JPH05842A - Refractory for molten iron vessel - Google Patents

Refractory for molten iron vessel

Info

Publication number
JPH05842A
JPH05842A JP3174526A JP17452691A JPH05842A JP H05842 A JPH05842 A JP H05842A JP 3174526 A JP3174526 A JP 3174526A JP 17452691 A JP17452691 A JP 17452691A JP H05842 A JPH05842 A JP H05842A
Authority
JP
Japan
Prior art keywords
raw material
refractory
silica
carbon
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3174526A
Other languages
Japanese (ja)
Inventor
Shiro Sukenari
史郎 祐成
Seiji Hanagiri
誠司 花桐
Hirokuni Takahashi
宏邦 高橋
Hiroshi Yasui
宏 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Refractories Co Ltd
Nippon Steel Corp
Original Assignee
Kyushu Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd, Nippon Steel Corp filed Critical Kyushu Refractories Co Ltd
Priority to JP3174526A priority Critical patent/JPH05842A/en
Publication of JPH05842A publication Critical patent/JPH05842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enhance volume stability by blending sintered SiO2 or silica and aluminous raw material, an aluminous raw material and carbon or the mixed material of carbon and SiC at the specified weight ratio. CONSTITUTION:10-70wt.% (hereinafter shown in %) SiO2 such as agal-matolite or silica and aluminous raw material sintered at 1000-1100 deg.C, 10-87% aluminous raw material such as sintered Al2O3 and 3-30% carbon material such as graphite or the mixture of carbon material and SiC are blended. Furthermore, a binder such as phenol resin, metallic powder such as Al and glass powder are added to this blended raw material. These are mixed and molded, and thereafter, heat-treated at 200-600 deg.C to obtain refractory for a molten iron vessel excellent in volume stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、溶銑の搬送だけでな
く脱珪、脱燐、脱硫などの溶銑予備処理をも行うことの
できる混銑車、溶銑鍋などの溶銑容器の耐火物に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory for a hot metal container such as a hot metal car and a hot metal pot, which can carry out hot metal pretreatment such as desiliconization, dephosphorization and desulfurization as well as hot metal transportation. is there.

【0002】[0002]

【従来の技術】混銑車、溶銑鍋などの溶銑容器用耐火物
としては、従来よりロー石質あるいはシャモット質の耐
火物が使用されていたが、近年の製鋼技術の進歩に伴っ
て、混銑車、溶銑鍋などは単に高炉と転炉間の運搬容器
という目的だけでなく、脱珪、脱燐、脱硫などの溶銑予
備処理を行う精錬容器としての役目も負うようになっ
て、溶銑温度の上昇、活性スラグなどの影響で従来のロ
ー石質などの耐火物では損耗が大きくなったため、アル
ミナ・炭化珪素・炭素質耐火物が使用されてきた。
2. Description of the Related Art Conventionally, low-stone or chamotte refractory has been used as a refractory for hot metal containers such as a hot metal car, a hot metal ladle, etc. , Hot metal ladle, etc. not only serve as a transport container between the blast furnace and converter, but also serve as a refining container for pre-treatment of hot metal such as desiliconization, dephosphorization, and desulfurization. Alumina, silicon carbide, and carbonaceous refractories have been used because the conventional slag and other refractory materials such as low-grade stones have been greatly worn.

【0003】このアルミナ・炭化珪素・炭素質耐火物は
高耐食性であるが、残存膨張率が小さいため、使用中に
目地開きを生じ地金が浸入したり、目地部の先行溶損お
よびその結果生じた蒲鉾状の凸部に加熱・冷却の繰り返
しにより亀裂が発生するため剥離損耗が起こるといった
欠点があった。また、この系の耐火物を使用した溶銑容
器では、耐火物内に発生する熱応力が大きいためセリ割
れの発生も見られる。
Although this alumina / silicon carbide / carbonaceous refractory has a high corrosion resistance, it has a small residual expansion coefficient, so that it causes a joint opening during use, infiltration of a base metal, and a preceding melting damage of the joint and its result. There is a defect that peeling wear occurs because cracks occur in the resulting kamaboko-shaped convex portion due to repeated heating and cooling. Further, in a hot metal container using a refractory of this system, the thermal stress generated in the refractory is large, so that cracking of the cell is also observed.

【0004】この欠点を補うものとして、特開平2−2
2167号公報にはアルミナ・炭化珪素・炭素質耐火物
に高熱膨張性かつ高残存膨張性のロー石原料を使用した
ロー石・アルミナ・炭化珪素・炭素質耐火物が開示され
ている。
As a means for compensating for this drawback, Japanese Patent Laid-Open No. 2-2
Japanese Patent No. 2167 discloses a lozenge / alumina / silicon carbide / carbonaceous refractory in which a raw stone having high thermal expansion and high residual expansiveness is used for alumina / silicon carbide / carbonaceous refractory.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このロ
ー石・アルミナ・炭化珪素・炭素質耐火物は従来のアル
ミナ・炭化珪素・炭素質耐火物の目地部に接するれんが
の先行溶損と、その結果生じた蒲鉾状の凸部の剥離損耗
などを防止することは可能であったが、ロー石は1000〜
1200℃での熱膨張が大きいため溶銑容器に使用された場
合に、背面側でのれんがの押し上げや移動が大きくなる
ため築造れんがにゆるみを生じるという不都合が起こっ
た。また、ロー石は1000〜1200℃での熱膨張や残存膨張
が大きいことはれんがの容積安定性にも悪影響を及ぼし
た。
However, this roe stone / alumina / silicon carbide / carbonaceous refractory material causes the preceding erosion of the brick which comes into contact with the joints of the conventional alumina / silicon carbide / carbonaceous refractory material, and the result thereof. It was possible to prevent peeling and wear of the resulting kamaboko-shaped protrusions, but 1000-
When it is used in a hot metal container due to its large thermal expansion at 1200 ° C, the bricks on the back side are pushed up and moved too much, which causes a problem that the building bricks become loose. Moreover, the large thermal expansion and residual expansion at 1000-1200 ℃ of loach also adversely affected the volume stability of the brick.

【0006】この発明は、上記従来の課題を解決するた
めになされたもので、使用するれんがを1000〜1100℃で
焼成処理したものを使用することで、ロー石原料の要求
特性を損うことなく、この温度前後で発生する鉱物変化
に伴う大きな体積膨張を軽減して、容積安定性に優れた
溶銑容器用耐火物を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems. By using a brick used by firing at 1000 to 1100 ° C., the required characteristics of the raw stone raw material are impaired. It is an object of the present invention to provide a refractory for a hot metal container which is excellent in volume stability by reducing large volume expansion due to mineral change occurring around this temperature.

【0007】[0007]

【課題を解決するための手段】この発明者らは、溶銑容
器用耐火物における上述の不都合を解決し、れんがの容
積安定性と溶銑容器のれんがのゆるみをなくすべく種々
検討の結果、ロー石・アルミナ・炭化珪素・炭素質耐火
物のロー石に、焼成処理したロー石原料を使用すること
により問題点を解消できることを見出しこの発明を完成
したものである。即ち、この発明は溶銑容器として、焼
成処理をされたシリカまたはシリカ・アルミナ質原料10
〜70重量%、アルミナ質原料10〜87重量%、炭素材料ま
たは炭素材料と炭化珪素3〜30重量%を配合した耐火物
を用いることにある。
As a result of various studies, the inventors of the present invention have solved the above-mentioned inconvenience in the refractory for a hot metal container, and as a result of various studies to eliminate the volume stability of the brick and the looseness of the brick of the hot metal container, as a result, the rock stone The present invention has been completed by finding that the problem can be solved by using a raw material of calcined lozenge for the raw stone of alumina, silicon carbide, and carbonaceous refractory. That is, the present invention, as a hot metal container, is a calcined silica or silica-alumina raw material 10
.About.70% by weight, 10 to 87% by weight of an alumina raw material, a carbon material or a refractory material containing a carbon material and 3 to 30% by weight of silicon carbide is used.

【0008】この発明に用いられるシリカまたはシリカ
・アルミナ質原料としてはロー石、珪石、陶石などの単
独または混合物であり、このうちではロー石が最も適し
ている。これを1000〜1100℃で焼成処理したもので、こ
の焼成温度が低いと1200℃付近での膨張が大きすぎてこ
の発明の特徴である容積安定性に劣り、また焼成温度が
高いとれんがの膨張が小さすぎて目地開きなどが防止で
きない。その使用量は10〜70重量%で、10重量%未満で
は目地開きが防止できず、逆に70重量%を越えると耐食
性が極端に悪化し、いずれも好ましくない。また、なる
べく耐食性を保つ意味から、本原料は微粉部を避けて使
用することが望ましい。
The silica or silica-alumina raw material used in the present invention is lozenge, silica stone, porcelain stone, etc., alone or in a mixture, and among them, lozenge is most suitable. This is fired at 1000 to 1100 ° C. When this firing temperature is low, the expansion at around 1200 ° C is too large and the volume stability, which is a feature of this invention, is poor. Is too small to prevent joint opening. The amount used is 10 to 70% by weight. If it is less than 10% by weight, the joint opening cannot be prevented, and conversely, if it exceeds 70% by weight, the corrosion resistance is extremely deteriorated, which is not preferable. Further, in order to keep the corrosion resistance as much as possible, it is desirable to use the raw material while avoiding the fine powder portion.

【0009】アルミナ質原料としては、電融アルミナ、
焼結アルミナ、シリマナイト、ボーキサイトなどであ
り、原料中のAl23 含有量は50重量%以上であるこ
とが耐食性の点から好ましく、特に電融アルミナ、焼結
アルミナのようなアルミナ原料が好ましい。アルミナ質
原料の使用量は10〜87重量%であり、10重量%未満では
耐食性に劣り、また、87重量%を越えると耐スポーリン
グ性に劣り、いずれも好ましくない。
As the alumina-based raw material, fused alumina,
Sintered alumina, sillimanite, bauxite, etc., and the Al 2 O 3 content in the raw material is preferably 50% by weight or more from the viewpoint of corrosion resistance, and particularly alumina raw materials such as fused alumina and sintered alumina are preferable. . The amount of the alumina-based raw material used is 10 to 87% by weight, and if it is less than 10% by weight, the corrosion resistance is poor, and if it exceeds 87% by weight, the spalling resistance is poor and neither is preferable.

【0010】炭素材料はスラグに濡れにくいことによる
耐食性や耐スポーリング性に寄与するものであり、炭化
珪素は炭素材料の酸化を抑制して炭素材料の高耐食性と
高耐スポーリング性を発揮させる効果があり、その使用
量は炭素材料あるいは炭素材料と炭化珪素の合量で3〜
30重量%である。この量が3重量%未満では炭素材料の
効果が十分に発揮されず、30重量%より多いと強度と耐
食性の低下となる。
The carbon material contributes to corrosion resistance and spalling resistance due to being hard to be wetted by slag, and silicon carbide suppresses oxidation of the carbon material to exert high corrosion resistance and high spalling resistance of the carbon material. There is an effect, and the amount used is 3 to the total amount of carbon material or carbon material and silicon carbide.
30% by weight. If this amount is less than 3% by weight, the effect of the carbon material will not be sufficiently exhibited, and if it exceeds 30% by weight, the strength and corrosion resistance will decrease.

【0011】上記原料の他にアルミニウム、マグネシウ
ムなどの金属粉末やガラス物質などを添加することもで
き、それによって耐酸化性が更に向上する。これらの原
料を常法に従って、結合剤を添加して混練、成形後、熱
処理して不焼成れんがとして使用する。この結合剤とし
ては樹脂系のものが好ましく、熱処理によって硬化する
フェノール樹脂が好適である。成形後の熱処理は200 〜
600℃の範囲で行われる。上記によって得られた不焼成
れんがは混銑車や溶銑鍋などの一部または全部に内張り
して使用される。
In addition to the above raw materials, it is possible to add metal powder such as aluminum and magnesium, glass material, etc., whereby the oxidation resistance is further improved. According to a conventional method, a binder is added to these raw materials, and the raw materials are kneaded, molded, and then heat treated to be used as an unfired brick. A resin-based binder is preferable as the binder, and a phenol resin that is cured by heat treatment is preferable. Heat treatment after molding is 200 ~
It is performed in the range of 600 ° C. The unfired brick obtained as described above is used by lining a part or the whole of a hot metal wheel, a hot metal ladle or the like.

【0012】[0012]

【作用】シリカまたはシリカ・アルミナ質原料中に存在
するSiO2 成分は加熱されることにより、α石英から
β石英、クリストバライトへの変態による高熱膨張と高
残存膨張性と、さらに、高温でのブローチングにより耐
火物の目地開きが防止されるのであるが、この変態は 6
00℃から始まり1400℃付近まで続く。一方、同時に含ま
れているパイロフィライトは加熱によって1000〜1100℃
でガラス化する。
[Function] By heating the SiO 2 component present in the silica or silica-alumina raw material, high thermal expansion and high residual expansion due to transformation from α-quartz to β-quartz and cristobalite, and further broaching at high temperature This prevents the opening of the refractory joints, but this transformation
It starts at 00 ℃ and continues to around 1400 ℃. On the other hand, the pyrophyllite contained at the same time is heated to 1000-1100 ℃
To vitrify.

【0013】この発明で使用するシリカまたはシリカ・
アルミナ原料は、生原料を1000〜1100℃で焼成処理した
ものであり、焼成後にはSiO2 は石英の形で、パイロ
フィライトはガラス化している。そのためこの焼成原料
は1200℃付近での急激な膨張を起こさないので、れんが
の容積安定性が確保されるのである。さらに、パイロフ
ィライトがガラス化しているため、1300℃以上の温度領
域での応力緩和が顕著となり、耐火物内部に発生する熱
応力が低下する。
Silica or silica used in the present invention
The alumina raw material is a raw material obtained by firing at 1000 to 1100 ° C., and after firing, SiO 2 is in the form of quartz and pyrophyllite is vitrified. Therefore, this firing raw material does not undergo a rapid expansion at around 1200 ° C., so that the volume stability of the brick is ensured. Further, since the pyrophyllite is vitrified, stress relaxation in the temperature range of 1300 ° C or higher becomes remarkable, and the thermal stress generated inside the refractory is reduced.

【0014】[0014]

【実施例】表1に示す配合組成を混練し、フリクション
プレスによって成形し、成形物を300℃で10時間の熱処
理を行って不焼成れんがを得た。熱処理後のれんがの物
性および1200℃と1400℃における熱膨張率、残存線膨張
率の値と最大発生熱応力も表1に示した。耐食性は回転
式スラグ試験法により1400℃で3時間行った。そのスラ
グ組成はCaO:46重量%、Fe23 :42重量%、C
aF2 :12重量%のものを使用した。結果は比較例1を
100とする溶損指数によって表した。
[Examples] The composition shown in Table 1 was kneaded and molded by a friction press, and the molded product was heat-treated at 300 ° C for 10 hours to obtain an unfired brick. Table 1 also shows the physical properties of the brick after heat treatment, the values of the coefficient of thermal expansion at 1200 ° C. and 1400 ° C., the value of the residual linear expansion coefficient and the maximum generated thermal stress. The corrosion resistance was measured by a rotary slag test method at 1400 ° C. for 3 hours. Its slag composition is CaO: 46% by weight, Fe 2 O 3 : 42% by weight, C
aF 2: was used of 12% by weight. The results are from Comparative Example 1.
It was represented by a melt loss index of 100.

【0015】[0015]

【表1】 [Table 1]

【0016】上記表1によれば、溶銑容器用れんがの生
ロー石を1000〜1100℃で焼成した焼ロー石に変えること
により、耐食性をさほど低下させずに熱膨張率と残存線
膨張率を低下させて、れんがの容積安定性を確保するこ
とが可能となった(例えば実施例4と比較例1)。しか
も、熱膨張率と残存線膨張率の低下度もアルミナ・炭化
珪素・炭素質れんが(比較例7)ほどではないので、同
時に高温での目地開きを防止することも可能であった。
また、発生熱応力も生ロー石の場合よりもさらに低くな
り、セリ割れの防止にも寄与していることがわかる。
[0016] According to Table 1 above, by changing the raw raw stone of the brick for a hot metal container to a calcined raw stone fired at 1000 to 1100 ° C, the thermal expansion coefficient and the residual linear expansion coefficient can be reduced without significantly lowering the corrosion resistance. It became possible to secure the volume stability of the brick by lowering it (for example, Example 4 and Comparative Example 1). Moreover, since the degree of decrease in the coefficient of thermal expansion and the coefficient of residual linear expansion are not as great as those of alumina / silicon carbide / carbonaceous brick (Comparative Example 7), it was also possible to prevent joint opening at high temperature.
Further, it can be seen that the generated thermal stress is even lower than that in the case of raw rock stone, which also contributes to the prevention of seri cracking.

【0017】[0017]

【発明の効果】以上説明したように、この発明によれ
ば、シリカまたはシリカ・アルミナ質原料に焼成処理を
したものを用いることにより、熱膨張率、残存線膨張率
および発生熱応力を適度な値に保ち、耐火物の容積安定
性を確保し、溶銑容器として使用された場合に築造れん
がのゆるみを防ぎ、目地開きや剥離損耗、セリ割れもな
く安定に操業できるという格別の効果を奏する。
As described above, according to the present invention, the thermal expansion coefficient, the residual linear expansion coefficient, and the generated thermal stress can be controlled appropriately by using the silica or the silica-alumina raw material that has been subjected to the firing treatment. It keeps the value of the refractory, secures volume stability of the refractory, prevents loosening of the building brick when it is used as a hot metal container, and has a special effect that it can be operated stably without joint opening, peeling wear and cracking.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 宏邦 岡山県備前市伊部1799番地の1 (72)発明者 安井 宏 岡山県岡山市竹田32番地 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirokuni Takahashi 1799-1 Ibe, Bizen City, Okayama Prefecture (72) Inventor Hiroshi Yasui 32 Takeda, Okayama City, Okayama Prefecture

Claims (1)

【特許請求の範囲】 【請求項1】 焼成処理をされたシリカまたはシリカ・
アルミナ質原料10〜70重量%、アルミナ質原料10〜87重
量%、炭素材料または炭素材料と炭化珪素3〜30重量%
を配合したことを特徴とする溶銑容器用耐火物。
Claims: 1. Calcined silica or silica.
Alumina raw material 10-70 wt%, Alumina raw material 10-87 wt%, carbon material or carbon material and silicon carbide 3-30 wt%
A refractory material for hot metal containers, characterized by being blended with.
JP3174526A 1991-06-18 1991-06-18 Refractory for molten iron vessel Pending JPH05842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174526A JPH05842A (en) 1991-06-18 1991-06-18 Refractory for molten iron vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174526A JPH05842A (en) 1991-06-18 1991-06-18 Refractory for molten iron vessel

Publications (1)

Publication Number Publication Date
JPH05842A true JPH05842A (en) 1993-01-08

Family

ID=15980069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174526A Pending JPH05842A (en) 1991-06-18 1991-06-18 Refractory for molten iron vessel

Country Status (1)

Country Link
JP (1) JPH05842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588218A1 (en) * 1992-09-18 1994-03-23 Akechi Ceramics Co. Ltd. Molten steel pouring nozzle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222167A (en) * 1988-07-07 1990-01-25 Nippon Steel Corp Unburned refractory material for hot metal vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222167A (en) * 1988-07-07 1990-01-25 Nippon Steel Corp Unburned refractory material for hot metal vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588218A1 (en) * 1992-09-18 1994-03-23 Akechi Ceramics Co. Ltd. Molten steel pouring nozzle
US5348203A (en) * 1992-09-18 1994-09-20 Akechi Ceramics Co., Ltd. Molten steel pouring nozzle

Similar Documents

Publication Publication Date Title
KR910001934B1 (en) Carbon containing refractory
JPH05842A (en) Refractory for molten iron vessel
KR100804961B1 (en) Composition of Al2O3-SiC-C brick for charging ladle
JP2536826B2 (en) Refractory for hot metal pretreatment container
JP2575580B2 (en) Carbon containing refractories
JPH0925160A (en) Production of carbon-containing refractory
JPH0577626B2 (en)
JP2633018B2 (en) Carbon containing refractories
JPH07267719A (en) Alumina-magnesia-carbon brick
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JPH06287057A (en) Carbon-containing refractory
JPS59146975A (en) Plate refractories for sliding nozzle
JP2765458B2 (en) Magnesia-carbon refractories
JPS6033782B2 (en) Refractories for hot metal pretreatment
JP4695354B2 (en) Carbon-containing refractory brick
JPH0748168A (en) Refractory for preliminarily treating molten pig-iron
JPH05148010A (en) Graphite-containing fire-resistant brick for refining melted metal
JPS632910B2 (en)
JP3681232B2 (en) Hot metal processing container
JPS63129063A (en) Non-burnt high alumina base brick
JPS63129064A (en) High anti-corrosion non-burnt brick for slag line
JPS5918174A (en) Lining material for molten metal treating vessel
JPS6278151A (en) Non-burnt refractory brick for molten metal vessel
JPH05330930A (en) Castable refractory
JPH03232761A (en) Magnesia-containing refractory material, production thereof and refractory

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960109