JPS63131834A - Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device - Google Patents

Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device

Info

Publication number
JPS63131834A
JPS63131834A JP27768786A JP27768786A JPS63131834A JP S63131834 A JPS63131834 A JP S63131834A JP 27768786 A JP27768786 A JP 27768786A JP 27768786 A JP27768786 A JP 27768786A JP S63131834 A JPS63131834 A JP S63131834A
Authority
JP
Japan
Prior art keywords
amount
contamination
gas turbine
air compressor
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27768786A
Other languages
Japanese (ja)
Other versions
JPH0584824B2 (en
Inventor
Masayuki Nakahara
中原 政幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering and Construction Co Ltd
Original Assignee
Toshiba Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering and Construction Co Ltd filed Critical Toshiba Engineering and Construction Co Ltd
Priority to JP27768786A priority Critical patent/JPS63131834A/en
Publication of JPS63131834A publication Critical patent/JPS63131834A/en
Publication of JPH0584824B2 publication Critical patent/JPH0584824B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of running a plant by calculating a pollution level from changes in compression ratio and thermal efficiency. CONSTITUTION:Pressures at the intake and discharge sides of an air compressor 1 are detected by pressure oscillators 11, 12 to obtain a change in compression ratio by a detecting section 16. A fuel amount supplied to a combustor 2 and a generated energy of a generator 4 are detected to obtain a change in thermal efficiency by a detecting section 21. Next, the pollution levels in the compressor 1 and a gas turbine 3 are calculated from changes in compression ratio and thermal efficiency by a calculating section 23 to spray washing liquid from a nozzle 34 to the intake side of air compressor 1 according to the pollution level. Thus, a time taken for washing can be shortened to improve the efficiency of running a plant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン発電装置に於ける空気圧縮機及び
ガスタービンの内部の汚染を検出する装置、及び該装置
による汚染量検出信号によって、それら内部の洗浄レベ
ルが制御される洗浄装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a device for detecting contamination inside an air compressor and a gas turbine in a gas turbine power generation device, and a contamination amount detection signal from the device. The present invention relates to a cleaning device in which the internal cleaning level is controlled.

〔従 来 技 術〕[Traditional technique]

ガスタービン発電装置は、一般にターボ型の空気圧縮機
によって加圧された空気と、軽油、重油などの液体燃料
もしくはLNG、LPGなどの気体燃料とを燃焼器に噴
射し、得られた高温高圧の燃焼ガス噴流によってガスタ
ービンを回転させ、それに結合された発電機を駆動して
発電を行うものである。
Gas turbine power generation equipment generally injects air pressurized by a turbo-type air compressor and liquid fuel such as light oil or heavy oil or gaseous fuel such as LNG or LPG into a combustor, and generates high-temperature, high-pressure gas. The jet of combustion gas rotates a gas turbine, which drives a generator connected to it to generate electricity.

空気圧縮機の空気導入通路には通常空気濾過器が設けら
れるが、空気中に浮遊している微細な粒子や化学物質、
例えばホコリ、塩分、油脂骨、炭化物などは十分に補集
する−ことが困難である。そのためこれ゛らの物質が空
気圧縮機内に入り静翼、動翼及び空気通路などに付着堆
積する。一方、ガスタービンの静翼、動翼及び空気通路
などには空気圧縮機から飛散してくるこれらホコリなど
に加え、燃焼ガス中の不燃物質や未燃物質などが同様に
付着堆積する。
An air filter is usually installed in the air introduction passage of an air compressor, but it removes fine particles and chemicals suspended in the air.
For example, it is difficult to sufficiently collect dust, salt, oily bones, carbide, etc. Therefore, these substances enter the air compressor and accumulate on the stator blades, rotor blades, air passages, etc. On the other hand, in addition to the dust scattered from the air compressor, non-combustible substances and unburned substances in the combustion gas also adhere and accumulate on the stationary blades, rotor blades, air passages, etc. of the gas turbine.

空気圧縮機やガスタービン内に汚染物質が付着堆積する
と、圧縮機の風量低下やガスタービン排気温度上昇、更
に発電量の減少などプラント効率を低下させることにな
るので好ましくない。そこである程度の汚染量となった
とき、発電を停止し内部洗浄を行う必要がある。しかし
、汚染の量はプラントの設置環境と、その変化、運転負
荷の大きさと時間、運転方法及び使用燃料の種類など多
くの変動要因によって左右され、必ずしも一定時間運転
後に一定量となるものではない。
It is undesirable that contaminants adhere and accumulate in the air compressor or gas turbine, since this will reduce the air volume of the compressor, increase the temperature of the gas turbine exhaust gas, and further reduce the amount of power generated, thereby reducing plant efficiency. When the amount of contamination reaches a certain level, it is necessary to stop power generation and clean the inside. However, the amount of pollution depends on many variable factors, such as the environment in which the plant is installed, changes in that environment, the size and duration of the operating load, the operating method, and the type of fuel used, and is not necessarily a constant amount after a certain period of operation. .

そこで実際に付着、堆積した汚染物質の量を正確に測定
し、それによって洗浄開始時期を決定するシステムが要
求されている。
Therefore, there is a need for a system that accurately measures the amount of contaminants that have actually adhered or accumulated and determines when to start cleaning based on this.

この要望に答えるものとして例えば、空気圧縮気の空気
導入路にバイパス路を設けて、そこに汚染物質の一種で
ある塩分堆積検知用のフィルターを取付け、塩分の堆積
量を光学的方法により検出することが提案されている。
To meet this demand, for example, a bypass path is provided in the air introduction path for compressed air, and a filter for detecting the accumulation of salt, which is a type of pollutant, is installed there, and the amount of accumulated salt is detected using an optical method. It is proposed that.

(特開昭52−471)2公報) 〔発明が解決しようとする問題点〕 しかしながら、かかる汚染量の検出方法は、検出設備と
してバイパス路などの特別な設備を必要とする上、汚染
量検出−洗浄サイクル毎にフィルターを交換しなければ
ならない。また、測定の再現性を維持するためには、フ
ィルターのバラツキの管理を厳しくする必要がある上、
特定の汚染物質に対応出来るのみでガスタービン自体の
総合的な汚染量の把握は直接的には不可能である。
(Unexamined Japanese Patent Publication No. 52-471) 2) [Problems to be Solved by the Invention] However, such a method for detecting the amount of contamination requires special equipment such as a bypass path as the detection equipment, and it is difficult to detect the amount of contamination. - Filters must be replaced after every cleaning cycle. In addition, in order to maintain measurement reproducibility, it is necessary to strictly control filter variations, and
It is only possible to deal with specific pollutants, but it is not possible to directly grasp the overall amount of pollution from the gas turbine itself.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ガスタービン発電装置に通常設けられている
運転管理用の計測手段をそのまま利用することにより、
再現性よく、且つ、精度の高い汚染量の検出装置を提供
することができ、また、その検出装置を汚染除去のため
の洗浄手段と有機的に結合することにより、極めて効率
的な空気圧縮機及びガスタービン内部の洗浄装置を提供
することができるという知見に基づいてなされたもので
ある。
The present invention utilizes the measurement means for operation management normally provided in gas turbine power generation equipment as is.
By providing a highly reproducible and highly accurate contamination detection device, and by organically combining the detection device with a cleaning means for removing contamination, an extremely efficient air compressor can be created. This invention was made based on the knowledge that it is possible to provide a cleaning device for the inside of a gas turbine.

一般に空気圧縮機の圧縮比は種々の要因によって定まる
が、運転経過によって生ずる変化の値は圧縮機内部の汚
染の量に比較的再現性よく対応すること、及び、ガスタ
ービンの運転経過によって生ずる内部汚染の量は、空気
圧msの内部汚染量にほぼ比例関係にあり、且つ、これ
らは理想的燃焼条件の燃焼器で発生すべき熱量(投入燃
料量の熱量換算)とそのときの発電量から算出される熱
効率の変化量と比較的再現性よく対応することが判った
。またガスタービンの内部汚染の進行は、ガスタービン
排気温度の上昇をもたらすことも判った。
In general, the compression ratio of an air compressor is determined by various factors, but the value of the change caused by the course of operation corresponds to the amount of contamination inside the compressor with relatively good reproducibility, and the value of the change caused by the course of operation of the gas turbine The amount of contamination is almost proportional to the amount of internal contamination of air pressure ms, and these are calculated from the amount of heat that should be generated in the combustor under ideal combustion conditions (conversion of amount of input fuel into amount of heat) and the amount of power generated at that time. It was found that this corresponds to the amount of change in thermal efficiency with relatively good reproducibility. It has also been found that the progress of internal contamination of the gas turbine causes an increase in the gas turbine exhaust temperature.

ガスタービン発電装置の洗浄は、通常1)000rpま
たはそれより低速でクランク運転している空気圧縮機の
空気吸込側より、洗浄液を霧状に噴霧し、噴霧された洗
浄液ミストを低速の空気流によって、空気圧縮機、燃焼
器を経由してガスタービン内に流通させて洗浄する方法
が多く用いられている。このように空気圧縮機とガスタ
ービンの内部洗浄を共通して行う場合の洗浄開始時期を
定めるにあたって使用する汚染検出装置の検出部として
は、前述した圧縮比の変化量又は熱効率の変化量のいず
れかを用いれば足りる。しかし、これらの変化量をガス
タービン発電装置の内部汚染量の指標として使用しても
実用上はぼ満足できる結果は得られるが、燃料の種類、
運転状況、環境等の状況によって空気圧縮機、或いはガ
スタービンのいずれが一方の汚染量の増加率が大となる
場合への対処や、他の種々の変動要因による影響をでき
るだけ除去し、より高い精度及び再現性を得るためには
、圧縮比と熱消費率の両者の変化量を総合して汚染量を
算定することが好ましい。
Cleaning of gas turbine power generation equipment is usually done by: 1) Spraying a cleaning liquid in a mist form from the air suction side of an air compressor that is cranked at 1,000 rpm or lower, and dispersing the sprayed cleaning liquid mist with a low-speed air stream. , a method of cleaning the gas turbine by flowing it through the air compressor and combustor is often used. In this way, the detection part of the contamination detection device used to determine when to start cleaning when cleaning the air compressor and gas turbine internally can detect either the amount of change in the compression ratio or the amount of change in thermal efficiency described above. It is sufficient to use either. However, although it is possible to obtain practically satisfactory results by using these changes as an index of the amount of internal contamination in a gas turbine power generation system, the type of fuel,
Depending on operating conditions, environment, etc., either the air compressor or the gas turbine increases the rate of increase in the amount of pollution. In order to obtain accuracy and reproducibility, it is preferable to calculate the amount of contamination by integrating the amount of change in both the compression ratio and the heat consumption rate.

従って、かかる知見に基づく本発明の第1発明であるガ
スタービン発電装置の空気圧縮機及びガスタービンの内
部の汚染検出装置の要旨は、空気圧縮機の空気吸込側と
吐出側の圧力から算出される圧縮比の値をその正常値と
比較し圧縮比の変化量を検出する圧縮比変化検出部と、
燃焼器に供給された燃料量から換算した発生すべき熱量
と発電量から算出される熱効率の値をその正常値と比較
し、熱効率の変化量を検出する熱効率変化検出部と、こ
れら検出部からの出力信号を入力して汚染量を算定する
汚染量演算部とを有することを特徴とするものである。
Therefore, the gist of the air compressor for a gas turbine power generator and the contamination detection device inside the gas turbine, which is the first invention based on this knowledge, is that the contamination detection device is calculated from the air suction side and discharge side of the air compressor. a compression ratio change detection unit that compares the compression ratio value with its normal value and detects the amount of change in the compression ratio;
A thermal efficiency change detection unit that compares the value of thermal efficiency calculated from the amount of heat to be generated and the amount of power generated converted from the amount of fuel supplied to the combustor with its normal value, and detects the amount of change in thermal efficiency; and a contamination amount calculation section that calculates the amount of contamination by inputting the output signal of.

本発明汚染量検出装置としては主体的に説明している圧
縮比及び熱効率の外に、圧縮機の断熱効率または、ガス
タービンの排気温度の変化を用いることも出来る。
In addition to the compression ratio and thermal efficiency which are mainly explained as the pollution amount detection device of the present invention, it is also possible to use the adiabatic efficiency of the compressor or the change in the exhaust gas temperature of the gas turbine.

また、本発明の第2発明であるガスタービン発電装置の
空気圧縮機及びガスタービンの内部の洗浄装置の要旨は
、かかる第1発明の汚染検出装置を具備し、該汚染検出
装置の汚染量算定値に対応した複数の洗浄レベルを設定
する洗浄レベル設定部及び該設定部の設定値により、空
気圧縮機の空気吸込側へ噴霧する洗浄液を制御する洗浄
液制御部を有することを特徴とするものである。
Further, the second aspect of the present invention is an air compressor for a gas turbine power generation device and a cleaning device for the inside of the gas turbine, which is equipped with the pollution detection device of the first invention, and is capable of calculating the amount of contamination of the pollution detection device. It is characterized by having a cleaning level setting section for setting a plurality of cleaning levels corresponding to the cleaning level, and a cleaning liquid control section for controlling the cleaning liquid sprayed to the air suction side of the air compressor based on the setting value of the setting section. be.

〔実施例及び作用〕[Examples and effects]

次に図面を基に本発明の詳細な説明する。 Next, the present invention will be explained in detail based on the drawings.

第1図は本発明の空気圧縮機及びガスタービン内部の汚
染検出装置、及びそれを用いた洗浄装置の例を説明する
系統図である。
FIG. 1 is a system diagram illustrating an example of a contamination detection device inside an air compressor and gas turbine of the present invention, and a cleaning device using the same.

ガスタービン発電装置はターボ型の空気圧縮機1、燃焼
器2、ガスタービン3及び発電m4を主要部分として構
成され、燃焼器2を除いて回転軸は互いに結合されてい
る。
The gas turbine power generation device is composed of a turbo-type air compressor 1, a combustor 2, a gas turbine 3, and a power generation m4 as main parts, and except for the combustor 2, the rotating shafts are connected to each other.

空気圧縮機1の吸込側は空気吸込室5に連通しており、
空気吸込室5の空気導入通路には濾過器6が設けられて
いる。空気圧縮a1の吐出側は燃焼器2に連通しており
、圧縮された空気を燃焼器2に吐出するようになってい
る。燃焼器2には燃料配管7から、燃料を噴射するため
の燃料導入部8及び燃焼ガスをガスタービン3へ導くガ
スタービン入口部9が設けられている。
The suction side of the air compressor 1 communicates with the air suction chamber 5,
A filter 6 is provided in the air introduction passage of the air suction chamber 5. The discharge side of the air compressor a1 is connected to the combustor 2, and compressed air is discharged to the combustor 2. The combustor 2 is provided with a fuel introduction part 8 for injecting fuel from a fuel pipe 7 and a gas turbine inlet part 9 for guiding combustion gas to the gas turbine 3.

また、ガスタービン3のガス排出側は排気室10に連通
されている。
Further, a gas discharge side of the gas turbine 3 is communicated with an exhaust chamber 10.

空気圧縮機1の吸込側及び吐出側には圧力発信器1)及
び12、温度発信器13及び14が設けられ、それらの
発信機の出力信号は圧縮比演算部15へ入力されている
。圧縮比演算部15に於いて圧力発信器1)と12の出
力信号は減算されて圧縮比に比例した信号が出力される
。温度発信器13及び14は圧縮比を算出する際、吸込
側及び吐出側のそれぞれの圧力の温度補正を行うための
ものである。
Pressure transmitters 1) and 12 and temperature transmitters 13 and 14 are provided on the suction side and the discharge side of the air compressor 1, and the output signals of these transmitters are input to the compression ratio calculation section 15. In the compression ratio calculating section 15, the output signals of the pressure transmitters 1) and 12 are subtracted and a signal proportional to the compression ratio is output. The temperature transmitters 13 and 14 are used to perform temperature correction on the respective pressures on the suction side and the discharge side when calculating the compression ratio.

圧縮比演算部15の出力信号は圧縮比変化検出部16へ
入力され、ここで正常値設定器17からの圧縮比の正常
値信号と比較されて圧縮比変化量に比例した信号が出力
される。正常値設定器17には空気圧縮a1を据付けた
直後、もしくは定期点検直後の運転、または十分な洗浄
を行った直後の運転に於ける圧縮比演算部15の出力を
圧縮比の正常値として記憶設定させておく。また、この
正常値は計算により手動により設定することも可能であ
る。
The output signal of the compression ratio calculation section 15 is input to the compression ratio change detection section 16, where it is compared with the normal value signal of the compression ratio from the normal value setting device 17, and a signal proportional to the amount of change in the compression ratio is output. . The normal value setting device 17 stores the output of the compression ratio calculation unit 15 as the normal value of the compression ratio when the air compressor a1 is operated immediately after installation, immediately after regular inspection, or immediately after thorough cleaning. Let me set it. Further, this normal value can also be set manually by calculation.

燃料配管7中には燃料の流量発信器18が設けられ、そ
の出力信号は熱率演算部19へ入力される。一方、発電
機4の出力は電力計20によって測定されて同様に熱効
率演算部19へ入力される。
A fuel flow rate transmitter 18 is provided in the fuel pipe 7, and its output signal is input to a heat rate calculating section 19. On the other hand, the output of the generator 4 is measured by the wattmeter 20 and similarly input to the thermal efficiency calculation section 19.

熱効率は単位時間当たりの〔発電量(Kcal)/燃焼
器での発熱量(Kcal) )であるが、時間遅れや短
時間の変動を考慮して一定期間の平均値をとることが好
ましい。すなわち、燃料流量を例えば15分間積算しカ
ロリー換算を行って発熱量を算出し、同様にそのときの
発電機出力を15分間積算して発生電力量を算出し、こ
れをカロリー換算し、両者の比を演算することによって
行う。従ってこの場合の熱効率演算部19の出力は過去
15分間の平均値となる。
Thermal efficiency is defined as [power generation (Kcal)/heat generation amount (Kcal) in the combustor] per unit time, but it is preferable to take an average value over a certain period of time in consideration of time delays and short-term fluctuations. In other words, the amount of heat generated is calculated by integrating the fuel flow rate for 15 minutes, for example, and converting it into calories.Similarly, the generator output at that time is also integrated for 15 minutes to calculate the amount of generated electricity, which is converted into calories, and the amount of heat generated is calculated. This is done by calculating the ratio. Therefore, the output of the thermal efficiency calculation unit 19 in this case is the average value for the past 15 minutes.

このようにして算出された熱効率は熱効率演算部19か
ら熱効率変化検出部21へ入力され、ここで正常値設定
器22からの熱効率の正常値信号と比較されて熱効率変
化量に比例した信号が出力される。熱効率の正常値設定
器22には、前述した圧縮比の正常値設定器17と同様
に据付直後の運転に於ける熱効率演算部19の出力など
を熱効率の正常値として記憶設定させておく。
The thermal efficiency calculated in this way is input from the thermal efficiency calculation section 19 to the thermal efficiency change detection section 21, where it is compared with the normal value signal of thermal efficiency from the normal value setting device 22, and a signal proportional to the amount of change in thermal efficiency is output. be done. The thermal efficiency normal value setter 22 stores and sets the output of the thermal efficiency calculation section 19 during operation immediately after installation as the normal value of thermal efficiency, similar to the compression ratio normal value setter 17 described above.

圧縮比変化検出部16及び熱効率変化検出部21の出力
信号は汚染量演算部23へ入力され、ここで両者の信号
が加算され汚染量信号として表示部24へ出力される。
The output signals of the compression ratio change detection section 16 and the thermal efficiency change detection section 21 are input to the contamination amount calculation section 23, where the two signals are added together and outputted to the display section 24 as a contamination amount signal.

これは前述したように、空気圧縮機1の汚染量とガスタ
ービン3の汚染量は通常時間と共に同傾向で増加して行
くが、運転状況によりいずれか一方の増加率が大となっ
たとき、それを取込んだ汚染量信号を得ることが好まし
いこと、及び圧縮比と熱効率に影響する変動要因による
影響をできるだけ除去して精度の向上を図ることが好ま
しいことなどの理由から、これら両者の変化量を加算し
、それぞれの影響度を平均化しているのである。
This is because, as mentioned above, the amount of contamination in the air compressor 1 and the amount of contamination in the gas turbine 3 usually increase with the same trend over time, but when the rate of increase in either one becomes large depending on the operating conditions, It is desirable to obtain a contamination amount signal that incorporates this, and it is also desirable to improve accuracy by removing as much as possible the influence of fluctuation factors that affect the compression ratio and thermal efficiency. The amounts are added together and the influence of each is averaged.

第2図は運転時間tに対する圧縮比変化量ΔP及び熱効
率変化量Δηの傾向の1例を示すもので、この例におい
ては、この両者にそれぞれ係数に1及びに2を乗じて加
算して総合的な汚染量算定線に、ΔP+に、Δηを算出
している。
Figure 2 shows an example of the trends of the compression ratio change ΔP and the thermal efficiency change Δη with respect to the operating time t. Δη is calculated for ΔP+ on the pollution amount calculation line.

K、及びに2は空気圧縮機の汚染量に対応する圧縮比変
化量と、ガスタービンの汚染量に対応する熱効率変化量
のそれぞれの全体に対応する影響度を予め定める定数で
あり、例えば0.1〜10の任意の範囲で経験的に定め
ることができる。
K and 2 are constants that predetermine the overall influence of the compression ratio change corresponding to the pollution amount of the air compressor and the thermal efficiency change corresponding to the gas turbine pollution amount, for example, 0. It can be determined empirically in any range from .1 to 10.

汚染量演算部23の出力は表示部24へ入力され、ここ
で汚染量が指示もしくは記録されると共に、洗浄レベル
設定部25へ入力される。洗浄レベル設定部25に於い
て、汚染量演算部23の出力が本例では3個の汚染段階
設定器26a、 26b、及び26cの設定値S、、S
、及びS3と比較され、設定値以上となっとき、その値
に対応した洗浄レベル設定値信号が出力される。第2図
には汚染量演算器出力と汚染段階設定値S r 、 S
 z及びS3の関係が示されている。汚染段階設定器は
3個に限らず任意の数とすることができ、設定器の数に
対応した洗浄レベル設定値信号を得ることができる。
The output of the contamination amount calculating section 23 is input to the display section 24, where the amount of contamination is indicated or recorded, and is also input to the cleaning level setting section 25. In the cleaning level setting section 25, the output of the contamination amount calculation section 23 is set to three contamination stage setting devices 26a, 26b, and 26c in this example.
, and S3, and when it exceeds the set value, a cleaning level set value signal corresponding to that value is output. Figure 2 shows the contamination amount calculator output and contamination stage setting values S r , S
The relationship between z and S3 is shown. The number of contamination stage setters is not limited to three, but any number can be used, and a cleaning level set value signal corresponding to the number of setters can be obtained.

洗浄レベル設定部25の出力は洗浄液制御部27へ入力
される。洗浄液制御部27は空気圧縮機1の吸込側へ噴
霧する洗浄液を制御するものであり、入力された洗浄レ
ベル設定値に対応した制御方法を自動的に選択する。例
えば、汚染段階設定値をSt、St及びS3の3段階と
した場合に於いて、 A、 汚染段階がS、以上82未満のときの洗浄レベル
設定値の場合・・・水のみの洗浄液で  □洗浄する。
The output of the cleaning level setting section 25 is input to the cleaning liquid control section 27. The cleaning liquid control unit 27 controls the cleaning liquid sprayed onto the suction side of the air compressor 1, and automatically selects a control method corresponding to the input cleaning level setting value. For example, when the contamination stage set value is set to 3 stages, St, St, and S3, A. If the contamination stage is S, or higher and less than 82, then the cleaning level set value is... with a cleaning solution of only water □ Wash.

B、 汚染段階が82以上33未満のときの洗浄レベル
設定値の場合・・・洗剤を含む洗浄液で洗浄し、次に水
のみの洗浄液で洗浄(リンス)する。
B. In the case of cleaning level set value when the contamination stage is 82 or more and less than 33...Clean with a cleaning liquid containing detergent, and then wash (rinse) with a cleaning liquid containing only water.

C0汚染段階が83以上のときの洗浄レベル設定値の場
合・・・上記Bの場合と同様な洗浄工程を行うが、洗浄
時間をより長時間にする。
In the case of the cleaning level set value when the C0 contamination stage is 83 or more...The same cleaning process as in case B above is performed, but the cleaning time is made longer.

のような3段階の異なる制御方法を選択することができ
る。更に多段階設定とし、洗浄液の流量や噴射圧力を変
更させるなどの多様な制御方法を組み込むこともできる
Three different control methods can be selected. Furthermore, it is possible to incorporate various control methods such as multi-stage setting and changing the flow rate and injection pressure of the cleaning liquid.

汚染段階がS、以上になった場合、直ちに発電を停止し
て洗浄装置を作動させることができない場合がある。例
えば負荷を直ぐには切り離せないような場合、経済上も
う少し汚染量が大きくなるのを待って他の段階で洗浄し
た方がよい場合、などが考えられる。また直ちに発電を
停止した場合に於いても、燃料を遮断しガスタービンを
一旦停止し、次いでセルモータなどにより低速でクラン
ク運転に入って、洗浄条件が整うまである程度の時間が
必要である。そのため、洗浄液制御部27には洗浄開始
信号28を入力し得るようになっており、この信号28
が入力された後でなければ、洗浄液制御部27から洗浄
指令が出されないようインターロックすることができる
。この洗浄開始指令は発電装置制御回路29から発電機
停止完了信号、ガスタービンクランク運転信号、あるい
は更に手動による洗浄停止解除スイッチからの信号等を
有機的に選択結合して形成することができる。発電装置
制御回路29へ汚染段階を知らせ、停止判断を行わせる
ために、洗浄レベル設定部25の出力は連絡線30によ
って発電装置制御回路29と結合することができる。
When the contamination stage reaches S or higher, it may not be possible to immediately stop power generation and operate the cleaning device. For example, there may be cases where it is not possible to disconnect the load immediately, or cases where it is economically better to wait until the amount of contamination increases and clean it at another stage. Furthermore, even if power generation is stopped immediately, a certain amount of time is required until the fuel is cut off, the gas turbine is temporarily stopped, and then crank operation is started at low speed using a starter motor or the like until cleaning conditions are established. Therefore, a cleaning start signal 28 can be input to the cleaning liquid control section 27, and this signal 28
It is possible to perform an interlock so that the cleaning command is not issued from the cleaning liquid control section 27 until after the input of the cleaning command. This cleaning start command can be formed by organically selectively combining a generator stop completion signal from the generator control circuit 29, a gas turbine crank operation signal, or a signal from a manual cleaning stop release switch. The output of the cleaning level setting unit 25 can be coupled to the generator control circuit 29 by a connecting line 30 in order to inform the generator control circuit 29 of the contamination stage and make a shutdown decision.

洗剤を含んだ洗浄液はタンク31から配管32を通って
集合管33に入り、集合管33に設けた多数の洗浄ノズ
ル34から空気吸込室5内へ噴霧される。配管32中に
設けられた35はフィルタ、36はポンプ、37は圧力
調節弁、38は流量調節弁、39は流量発信器、40は
逆止弁である。なお圧力調節弁37は圧力調節器41、
流量調節弁38は流量調節器42によってコントロール
されるようになっている。
The cleaning liquid containing detergent enters the collecting pipe 33 from the tank 31 through the piping 32, and is sprayed into the air suction chamber 5 from a large number of washing nozzles 34 provided in the collecting pipe 33. Provided in the pipe 32 are a filter 35, a pump 36, a pressure regulating valve 37, a flow regulating valve 38, a flow transmitter 39, and a check valve 40. Note that the pressure regulating valve 37 is a pressure regulator 41,
The flow rate regulating valve 38 is controlled by a flow rate regulator 42.

一方洗剤を含まない洗浄液(通常は水)はタンク43か
ら配管44を通って配管32に合流している。配管44
中に設けられた45はフィルタ、46はポンプ、47は
圧力調節弁、48は流量調節弁、49は流量発信器、5
0は逆止弁であり、更に51は圧力調節器、52は流量
調節器である。
On the other hand, a cleaning liquid (usually water) that does not contain detergent flows from a tank 43 through a pipe 44 to join the pipe 32. Piping 44
45 provided therein is a filter, 46 is a pump, 47 is a pressure control valve, 48 is a flow rate control valve, 49 is a flow rate transmitter, 5
0 is a check valve, 51 is a pressure regulator, and 52 is a flow regulator.

これら洗浄回路におけるポンプ36,46.圧力調節弁
37.47.流量調節弁38.48は洗浄液制御部27
によって制御される。
Pumps 36, 46 in these cleaning circuits. Pressure control valve 37.47. The flow rate control valves 38 and 48 are connected to the cleaning liquid control section 27.
controlled by

空気吸込室5の底部、燃焼器2の底部及びガスタービン
3の排気室10の底部にはそれぞれ排水管53,54.
55及び56が取付けられており、各排水管中には開閉
弁57.58.59及び60が設けられ、これらの開閉
弁は洗浄液制御部27によって制御される。61は排水
用のタンクである。
Drain pipes 53, 54.
55 and 56 are attached, and on-off valves 57, 58, 59 and 60 are provided in each drain pipe, and these on-off valves are controlled by the cleaning liquid control section 27. 61 is a tank for drainage.

第1図に示した例においては、圧縮比演算部15、圧縮
比変化検出部16、正常値設定器17、熱効率演算部1
9、熱効率変化検出部21、正常値設定器22などは別
個のユニットとしてブロック的に示しであるが、それに
制限されるものではなく、任意の組み合わせでユニット
化することができることは明らかである。また、これら
と汚染量演算部23を含めた全ての演算機構をコンピュ
ータに行わせることもできる。洗浄レベル設定部25及
び洗浄液制御部27の演算、制御は種々の条件変更に迅
速に対応するためには、ハード的に構成するより、コン
ピュータ化しプログラム変更により対処した方が好まし
い。
In the example shown in FIG.
9. Although the thermal efficiency change detection section 21, the normal value setting device 22, etc. are shown in block form as separate units, it is clear that the present invention is not limited to this and that they can be unitized in any combination. Further, all calculation mechanisms including these and the contamination amount calculation section 23 can be performed by a computer. In order to quickly respond to various changes in conditions, the calculations and controls of the cleaning level setting section 25 and the cleaning liquid control section 27 are preferably computerized and handled by changing programs rather than being constructed using hardware.

次に第1図の洗浄装置の作用を第3図の動作タイムチャ
ートを参照しながら説明する。
Next, the operation of the cleaning device shown in FIG. 1 will be explained with reference to the operation time chart shown in FIG. 3.

空気圧縮機1及びガスタービン3の内部の汚染が進行し
て汚染量演算部23の出力が増加し、例えば汚染段階値
82以上になったとすれば、洗浄レベル設定部25の出
力はそれに対応した洗浄レベル信号を出力する。この出
力は洗浄液制御部27へ入力されると共に、発電装置制
御回路29へ伝えられ、発電停止の判断に供される。発
電が停止され洗浄可能状態になると、洗浄開始信号28
が洗浄液制御部27へ入力される。これによって洗浄液
制御部27はポンプ36を起動し、圧力調節器41及び
流量調節器42へ信号を送り、洗浄液の圧力及び流量を
所定の値に保つ。これにより洗剤を含む洗浄液は空気吸
込室5内に噴霧され、空気圧縮機1のクランク運転によ
って吸込まれる空気流に乗って洗浄液ミストが空気圧縮
機1の吸込側から吐出側へ運ばれる。その際、動翼、静
翼及び空気通路に洗浄液ミストは付着し流下して汚染物
質を洗い流す。次いで洗浄ミストの残部は燃焼器2を通
過してガスタービン3へ入りその動翼等を洗浄するのに
費やされ最後に排気室10へ排出される。各機器の底部
に流下した洗浄液は、洗浄開始と同時に開けられた排水
用の開閉弁57〜60を通りタンク61へ排出される。
If the contamination inside the air compressor 1 and the gas turbine 3 progresses and the output of the contamination amount calculation unit 23 increases, for example, if the contamination level value exceeds 82, the output of the cleaning level setting unit 25 will change accordingly. Outputs cleaning level signal. This output is input to the cleaning liquid control section 27, and is also transmitted to the power generation device control circuit 29, where it is used to determine whether to stop power generation. When power generation is stopped and cleaning becomes possible, the cleaning start signal 28 is activated.
is input to the cleaning liquid control section 27. Accordingly, the cleaning liquid control section 27 starts the pump 36 and sends a signal to the pressure regulator 41 and the flow rate regulator 42 to maintain the pressure and flow rate of the cleaning liquid at predetermined values. As a result, the cleaning liquid containing the detergent is sprayed into the air suction chamber 5, and the cleaning liquid mist is carried from the suction side of the air compressor 1 to the discharge side by riding on the air flow sucked in by the crank operation of the air compressor 1. At this time, the cleaning liquid mist adheres to the moving blades, stationary blades, and air passages and flows down to wash away contaminants. Next, the remainder of the cleaning mist passes through the combustor 2 and enters the gas turbine 3, where it is spent cleaning its rotor blades and the like, and finally is discharged into the exhaust chamber 10. The cleaning liquid that has flowed down to the bottom of each device is discharged to the tank 61 through drain valves 57 to 60 that are opened at the same time as cleaning starts.

一定時間経過後ポンプ36を停止し、洗剤を含む洗浄液
の噴霧を終了させ、次にポンプ46を起動し、前述の洗
浄回路と同様な手順で洗浄剤を含まない洗浄水を空気吸
込室5内に噴霧してリンスを行う。リンスを一定時間行
った後、ポンプ46を停止し、次いで排水用の開閉弁5
7〜60を閉じる。
After a certain period of time has elapsed, the pump 36 is stopped to finish spraying the detergent-containing cleaning liquid, and then the pump 46 is started to supply cleaning water that does not contain a cleaning agent into the air suction chamber 5 in the same manner as in the above-mentioned cleaning circuit. Spray and rinse. After rinsing for a certain period of time, the pump 46 is stopped, and then the drainage on-off valve 5 is turned off.
Close 7-60.

所定の洗浄動作が完了すると手動もしくは自動により発
電開始指令が出され、発電が再開されることになる。
When the predetermined cleaning operation is completed, a power generation start command is issued manually or automatically, and power generation is restarted.

〔発明の効果〕〔Effect of the invention〕

本発明の汚染検出装置は、ガスタービン発電装置の管理
用として設けられる空気圧縮機の吸込側及び吐出側圧力
計及び温度計よりの信号、発電機出力信号、燃料消費量
信号等を利用し、これらから空気圧縮機の圧縮比及び熱
効率の変化量を検出し、それらを総合して空気圧縮機及
びガスタービンの内部汚染量を演算することを特徴とす
るものであるから、従来の装置のように特別な検出設備
を設ける必要がなく、また、洗浄サイクル毎に検出設備
を更新する必要もないので、再起動後直ちに洗浄後の汚
染度、すなわち洗浄効果を確認できる。更に高い精度及
び再現性を有しており、信軌性の高い洗浄開始時期の指
標として使用することにより、ガスタービン発電装置の
性能を常に目標とするレベルにコントロールすることが
出来る。
The contamination detection device of the present invention utilizes signals from the suction side and discharge side pressure gauges and thermometers of the air compressor provided for managing the gas turbine power generator, the generator output signal, the fuel consumption signal, etc. It is characterized by detecting the amount of change in the compression ratio and thermal efficiency of the air compressor from these and calculating the amount of internal contamination of the air compressor and gas turbine by integrating them, so it is different from conventional equipment. There is no need to provide special detection equipment for the system, and there is no need to update the detection equipment for each cleaning cycle, so the degree of contamination after cleaning, that is, the cleaning effect, can be confirmed immediately after restarting. Furthermore, it has high accuracy and reproducibility, and by using it as a highly reliable indicator of when to start cleaning, it is possible to always control the performance of the gas turbine power generator to the target level.

また、本発明の洗浄装置は、このような汚染検出装置か
らの汚染量信号を複数の汚染段階に区分し、それによっ
て洗浄レベルを設定して洗浄液を制御するようにしたの
で、信頼性が高く、きめの細かい洗浄方法を自動的に行
うことができ、且つ、洗浄に要する発電停止時間を必要
最小限度に短縮でき、プラント運転効率の向上及び経費
の軽減に寄与できる。
In addition, the cleaning device of the present invention is highly reliable because it divides the contamination amount signal from such a contamination detection device into multiple contamination stages, sets the cleaning level based on the contamination level, and controls the cleaning liquid. A detailed cleaning method can be performed automatically, and the power generation stop time required for cleaning can be shortened to the minimum necessary, contributing to improving plant operating efficiency and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空気圧縮機及びガスタービン内部の汚
染検出装置及びそれを用いた洗浄装置の一例を説明する
ための系統図、第2図は運転時間tに対する圧縮比変化
量ΔP及び、熱効率変化量Δηの傾向の一例を示す図、
第3図は第1図に示した洗浄装置の動作タイムチャート
。 1・・・空気圧縮機   2・・・燃焼器3・・・ガス
タービン  4・・・発電機5・・・空気吸込室   
6・・・濾過器7・・・燃料配管    8・・・燃料
導入部9・・・ガスタービン入口部 10・・・ガスタービン排気室 1).12・・・圧力発信器 13.14・・・温度発
信器13a・・・ガスタービン入口温度発信器14a・
・・ガスタービン排気温度発信器15・・・圧縮比演算
部  16・・・圧縮比変化検出部17.22・・・正
常値設定器 18・・・流量発信器   19・・・熱効率演算部2
0・・・電力計     21・・・熱効率変化検出部
23・・・汚染量演算部  24・・・表示部25・・
・洗浄レベル設定部 26a、26b、26c ・・・汚染段階設定器27・
・・洗浄液制御部  28・・・洗浄開始信号29・・
・発電装置制御回路 30・・・連絡線     31.43・・・タンク3
2、44・・・配管    33・・・集合管34・・
・洗浄ノズル   35.45・・・フィルタ36.4
6・・・ポンプ   37.47・・・圧力調節弁38
.48・・・流量調節弁 39.49・・・流量発信器
40.50・・・逆止弁   41.51・・・圧力調
節器42.52・・・流量調節器 53、54.55 、56・・・排水管57、5B、 
59.60・・・開閉弁61・・・タンク
FIG. 1 is a system diagram for explaining an example of the air compressor and gas turbine internal contamination detection device and cleaning device using the same according to the present invention, and FIG. 2 shows the amount of change in compression ratio ΔP with respect to operating time t, A diagram showing an example of the trend of the thermal efficiency change amount Δη,
FIG. 3 is an operation time chart of the cleaning device shown in FIG. 1. 1... Air compressor 2... Combustor 3... Gas turbine 4... Generator 5... Air suction chamber
6...Filter 7...Fuel piping 8...Fuel introduction section 9...Gas turbine inlet section 10...Gas turbine exhaust chamber 1). 12...Pressure transmitter 13.14...Temperature transmitter 13a...Gas turbine inlet temperature transmitter 14a.
...Gas turbine exhaust temperature transmitter 15...Compression ratio calculation section 16...Compression ratio change detection section 17.22...Normal value setter 18...Flow rate transmitter 19...Thermal efficiency calculation section 2
0... Wattmeter 21... Thermal efficiency change detection section 23... Contamination amount calculation section 24... Display section 25...
・Cleaning level setting units 26a, 26b, 26c...Contamination stage setting device 27・
...Cleaning liquid control unit 28...Cleaning start signal 29...
- Generator control circuit 30... Connection line 31.43... Tank 3
2, 44...Piping 33...Collecting pipe 34...
・Cleaning nozzle 35.45...Filter 36.4
6...Pump 37.47...Pressure control valve 38
.. 48...Flow rate control valve 39.49...Flow rate transmitter 40.50...Check valve 41.51...Pressure regulator 42.52...Flow rate regulator 53, 54.55, 56 ...Drain pipe 57, 5B,
59.60...Opening/closing valve 61...Tank

Claims (2)

【特許請求の範囲】[Claims] (1)ガスタービン発電装置の空気圧縮機(1)及びガ
スタービン(3)内部の汚染検出装置に於いて、空気圧
縮機(1)の空気吸込側と吐出側の圧力を基本として算
出される圧縮比またはこの圧縮比を基本として算出され
る断熱効率(以下圧縮比という)の値をその正常値と比
較し圧縮比の変化量を検出する圧縮比変化検出部(16
)と、燃焼器(2)に供給された燃料量から換算した熱
量とそのときの発電機(4)の発電量とを基本として算
出されるガスタービンの熱効率または熱消費率の値をそ
の正常値と比較し、これら(以下熱効率という)の変化
量を検出する熱効率変化検出部(21)と、これら検出
部(16、21)からの出力信号を入力して空気圧縮機
とガスタービンの汚染量を算定する汚染量演算部(23
)とを有することを特徴とする空気圧縮機及びガスター
ビン内部の汚染検出装置。
(1) In the contamination detection device inside the air compressor (1) and gas turbine (3) of the gas turbine power generation device, the pressure is calculated based on the air suction side and discharge side pressure of the air compressor (1). A compression ratio change detection unit (16) that compares the compression ratio or the value of the adiabatic efficiency (hereinafter referred to as compression ratio) calculated based on this compression ratio with its normal value and detects the amount of change in the compression ratio.
) and the thermal efficiency or heat consumption rate of the gas turbine, which is calculated based on the amount of heat converted from the amount of fuel supplied to the combustor (2) and the amount of power generated by the generator (4) at that time. A thermal efficiency change detection unit (21) that compares the values and detects the amount of change in these (hereinafter referred to as thermal efficiency), and inputs output signals from these detection units (16, 21) to detect contamination of the air compressor and gas turbine. Contamination amount calculation unit (23
) A device for detecting contamination inside an air compressor and a gas turbine.
(2)ガスタービン発電装置の空気圧縮機(1)及びガ
スタービン(3)内部の洗浄装置に於いて、空気圧縮機
(1)の空気吸込側と吐出側の圧力を基本として算出さ
れる圧縮比の値をその正常値と比較し圧縮比の変化量を
検出する圧縮比変化検出部(16)と、燃焼器(2)で
発生する熱量とそのそきの発電量から算出される熱効率
の値をその正常値と比較し熱効率の変化量を検出する熱
効率変化検出部(21)と、これら検出部(16、21
)からの出力信号を入力して汚染量を算定する汚染量演
算部(23)とを有する汚染検出装置を具備し、該汚染
検出装置の汚染量算定値に対応した複数の洗浄レベルを
設定する洗浄レベル設定部(25)及び該設定部(25
)の設定値により空気圧縮機(1)の空気吸込側へ噴霧
する洗浄液を制御する洗浄液制御部(27)を有するこ
とを特徴とする空気圧縮機及びガスタービン内部の洗浄
装置。
(2) In the cleaning device inside the air compressor (1) and gas turbine (3) of the gas turbine power generation device, the compression is calculated based on the pressure on the air suction side and the discharge side of the air compressor (1). A compression ratio change detection section (16) that compares the ratio value with its normal value and detects the amount of change in the compression ratio, and a thermal efficiency detection section (16) that compares the ratio value with its normal value and detects the amount of change in the compression ratio. A thermal efficiency change detection unit (21) that compares the value with its normal value and detects the amount of change in thermal efficiency, and these detection units (16, 21).
) is provided with a contamination detection device having a contamination amount calculation unit (23) that calculates the contamination amount by inputting an output signal from the contamination detection device, and sets a plurality of cleaning levels corresponding to the contamination amount calculation value of the contamination detection device. Cleaning level setting section (25) and the setting section (25)
1. A cleaning device for the inside of an air compressor and a gas turbine, characterized in that it has a cleaning liquid control section (27) that controls the cleaning liquid sprayed to the air suction side of the air compressor (1) according to a set value of (1).
JP27768786A 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device Granted JPS63131834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27768786A JPS63131834A (en) 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27768786A JPS63131834A (en) 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device

Publications (2)

Publication Number Publication Date
JPS63131834A true JPS63131834A (en) 1988-06-03
JPH0584824B2 JPH0584824B2 (en) 1993-12-03

Family

ID=17586900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27768786A Granted JPS63131834A (en) 1986-11-19 1986-11-19 Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device

Country Status (1)

Country Link
JP (1) JPS63131834A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171955A (en) * 1991-12-25 1993-07-09 Kawasaki Steel Corp Method and device for reducing nitrogen oxide in combustion exhaust gas in gas turbine
JPH06146925A (en) * 1992-11-16 1994-05-27 Kawasaki Steel Corp Blade washing method for gas turbine device
JPH07279613A (en) * 1994-04-01 1995-10-27 Toshiba Corp Cleaning device for air compressor and cleaning solution therefor
JP2005133583A (en) * 2003-10-29 2005-05-26 Hitachi Ltd Gas turbine cleaning time determining device and method
JP2007063998A (en) * 2005-08-29 2007-03-15 Mt System Kiki Kk Cleaning method and cleaning device for engine
JP2008169828A (en) * 2006-11-28 2008-07-24 Gas Turbine Efficiency Sweden Ab Automatic detection and control system and method to be applied for high pressure water washing and collection to wash aircraft compressor
JP2009115079A (en) * 2007-10-09 2009-05-28 Gas Turbine Efficiency Sweden Ab Water washing apparatus and washing method of gas turbine compressor
JP2017198352A (en) * 2016-04-25 2017-11-02 東京電力ホールディングス株式会社 Performance deterioration determination method for waste power generation plant
US11460818B2 (en) 2017-03-13 2022-10-04 Yokogawa Electric Corporation Evaluation apparatus, evaluation system, and evaluation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529155A (en) * 2008-07-25 2011-12-01 ユナイテッド テクノロジーズ コーポレイション Tracking engine cleaning improvement
KR101597596B1 (en) * 2014-01-20 2016-02-25 대우조선해양 주식회사 Ventilating device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171955A (en) * 1991-12-25 1993-07-09 Kawasaki Steel Corp Method and device for reducing nitrogen oxide in combustion exhaust gas in gas turbine
JP2634722B2 (en) * 1991-12-25 1997-07-30 川崎製鉄株式会社 Method for reducing nitrogen oxides in flue gas in gas turbine
JPH06146925A (en) * 1992-11-16 1994-05-27 Kawasaki Steel Corp Blade washing method for gas turbine device
JPH07279613A (en) * 1994-04-01 1995-10-27 Toshiba Corp Cleaning device for air compressor and cleaning solution therefor
JP2005133583A (en) * 2003-10-29 2005-05-26 Hitachi Ltd Gas turbine cleaning time determining device and method
JP2007063998A (en) * 2005-08-29 2007-03-15 Mt System Kiki Kk Cleaning method and cleaning device for engine
JP2008169828A (en) * 2006-11-28 2008-07-24 Gas Turbine Efficiency Sweden Ab Automatic detection and control system and method to be applied for high pressure water washing and collection to wash aircraft compressor
JP2011231773A (en) * 2006-11-28 2011-11-17 Gas Turbine Efficiency Sweden Ab Automated detection and control system and method for high pressure water wash application and collection applied to aero compressor washing
JP2009115079A (en) * 2007-10-09 2009-05-28 Gas Turbine Efficiency Sweden Ab Water washing apparatus and washing method of gas turbine compressor
JP2017198352A (en) * 2016-04-25 2017-11-02 東京電力ホールディングス株式会社 Performance deterioration determination method for waste power generation plant
US11460818B2 (en) 2017-03-13 2022-10-04 Yokogawa Electric Corporation Evaluation apparatus, evaluation system, and evaluation method

Also Published As

Publication number Publication date
JPH0584824B2 (en) 1993-12-03

Similar Documents

Publication Publication Date Title
RU2614472C2 (en) System of turbine engine and method of its cleaning
US4548040A (en) Method and apparatus for determining when to initiate cleaning of turbocharger turbine blades
US9470105B2 (en) Automated water wash system for a gas turbine engine
US7703272B2 (en) System and method for augmenting turbine power output
JPS63131834A (en) Device for detecting pollution in air compressor and gas turbine and washing device using said detecting device
US20100287943A1 (en) Methods and systems for inducing combustion dynamics
CN103314186B (en) Turbine cleans
JP2018204604A (en) Systems and methods for icing detection of compressors
EP3460438B1 (en) Gas turbomachine leak detection system and method
CN101117918A (en) Methods of and systems for estimating compressor fouling impact to combined cycle power plants
CN107061019A (en) A kind of gas turbine off-line cleaning method
JP2019011754A (en) System and method for using intercooler cooling fluid as bearing pressurization fluid source
JP2001221066A (en) Method of measuring fuel terminal function of fuel in combustion turbine device on-line
JPH08296453A (en) Water cleaning timing detection device of gas turbine compressor
CN109915248A (en) The diesel generating set with detachable exhaust system for data operation center
US20200200039A1 (en) Cleaning system for a gas turbine engine
RU186513U1 (en) DEVICE FOR RINSING THE FLOWING PART OF A CENTRIFUGAL COMPRESSOR
CN107630755A (en) Predict the system and method for the physical parameter of burning fuel system
JPH10502718A (en) Method and apparatus for diagnosing and predicting operating characteristics of turbine equipment
CN218762719U (en) Single-pump multi-source general cleaning equipment for turboshaft engine
CN219345097U (en) Balancing device for fan oil pump joint start
JPH08165934A (en) Gas turbine over-speed reducing device
CN218787182U (en) Vacuum suction device
JP2756396B2 (en) Method for cleaning blades of fuel-fired gas turbine device
RU2225499C2 (en) WELL CEMENTATION SYSTEM "Kostromich"