en) * 2003-10-29 2005-05-26 Hitachi Ltd Gas turbine cleaning time determining device and method
JP2007063998A (en) * 2005-08-29 2007-03-15 Mt System Kiki Kk Cleaning method and cleaning device for engine
US8197609B2 (en) * 2006-11-28 2012-06-12 Pratt & Whitney Line Maintenance Services, Inc. Automated detection and control system and method for high pressure water wash application and collection applied to aero compressor washing
EP2052792A3 (en) * 2007-10-09 2011-06-22 Gas Turbine Efficiency Sweden AB Drain valve, washing system and sensing of rinse and wash completion
JP6715670B2 (en) * 2016-04-25 2020-07-01 東京電力ホールディングス株式会社 Method for judging performance deterioration of waste power generation plant
JP6805912B2 (en) 2017-03-13 2020-12-23 横河電機株式会社 Evaluation device, evaluation system, and evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529155A (en) * 2008-07-25 2011-12-01 ユナイテッド テクノロジーズ コーポレイション Tracking engine cleaning improvement
KR20150086783A (en) * 2014-01-20 2015-07-29 대우조선해양 주식회사 Ventilating device and pipe welding method using the same

Also Published As

Publication number Publication date
JPS63131834A (en) 1988-06-03

Similar Documents

Publication Publication Date Title
RU2614472C2 (en) System of turbine engine and method of its cleaning
US4548040A (en) Method and apparatus for determining when to initiate cleaning of turbocharger turbine blades
RU2391526C1 (en) Blow-off drain valve for control of fluid medium flow, flushing system, detecting device of flushing cycle and method of performing flushing cycle
US9470105B2 (en) Automated water wash system for a gas turbine engine
JPH0584824B2 (en)
CN1103927A (en) Engine cleaning processes and apparatus
US20110083705A1 (en) Engine wash system
CN101578208A (en) Steam cleaning apparatus and driving method thereof
CN103314186B (en) Turbine cleans
CN107061019A (en) A kind of gas turbine off-line cleaning method
US20120192575A1 (en) Ice machine safe mode freeze and harvest control and method
US20240200491A1 (en) Water pressure and quantity monitoring for hydrogen steam injected and inter-cooled turbine engine
CN112627976B (en) Automobile fuel cleaning control system, cleaning equipment and operation method thereof
WO2010054132A2 (en) Engine wash system and method
JPH08296453A (en) Water cleaning timing detection device of gas turbine compressor
US20200200039A1 (en) Cleaning system for a gas turbine engine
JPH0658172A (en) Gas turbine compressor washing device
JP3544959B2 (en) Engine cleaning device and engine cleaning method
CN111140470B (en) Intelligent air compression control and exhaust system of medical air pressurization oxygen cabin
KR102028136B1 (en) Cooling system of gas turbine generating apparatus and control method thereof and gas turbine generating apparatus
Boyce et al. A study of on-line and off-line turbine washing to optimize the operation of a gas turbine
CN221349135U (en) Boiler stops and is equipped with rust-resistant protection system
CN218873010U (en) Off-line cleaning system for gas compressor
JPH08128333A (en) Automatic cleaning device of gas turbine compressor
JP2756396B2 (en) Method for cleaning blades of fuel-fired gas turbine device