JP2536826B2 - Refractory for hot metal pretreatment container - Google Patents
Refractory for hot metal pretreatment containerInfo
- Publication number
- JP2536826B2 JP2536826B2 JP3334362A JP33436291A JP2536826B2 JP 2536826 B2 JP2536826 B2 JP 2536826B2 JP 3334362 A JP3334362 A JP 3334362A JP 33436291 A JP33436291 A JP 33436291A JP 2536826 B2 JP2536826 B2 JP 2536826B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- hot metal
- refractory
- silica
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 26
- 239000002184 metal Substances 0.000 title claims description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 37
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 15
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 15
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 229910052851 sillimanite Inorganic materials 0.000 claims description 14
- 239000003575 carbonaceous material Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 description 24
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 239000011819 refractory material Substances 0.000 description 11
- 239000011449 brick Substances 0.000 description 10
- 230000008646 thermal stress Effects 0.000 description 8
- 239000004575 stone Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007937 lozenge Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052863 mullite Inorganic materials 0.000 description 3
- 229910052903 pyrophyllite Inorganic materials 0.000 description 3
- 239000011452 unfired brick Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 240000008881 Oenanthe javanica Species 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- INJRKJPEYSAMPD-UHFFFAOYSA-N aluminum;silicic acid;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O INJRKJPEYSAMPD-UHFFFAOYSA-N 0.000 description 2
- 229910052849 andalusite Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052850 kyanite Inorganic materials 0.000 description 2
- 239000010443 kyanite Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 241000252185 Cobitidae Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011469 building brick Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910021489 α-quartz Inorganic materials 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、溶銑の搬送と同時に
脱珪、脱燐、脱硫などの溶銑予備処理をも行うことので
きる混銑車、溶銑鍋などの溶銑予備処理容器用の耐火物
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory for a hot metal pretreatment container such as a hot metal wheel and a hot metal ladle, which can carry out hot metal pretreatment such as desiliconization, dephosphorization and desulfurization simultaneously with the transportation of hot metal. It is a thing.
【0002】[0002]
【従来の技術】混銑車、溶銑鍋などの溶銑予備処理容器
用耐火物としては、従来よりロー石質あるいはシャモッ
ト質の耐火物が使用されていたが、近年の製鋼技術の進
歩に伴って、混銑車、溶銑鍋などは単に高炉と転炉間の
運搬容器という目的だけでなく、脱珪、脱燐、脱硫など
の溶銑予備処理を行う精錬容器としての役目も負うよう
になって、溶銑温度の上昇、活性スラグなどの影響で従
来のロー石質などの耐火物では損耗が大きくなったた
め、焼結アルミナや電融アルミナ質原料を使用したアル
ミナ・炭化珪素・炭素質耐火物が使用されてきた。2. Description of the Related Art As a refractory for a hot metal pretreatment container such as a hot metal car and a hot metal ladle, a refractory having a low stone quality or a chamotte quality has been conventionally used, but with the recent progress in steelmaking technology, The hot metal car, hot metal ladle, etc. not only serve as a transport container between the blast furnace and the converter, but also serve as a refining container for pretreatment of hot metal such as desiliconization, dephosphorization, and desulfurization. Since conventional refractory materials such as low-grade stones have increased wear due to the increase in temperature, activated slag, etc., alumina, silicon carbide, and carbonaceous refractory materials that use sintered alumina and fused alumina materials have been used. It was
【0003】このアルミナ・炭化珪素・炭素質耐火物は
高耐食性であるが、残存膨張率が小さいため、使用中に
目地開きを生じ地金が浸入したり、目地部の先行溶損お
よびその結果生じた蒲鉾状の凸部に加熱・冷却の繰り返
しにより亀裂が発生するため剥離損耗が起こるといった
欠点があった。また、この系の耐火物を使用した溶銑容
器では耐火物内に発生する熱応力が大きいためセリ割れ
の発生も見られる。This alumina / silicon carbide / carbonaceous refractory has a high corrosion resistance, but since the residual expansion coefficient is small, it causes a joint opening during use, infiltration of the base metal, and a preceding melting damage of the joint and its result. There is a defect that peeling wear occurs because cracks occur in the resulting kamaboko-shaped convex portion due to repeated heating and cooling. Further, in a hot metal container using a refractory of this system, the thermal stress generated in the refractory is large, so that cracking of the agglomerate is also observed.
【0004】この欠点を補うものとして特開平2−22
167号公報にはアルミナ・炭化珪素・炭素質耐火物に
高熱膨張性かつ高残存膨張性のロー石原料を使用したロ
ー石・アルミナ・炭化珪素・炭素質耐火物が開示されて
いる。As a means for compensating for this drawback, Japanese Patent Laid-Open No. 2-22
Japanese Patent No. 167 discloses lozenge / alumina / silicon carbide / carbonaceous refractory which uses a raw stone of alumina / silicon carbide / carbonaceous refractory having high thermal expansion and high residual expansion.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このロ
ー石・アルミナ・炭化珪素・炭素質耐火物は、従来のア
ルミナ・炭化珪素・炭素質耐火物の目地部に接するれん
がの先行溶損およびその結果生じた蒲鉾状の凸部の剥離
損耗などを防止することは可能であったが、耐食性の点
においてはアルミナ・炭化珪素・炭素質耐火物に及ぶも
のではなかった。さらに、ロー石は1000〜1200℃での熱
膨張が大きいため溶銑予備処理容器に使用された場合
に、背面側でのれんがの押し上げや移動が大きくなるた
め築造れんがにゆるみを生じるという不都合が起こっ
た。また、ロー石は1000〜1200℃での熱膨張や残存膨張
が大きいことはれんがの容積安定性にも悪影響を及ぼし
た。However, this roestone / alumina / silicon carbide / carbonaceous refractory material causes the preceding melting loss of bricks that come into contact with the joints of the conventional alumina / silicon carbide / carbonaceous refractory material and the result thereof. It was possible to prevent the peeling and wear of the resulting kamaboko-shaped projections, but in terms of corrosion resistance, it did not extend to alumina, silicon carbide, and carbonaceous refractories. In addition, since roe stone has a large thermal expansion at 1000 to 1200 ° C, when it is used in a hot metal pretreatment container, the push-up and movement of the brick on the back side becomes large, which causes the inconvenience that the building brick becomes loose. It was In addition, the large thermal expansion and residual expansion at 1000-1200 ℃ of loach also adversely affected the volume stability of bricks.
【0006】この発明は、上記のような課題を解決する
ためになされたもので、従来のアルミナ・炭化珪素・炭
素質耐火物に比べて耐食性を低下させずに、熱膨張性と
残存膨張性を付与でき、容積安定性に優れた溶銑予備処
理容器用耐火物を提供することを目的とする。The present invention has been made to solve the above problems, and has a thermal expansion property and a residual expansion property without lowering the corrosion resistance as compared with the conventional alumina / silicon carbide / carbonaceous refractory material. It is an object of the present invention to provide a refractory for a hot metal pretreatment container, which is capable of imparting excellent heat resistance and excellent volume stability.
【0007】[0007]
【課題を解決するための手段】この発明者らは溶銑予備
処理容器用耐火物における上述の不都合を解決し、従来
のアルミナ・炭化珪素・炭素質耐火物に比して耐食性を
それほど低下させずに、れんがの容積安定性と溶銑予備
処理容器のれんがのゆるみをなくすべく種々検討の結
果、アルミナ・炭素質あるいはアルミナ・炭化珪素・炭
素質耐火物の焼結アルミナや電融アルミナなどのアルミ
ナに代えてシリマナイト族原料を使用し、さらに、これ
に加えて、焼成処理したシリカまたはシリカ・アルミナ
質原料を使用することにより問題点を解消できることを
見出しこの発明を完成したものである。即ち、この発明
は溶銑予備処理容器として、シリマナイト族原料、炭素
材料または炭素材料と炭化珪素、あるいはさらに、焼成
処理をされたシリカまたはシリカ・アルミナ質原料を配
合した耐火物を用いることにある。The present inventors have solved the above-mentioned inconveniences in refractory materials for hot metal pretreatment vessels, and did not significantly lower the corrosion resistance as compared with conventional alumina / silicon carbide / carbonaceous refractory materials. In addition, as a result of various studies to eliminate the volume stability of bricks and loosening of bricks in the hot metal pretreatment vessel, alumina, carbonaceous materials, alumina, silicon carbide, carbonaceous refractory materials such as sintered alumina and fused alumina The present invention has been completed by finding that the problem can be solved by using a sillimanite group raw material instead and further using a calcined silica or silica-alumina based raw material in addition to this. That is, the present invention is to use, as a hot metal pretreatment container, a refractory material containing a silimanite group material, a carbon material or a carbon material and silicon carbide, or further, a calcined silica or a silica / alumina material.
【0008】この発明に用いられるシリマナイト族原料
にはシリマナイト、アンダリュサイト、カイアナイトな
どがあり、その1種または2種以上を用いる。その使用
量は70〜97重量%であって、シリカあるいはシリカ・ア
ルミナ質原料を併用する際には10〜87重量%とする。こ
の量が下限未満では耐食性が低下する。The sillimanite group raw materials used in the present invention include sillimanite, andalusite, kyanite and the like, and one or more of them are used. The amount used is 70 to 97% by weight, and 10 to 87% by weight when silica or silica-alumina raw material is used in combination. If this amount is less than the lower limit, the corrosion resistance decreases.
【0009】このシリマナイト族原料の一部を電融アル
ミナや焼結アルミナなどのアルミナ質原料に置換して用
いることも可能であり、アルミナ質原料を置換して使用
する場合には、アルミナ質原料の使用量はシリマナイト
族原料とアルミナ質原料との合量の半量以下とする。It is also possible to replace a part of the sillimanite group raw material with an alumina-based raw material such as fused alumina or sintered alumina, and when the alumina-based raw material is replaced and used, the alumina-based raw material is used. The amount used is less than half the total amount of the sillimanite group raw material and the alumina-based raw material.
【0010】シリカあるいはシリカ・アルミナ質原料と
してはロー石、珪石、陶石などの単独または混合物であ
って、ロー石が最も適している。これを1000〜1100℃で
焼成処理したもので、この焼成温度がこれより低いと12
00℃付近での膨張が大きすぎてこの発明の特徴である容
積安定性に劣り、また焼成温度が高いとれんがの膨張が
小さすぎて目地開きなどが防止できない。それを使用す
る場合は10〜70重量%で、10重量%未満では目地開きな
どが防止できず、逆に70重量%を越えると耐食性が極端
に悪化し、いずれも好ましくない。また、なるべく耐食
性を保つ意味から、本原料は微粉部を避けて使用するこ
とが望ましい。As the silica or silica-alumina raw material, lozenge, silica stone, porcelain stone, etc., alone or in a mixture, and lozenge is most suitable. This is fired at 1000 to 1100 ° C. If the firing temperature is lower than 12
The expansion at around 00 ° C is too large and the volume stability, which is a feature of the present invention, is poor, and when the baking temperature is high, the expansion of bricks is too small to prevent the opening of joints. When it is used, it is from 10 to 70% by weight, and when it is less than 10% by weight, the joint opening cannot be prevented, and conversely, when it exceeds 70% by weight, the corrosion resistance is extremely deteriorated, which is not preferable. Further, in order to keep the corrosion resistance as much as possible, it is desirable to use the raw material while avoiding the fine powder portion.
【0011】炭素材料はスラグに濡れにくいことによる
耐食性や耐スポーリング性に寄与するものであり、炭化
珪素は炭素材料の酸化を抑制して炭素材料の高耐食性と
高耐スポーリング性を発揮させる効果があり、その使用
量は炭素材料あるいは炭素材料と炭化珪素の合量で3〜
30重量%である。この量が3重量%未満では炭素材料の
効果が十分に発揮されず、30重量%より多いと強度と耐
食性の低下となる。The carbon material contributes to corrosion resistance and spalling resistance due to being hard to be wetted by slag, and silicon carbide suppresses oxidation of the carbon material to exert high corrosion resistance and high spalling resistance of the carbon material. There is an effect, and the amount of use is 3 to the total amount of carbon material or carbon material and silicon carbide.
30% by weight. If this amount is less than 3% by weight, the effect of the carbon material is not sufficiently exhibited, and if it exceeds 30% by weight, the strength and corrosion resistance are deteriorated.
【0012】上記原料の他にアルミニウム、マグネシウ
ム、シリコンなどの金属粉末やガラス物質などを添加す
ることもでき、それによって耐酸化性が更に向上する。
これらの原料を常法に従って、結合剤を添加して混練、
成形後、熱処理して不焼成れんがとして使用する。この
結合剤としては樹脂系のものが好ましく、熱処理によっ
て硬化するフェノール樹脂が好適である。成形後の熱処
理は200 〜600 ℃の範囲で行われる。In addition to the above-mentioned raw materials, it is possible to add metal powder such as aluminum, magnesium or silicon, or a glass material, whereby the oxidation resistance is further improved.
According to a conventional method, kneading these raw materials by adding a binder,
After molding, it is heat-treated and used as an unfired brick. As the binder, a resin-based binder is preferable, and a phenol resin that is cured by heat treatment is preferable. The heat treatment after molding is performed in the range of 200 to 600 ° C.
【0013】上記によって得られた不焼成れんがは混銑
車や溶銑鍋などの溶銑予備処理容器の一部または全部に
内張りして使用される。シリカあるいはシリカ・アルミ
ナ質原料を使用しないものはスラグライン部に、それを
併用する場合は銑浴あるいは炉底部に使用することが望
ましい。The unfired brick obtained as described above is used by lining a part or all of the hot metal pretreatment container such as a hot metal wheel and a hot metal ladle. It is desirable to use silica or silica-alumina raw material in the slag line part, and when using it in the pig iron bath or furnace bottom part.
【0014】[0014]
【作用】シリマナイト族鉱物にはシリマナイト、アンダ
リュサイト、カイアナイトなどがあり、これら鉱物の化
学式はAl2 O3 ・SiO2 である。このシリマナイト
鉱物は1400℃付近の温度まで加熱されるとムライト(3
Al2 O3 ・2SiO2)およびシリカ(SiO2 )を
生成する。このシリマナイト鉱物からムライトへの反応
の際体積膨張を伴うので、シリマナイト族原料は高熱膨
張および高残存線膨張特性を有する。この際アルミナが
共存すると、アルミナがムライトに固溶することにより
一層体積膨張が大となる。一方、シリマナイトからムラ
イトへの反応の際には生成するシリカはガラス相として
存在するため、発生する熱応力は緩和される。The sillimanite group minerals include sillimanite, andalusite, and kyanite, and the chemical formula of these minerals is Al 2 O 3 .SiO 2 . When this sillimanite mineral is heated to a temperature near 1400 ° C, mullite (3
Al 2 O 3 .2SiO 2 ) and silica (SiO 2 ) are produced. Since the reaction of the sillimanite mineral to mullite is accompanied by volume expansion, the silimanite group raw material has high thermal expansion and high residual linear expansion characteristics. At this time, when alumina coexists, the solid solution of alumina causes a large volume expansion. On the other hand, since the silica generated during the reaction of sillimanite to mullite exists as a glass phase, the thermal stress generated is relaxed.
【0015】また、シリカあるいはシリカ・アルミナ質
原料中に存在するSiO2 成分は加熱されることによ
り、α石英からβ石英、クリストバライトへの変態によ
る高熱膨張と高残存膨張性を有し、さらに、高温でブロ
ーチングする。この変態は600℃から始まり1400℃付近
まで続く。一方、同時に含まれているパイロフィライト
は加熱によって1000〜1100℃でガラス化する。When the SiO 2 component present in the silica or silica-alumina raw material is heated, it has high thermal expansion and high residual expansion due to the transformation from α-quartz to β-quartz and cristobalite. Broach at high temperature. This transformation starts at 600 ° C and continues to around 1400 ° C. On the other hand, the pyrophyllite contained at the same time vitrifies at 1000 to 1100 ° C by heating.
【0016】この発明で使用するシリカまたはシリカ・
アルミナ原料は、生原料を1000〜1100℃で焼成処理した
ものであり、石英粒子はα−β転移による大きな体積変
化を経ているためクラックが残留しており、一方、パイ
ロフィライトはガラス化している。そのためこの焼成原
料は1200℃付近での急激な膨張を起こさないので、れん
がの容積安定性が確保されるのである。さらに、パイロ
フィライトがガラス化しているため1300℃以上の温度領
域での応力緩和が顕著となり耐火物内部に発生する熱応
力が低下する。Silica or silica. Used in the present invention
Alumina raw material is a raw material that is calcined at 1000 to 1100 ° C, and the quartz particles have undergone a large volume change due to α-β transition, so that cracks remain, while pyrophyllite is vitrified. There is. Therefore, this firing raw material does not undergo a rapid expansion at around 1200 ° C., so that the volume stability of the brick is secured. Furthermore, since pyrophyllite is vitrified, stress relaxation in the temperature range of 1300 ° C or higher becomes remarkable, and the thermal stress generated inside the refractory is reduced.
【0017】このシリマナイト族原料および焼成処理し
たシリカあるいはシリカ・アルミナ質原料により、溶銑
予備処理容器の耐火物は目地開きがなく、れんがのゆる
みも生じず、しかも、熱応力が緩和されるのでれんがの
セリ割れも発生しない。また、高アルミナ質であるの
で、耐食性もそれほど低下しないのである。With the sillimanite group raw material and the calcined silica or silica-alumina raw material, the refractory material in the hot metal pretreatment vessel has no joint opening, no loosening of the brick occurs, and the thermal stress is alleviated. No seri cracking occurs. Further, since it is of high alumina quality, the corrosion resistance does not deteriorate so much.
【0018】[0018]
【実施例】表1に示す配合組成を混練し、フリクション
プレスによって成形し、成形物を300 ℃で10時間の熱処
理を行って不焼成れんがを得た。熱処理後のれんがの物
性および1200℃と1400℃における熱膨張率、残存線膨張
率の値と最大発生熱応力を表2に示した。なお、同様に
比較例について表3および4に示す。[Examples] The composition shown in Table 1 was kneaded and molded by a friction press, and the molded product was heat-treated at 300 ° C for 10 hours to obtain an unfired brick. Table 2 shows the physical properties of the brick after heat treatment, the values of the coefficient of thermal expansion at 1200 ° C and 1400 ° C, the value of the residual linear expansion coefficient and the maximum generated thermal stress. Similarly, Comparative Examples are shown in Tables 3 and 4.
【0019】耐食性は回転式スラグ試験法により1400℃
で3時間行った。そのスラグ組成はCaO 46 重量%、
Fe2 O3 42重量%、CaF2 12重量%のものを使用し
た。結果は比較例1を100 とする溶損指数によって表し
た。Corrosion resistance is 1400 ° C according to the rotary slag test method
I went there for 3 hours. Its slag composition is 46% by weight of CaO,
Fe 2 O 3 42% by weight and CaF 2 12% by weight were used. The results were expressed by a melt loss index with Comparative Example 1 as 100.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【表3】 [Table 3]
【0023】[0023]
【表4】 [Table 4]
【0024】実施例の結果から明らかなように、アルミ
ナ質原料をシリマナイト族原料に代えると、圧縮強度や
耐食性をさほど低下させずに、特に1400℃における熱膨
張率と残存線膨張率の値を増加させることができ(実施
例1と比較例1)、目地開きなどの低減に寄与できるこ
とがわかる。As is clear from the results of the examples, when the alumina-based raw material is replaced with the sillimanite group raw material, the values of the thermal expansion coefficient and the residual linear expansion coefficient at 1400 ° C. are not significantly reduced, and It can be seen that it can be increased (Example 1 and Comparative Example 1), and it can contribute to the reduction of joint opening.
【0025】さらに、れんがに焼ロー石を併用すること
により(実施例3〜8)、熱膨張率と残存線膨張率の増
加量をさらに微妙に調整することができるようになっ
た。また、発生熱応力も電融アルミナを用いた場合(比
較例1)よりもかなり低くなり、セリ割れの防止にも寄
与していることがわかる。Further, by using the brick together with the roasted stone (Examples 3 to 8), it has become possible to finely adjust the increase amounts of the thermal expansion coefficient and the residual linear expansion coefficient. Also, the generated thermal stress is considerably lower than that in the case of using fused alumina (Comparative Example 1), and it can be seen that the thermal stress also contributes to the prevention of seri cracking.
【0026】[0026]
【発明の効果】以上説明したように、この発明によれ
ば、アルミナ質原料に代えてシリマナイト族原料を使用
し、さらに、焼成処理したシリカまたはシリカ・アルミ
ナ質原料を用いることにより、耐食性を大きく低下させ
ることなく、熱膨張率、残存線膨張率および発生熱応力
を適度な値に保ち、耐火物の容積安定性を確保し、溶銑
予備処理容器として使用された場合に目地開きや剥離損
耗、セリ割れもなく安定に操業できるという格別の効果
を奏する。As described above, according to the present invention, the silimanite group material is used in place of the alumina material, and the calcined silica or silica-alumina material is used to increase the corrosion resistance. Without lowering the thermal expansion coefficient, residual linear expansion coefficient and generated thermal stress to an appropriate value, to secure the volume stability of the refractory, when used as a hot metal pretreatment container, joint opening and peeling wear, It has a special effect that it can operate stably without cracking.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安井 宏 岡山市竹田32番地 (56)参考文献 特開 昭56−145167(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Yasui 32 Takeda, Okayama City (56) References JP-A-56-145167 (JP, A)
Claims (2)
材料または炭素材料と炭化珪素3〜30重量%を配合した
ことを特徴とする溶銑予備処理容器用耐火物。1. A refractory for a hot metal pretreatment container, characterized in that 70 to 97% by weight of a sillimanite group material is mixed with a carbon material or a carbon material and 3 to 30% by weight of silicon carbide.
処理をされたシリカまたはシリカ・アルミナ質原料10〜
70重量%、炭素材料または炭素材料と炭化珪素3〜30重
量%を配合したことを特徴とする溶銑予備処理容器用耐
火物。2. A sillimanite group material of 10 to 87% by weight, and a calcined silica or silica-alumina material of 10 to 87% by weight.
A refractory for a hot metal pretreatment container, characterized by containing 70% by weight, a carbon material or a carbon material and 3 to 30% by weight of silicon carbide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3334362A JP2536826B2 (en) | 1991-11-22 | 1991-11-22 | Refractory for hot metal pretreatment container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3334362A JP2536826B2 (en) | 1991-11-22 | 1991-11-22 | Refractory for hot metal pretreatment container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05139822A JPH05139822A (en) | 1993-06-08 |
JP2536826B2 true JP2536826B2 (en) | 1996-09-25 |
Family
ID=18276529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3334362A Expired - Lifetime JP2536826B2 (en) | 1991-11-22 | 1991-11-22 | Refractory for hot metal pretreatment container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2536826B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56145167A (en) * | 1980-04-11 | 1981-11-11 | Kurosaki Refractories Co | Non-burnt refractory brick |
-
1991
- 1991-11-22 JP JP3334362A patent/JP2536826B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05139822A (en) | 1993-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910001934B1 (en) | Carbon containing refractory | |
JP2536826B2 (en) | Refractory for hot metal pretreatment container | |
JPH0118030B2 (en) | ||
US5382555A (en) | High alumina brick with metallic carbide and its preparation | |
JP7377635B2 (en) | Bricks for hot metal ladle and hot metal ladle lined with the bricks | |
WO1993006057A1 (en) | Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom | |
JPH05842A (en) | Refractory for molten iron vessel | |
JPH0733513A (en) | Magnesia-carbon brick and its production | |
JPH0577626B2 (en) | ||
JPH0925160A (en) | Production of carbon-containing refractory | |
JP2552987B2 (en) | Refractory for casting | |
JP4695354B2 (en) | Carbon-containing refractory brick | |
JP2004141899A (en) | Sliding nozzle plate for ladle | |
JPH07267719A (en) | Alumina-magnesia-carbon brick | |
JP3002296B2 (en) | Method for producing coarse aggregate blended magnesia-carbon refractory | |
JP2023102168A (en) | Method for producing unburned bricks for molten iron vessel | |
JP3681232B2 (en) | Hot metal processing container | |
JPS632910B2 (en) | ||
JPS6033782B2 (en) | Refractories for hot metal pretreatment | |
JPS59146975A (en) | Plate refractories for sliding nozzle | |
JPS6143305B2 (en) | ||
JPS62132767A (en) | Carbon-containing refractories | |
JPH078738B2 (en) | Refractory brick for refining molten metal containing graphite | |
JPS6278151A (en) | Non-burnt refractory brick for molten metal vessel | |
JPH0748168A (en) | Refractory for preliminarily treating molten pig-iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960423 |