JPH0583889B2 - - Google Patents

Info

Publication number
JPH0583889B2
JPH0583889B2 JP59134306A JP13430684A JPH0583889B2 JP H0583889 B2 JPH0583889 B2 JP H0583889B2 JP 59134306 A JP59134306 A JP 59134306A JP 13430684 A JP13430684 A JP 13430684A JP H0583889 B2 JPH0583889 B2 JP H0583889B2
Authority
JP
Japan
Prior art keywords
layer
low
guide layer
light
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59134306A
Other languages
Japanese (ja)
Other versions
JPS6113222A (en
Inventor
Akira Ajisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13430684A priority Critical patent/JPS6113222A/en
Publication of JPS6113222A publication Critical patent/JPS6113222A/en
Publication of JPH0583889B2 publication Critical patent/JPH0583889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信システムなどに用いられ低電
圧、低損失で高速に光の変調を行なうことがで
き、発光、受光デバイスとも実積化が可能な半導
体材料を用いた集積化導波型光素子に関するもの
である。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is used in optical communication systems, etc., and can modulate light at high speed with low voltage and low loss. The present invention relates to an integrated waveguide type optical device using possible semiconductor materials.

(従来技術とその問題点) 近年の光通信システムの本格的な実用化に伴
い、種々の機能を持つたより性能の高い光デバイ
スが必要となつてきている。このようなデバイス
として光路の切り換えを行なう光スイツチや、光
の伝搬状態を変化させる光変調器などがある。こ
れらのデバイスでは電気光学効果を利用したもの
が特性も優れ広く用いられている。このような電
気光学効果を利用した光スイツチ又は光変調器な
どの導波型光素子としてはLiNbO3のような誘電
体材料を用いたものやGaAs,InPなどのような
半導体材料を用いたものがある。誘電体材料を用
いた導波型光素子は非常に光の伝搬損失が低く低
電圧動作が可能であるなど有利な点もあるが、光
源などとのモノリシツク化には不適当である。そ
れに対し半導体材料を用いた導波型光素子は発
光、受光デバイスとのモノリシツク化が可能であ
り将来の光集積回路を実現するために重要であ
る。
(Prior art and its problems) With the full-scale commercialization of optical communication systems in recent years, there has been a need for optical devices with various functions and higher performance. Examples of such devices include optical switches that switch optical paths and optical modulators that change the propagation state of light. Among these devices, devices that utilize electro-optic effects have excellent characteristics and are widely used. Waveguide optical devices such as optical switches or optical modulators that utilize such electro-optic effects include those using dielectric materials such as LiNbO 3 and semiconductor materials such as GaAs and InP. There is. Although waveguide type optical devices using dielectric materials have advantages such as very low light propagation loss and low voltage operation, they are not suitable for monolithic integration with light sources and the like. In contrast, waveguide optical devices using semiconductor materials can be monolithically integrated with light-emitting and light-receiving devices, and are important for realizing future optical integrated circuits.

従来このような電気光学効果を利用した半導体
導波型光素子としては方向性結合器型変調器/ス
イツチがあつた。方向性結合器は2本の導波路を
有し、電気光学効果による導波光の伝搬状態の変
化を利用して2本の導波路間でスイツチングを行
なう訳であるがそれを1本の導波路にのみ注目す
れば位相変調器として取扱うことができる。ここ
ではその位相変調器を例にとり基本的な構造及び
動作についての説明を行なう。第1図は例として
InGaAsP/InP系の材料を使つた場合の位相変調
器の基本的な構造を示す図である。これは最も簡
単な構造であるが、このような構造であると非常
に光の伝搬損失が大きい。このことは後に詳細に
述べる。第1図は光の伝搬方向に対して垂直な面
で切つた時の位相変調器の断面図である、n+
InP基板5の上にn−InGaAsPガイド層4及びp+
−InGaAsPのp+拡散層が第1図の様にリブ形に
積層され、その上に電極2を有している。p+
散層3の屈折率をn3ガイド層4の屈折率をn4基板
5の屈折率をn5とすると一般にn4>n3,n4>n5
関係にある。また第1図に示す様にガイド構造が
リブ型をとつている為に水平方向に関しては実効
的な屈折率は同じ屈折率のガイド層中でも電極の
下の部分の方がその両側の部分よりも少し高い。
従つてn−InGaAsPガイド層4に入射した光は
垂直方向、水平方向の両方向に関して閉じ込めら
れ、導波路が形成され、3次元的に伝搬する。こ
こで電極2に逆バイアス電圧信号1を印加する。
すると低キヤリア濃度層であるガイド層4に空乏
層が拡がり電界がかかり、その電界による電気光
学効果によつてガイド層4を伝搬する光の伝搬状
態が変化し、出射光は逆バイアス電圧信号1に応
じた位相の変化を示す。以上の様にして位相変調
が行なわれる訳である。
Conventionally, a directional coupler type modulator/switch has been used as a semiconductor waveguide type optical device that utilizes such an electro-optic effect. A directional coupler has two waveguides, and switches between the two waveguides using changes in the propagation state of guided light due to the electro-optic effect. If we pay attention only to this, we can treat it as a phase modulator. Here, the basic structure and operation of the phase modulator will be explained using the phase modulator as an example. Figure 1 is an example.
FIG. 3 is a diagram showing the basic structure of a phase modulator using InGaAsP/InP-based materials. Although this is the simplest structure, such a structure causes a very large light propagation loss. This will be discussed in detail later. Figure 1 is a cross-sectional view of the phase modulator taken along a plane perpendicular to the light propagation direction, n + -
n-InGaAsP guide layer 4 and p +
A p + diffusion layer of -InGaAsP is stacked in a rib shape as shown in FIG. 1, and an electrode 2 is provided thereon. When the refractive index of the p + diffusion layer 3 is n3 , the refractive index of the guide layer 4 is n4, and the refractive index of the substrate 5 is n5 , generally there is a relationship of n4 > n3 and n4 > n5 . In addition, as shown in Figure 1, since the guide structure has a rib shape, in the horizontal direction, the effective refractive index is higher in the lower part of the electrode than in the parts on both sides of the guide layer, even with the same refractive index. a little expensive.
Therefore, the light incident on the n-InGaAsP guide layer 4 is confined in both the vertical and horizontal directions, forming a waveguide and propagating three-dimensionally. Here, a reverse bias voltage signal 1 is applied to the electrode 2.
Then, a depletion layer spreads in the guide layer 4, which is a low carrier concentration layer, and an electric field is applied.The propagation state of the light propagating through the guide layer 4 changes due to the electro-optic effect caused by the electric field, and the emitted light becomes the reverse bias voltage signal 1. shows the change in phase according to . Phase modulation is performed in the manner described above.

しかしながらこの様な構造をもつ電気光学効果
を利用した導波型光素子は次に述べるような問題
点があつた。ガイド層4のすぐ上下に光の吸収の
非常に大きなp+拡散層3及びキヤリア濃度の高
い低抵抗基板5が厚く存在している為、ガイド層
からしみ出した光のほとんどはp+拡散層3、低
抵抗基板5により吸収され、それが伝搬損失とな
る。電界強度を高め変調効率を高めるためにはガ
イド層4を薄くすればよいが組成が一定の場合に
はガイド層4の厚みを薄くすればその分ガイド層
外への光のしみ出しは大きくなり伝搬損失も大き
くなつてしまうので、伝搬損失の事を考慮に入れ
るとガイド層厚はそれ程薄くできない。またガイ
ド層厚を厚くすると伝搬損失は少なくなるが有効
な電界をかけてやることができず、所望の位相変
化を得る為の電圧が、大きいものとなつてしま
う。従つて有効な電界を得る為にはガイド層厚を
それ程厚くすることはできない。この様にガイド
層厚を薄くすると電圧は低くなるが伝搬損失は大
きくなり、ガイド層厚を厚くすると伝搬損失は小
さくなるが電圧は大きくなるといつたように電圧
と伝搬損失とはトレード・オフの関係にあり、従
つてこの様な構造では電圧と伝搬損失の両方を低
くすることはできなかつた。
However, the waveguide type optical device having such a structure and utilizing the electro-optic effect has the following problems. Immediately above and below the guide layer 4, there is a thick p + diffusion layer 3 with very high light absorption and a low resistance substrate 5 with a high carrier concentration, so most of the light seeping out from the guide layer is absorbed by the p + diffusion layer. 3. It is absorbed by the low resistance substrate 5 and becomes a propagation loss. In order to increase the electric field strength and improve the modulation efficiency, the guide layer 4 can be made thinner, but if the composition is constant, the thinner the guide layer 4 is, the more light seeps out of the guide layer. Since the propagation loss will also increase, the guide layer thickness cannot be made so thin if the propagation loss is taken into account. Furthermore, if the thickness of the guide layer is increased, the propagation loss is reduced, but an effective electric field cannot be applied, and the voltage required to obtain the desired phase change becomes large. Therefore, in order to obtain an effective electric field, the guide layer cannot be made very thick. There is a trade-off between voltage and propagation loss, as described above when the guide layer thickness becomes thinner, the voltage decreases but the propagation loss increases, and when the guide layer thickness becomes thicker, the propagation loss decreases but the voltage increases. Therefore, with such a structure, it was not possible to reduce both voltage and propagation loss.

次にもうひとつの従来例として、伝搬損失を低
減するための構造にするためにガイド層と電極及
びガイド層と基板との間に光の吸収の少ないバツ
フア層を設けた例についての説明をする。第2図
は伝搬損失低減のためのバツフア層を設けた場合
の位相変調器を説明するための図である。またこ
こでは実際の半導体材料であるInGaAsP/InPを
用いた場合の説明を行なう。第2図は光の導波方
向に対して垂直な面で切つた時の位相変調器の断
面図である。n+−InP基板16の上にn−InPバ
ツフア層15、n-−InGaAsPガイド層14、n-
−InPバツフア層13、p+−InP拡散層12、電
極11が第2図の様に積層されている。n-
InGaAsPガイド層14の屈折率をn14、その他p+
−InP12、n-−InPバツフア層13、n-−InPバツ
フア層15の屈折率をそれぞれn12,n13,n15とお
くとn14>n12=n13=n15である。また水平方向に
関してはリブ型構造をとることにより、実効的に
屈折率差をつけている。この様にしてガイドに入
射してきた光はガイド層14の中を三次元的に導
波する。変調の方法は前述の例と同様で電極11
と低抵抗n+−InP基板16の間に逆バイアス電圧
信号10を印加しそれに応じた電気光学効果によ
り生ずる伝搬状態の変化を利用している。
Next, as another conventional example, we will explain an example in which a buffer layer with low light absorption is provided between the guide layer and the electrode and between the guide layer and the substrate in order to create a structure to reduce propagation loss. . FIG. 2 is a diagram for explaining a phase modulator provided with a buffer layer for reducing propagation loss. Also, here we will explain the case where InGaAsP/InP, which is an actual semiconductor material, is used. FIG. 2 is a cross-sectional view of the phase modulator taken along a plane perpendicular to the light waveguide direction. On the n + -InP substrate 16, an n-InP buffer layer 15, an n - -InGaAsP guide layer 14, an n -
-InP buffer layer 13, p + -InP diffusion layer 12, and electrode 11 are laminated as shown in FIG. n -
The refractive index of the InGaAsP guide layer 14 is n 14 , and the others are p +
Letting the refractive indices of the -InP 12 , n - -InP buffer layer 13 and n - -InP buffer layer 15 to be n 12 , n 13 and n 15 , respectively, n 14 > n 12 = n 13 = n 15 . In addition, in the horizontal direction, the rib-type structure effectively creates a difference in refractive index. The light that has entered the guide in this manner is guided three-dimensionally within the guide layer 14. The modulation method is the same as in the previous example, and the electrode 11
A reverse bias voltage signal 10 is applied between the n + -InP substrate 16 and the low resistance n + -InP substrate 16, and a change in the propagation state caused by the electro-optic effect is utilized.

この様にガイド層14の上下にバツフア層1
3,15を設けた構造においては、ガイド層14
よりガイド層14の上下にある光吸収の少ないバ
ツフア層13,15へしみ出した光はほとんど損
失とはならず、そのバツフア層13,15の外側
にあるn+−InP基板までバツフア層13,15を
通り抜けてしみ出していつた少量の光のみが伝搬
損失となる。従つてバツフア層を設けることによ
つて以前よりも伝搬損失を小さくすることがで
き、また、バツフア層が厚くなればそれだけ伝搬
損失も小さくなると言える。しかしバツフア層1
3,15を設けた事によつて電界のかかる厚みが
大きくなつてしまうので、その分印加電圧も高く
なり結局損失と電圧という2点を考えるとバツフ
ア層を設けたからと言つて、低損失かつ低電圧な
素子が実現できるとは言えない。
In this way, the buffer layer 1 is placed above and below the guide layer 14.
3 and 15, the guide layer 14
The light seeping into the buffer layers 13 and 15 with lower light absorption located above and below the guide layer 14 is hardly lost, and the light leaks to the buffer layers 13 and 15 up to the n + -InP substrate located outside the buffer layers 13 and 15. Only a small amount of light that seeps out through 15 becomes a propagation loss. Therefore, by providing a buffer layer, the propagation loss can be made smaller than before, and it can be said that the thicker the buffer layer is, the smaller the propagation loss is. However, buffer layer 1
By providing 3 and 15, the thickness to which the electric field is applied increases, so the applied voltage also increases accordingly.In the end, considering the two points of loss and voltage, even if a buffer layer is provided, it is possible to achieve low loss and It cannot be said that a low voltage element can be realized.

さらにもうひとつの従来例として低電圧、低損
失のための構造としてガイド層の下に非常に薄い
電界印加のための電極を備えた低抵抗層、その下
に光吸収の少ない層を設けた場合についての説明
をする。第3図は低電圧、低損失のための構造を
もつ位相変調器を説明するための図である。また
ここでも材料としてInGaAsP/InPを用いた場合
の説明を行なう。第3図は光の導波方向に対して
垂直な面で切つた時の位相変調器の断面図であ
る。光吸収の少ない低キヤリア濃度の高抵抗InP
基板26上にn+−InP低抵抗層25、n-
InGaAsPガイド層24、n-−InPバツフア層2
3、p+−InP拡散層22、電極21,28が第3
図の様に積層されている。ガイド層24に入射し
た光は垂直方向にはn-−InGaAsPガイド層24
とn-−InPバツフア層23、n+−InP低抵抗層3
5との屈折率差により、水平方向にはリブ型を形
成することにより閉じ込められ3次元的に導波す
る。ガイド層24よりしみ出した光は上方へはバ
ツフア層23、下方へは低抵抗層25、基板26
へと拡がる。上方のバツフア層23は低キヤリア
濃度の層である為光の吸収はほとんどなく、また
下方への光のしみ出しに関しては、光が吸収され
るのはガイド層24のすぐ下のキヤリア濃度の高
い層であるn+−InP低抵抗層25のみで、その下
にある低キヤリア濃度基板26における光の吸収
はほとんどない。また低抵抗層25は非常に薄い
層のため、低抵抗層25における光の吸収は、ガ
イド層24の下方へしみ出した光のごく一部だけ
である。従つてこの様な構造の導波型光素子にお
いては伝搬損失は非常に小さいと言うことができ
る。また電極21に逆バイアス電圧信号20を印
加することにより位相変調を行なうわけである
が、ガイド層24の直下に電界印加用電極となる
低抵抗層25がある為、ガイド層24中に有効に
電界を印加できることになり、電界を利用した位
相変調を行なうために必要な電圧は第2図に示す
様なバツフア層の外側から電圧をかける構造に比
べ小さくなる。
Another conventional example is a structure for low voltage and low loss, in which a low resistance layer with a very thin electrode for applying an electric field is provided below the guide layer, and a layer with low light absorption is provided below the guide layer. Explain about. FIG. 3 is a diagram for explaining a phase modulator having a structure for low voltage and low loss. Also, here we will explain the case where InGaAsP/InP is used as the material. FIG. 3 is a cross-sectional view of the phase modulator taken along a plane perpendicular to the light waveguide direction. High resistance InP with low carrier concentration and low light absorption
n + -InP low resistance layer 25, n - - on the substrate 26
InGaAsP guide layer 24, n - -InP buffer layer 2
3. The p + -InP diffusion layer 22 and the electrodes 21 and 28 are the third
They are stacked as shown in the figure. The light incident on the guide layer 24 passes through the n - -InGaAsP guide layer 24 in the vertical direction.
and n - -InP buffer layer 23, n + -InP low resistance layer 3
Due to the difference in refractive index with 5, the wave is confined in the horizontal direction by forming a rib shape, and the wave is guided three-dimensionally. The light seeping out from the guide layer 24 goes upward to the buffer layer 23, downward to the low resistance layer 25, and to the substrate 26.
It spreads to. Since the upper buffer layer 23 is a layer with a low carrier concentration, it absorbs almost no light, and regarding light seepage downward, the light is absorbed by the high carrier concentration immediately below the guide layer 24. Only the n + -InP low resistance layer 25 is the layer, and the low carrier concentration substrate 26 below it absorbs almost no light. In addition, since the low resistance layer 25 is a very thin layer, only a small portion of the light seeping out below the guide layer 24 is absorbed by the low resistance layer 25 . Therefore, it can be said that the propagation loss in a waveguide type optical element having such a structure is extremely small. Furthermore, phase modulation is performed by applying a reverse bias voltage signal 20 to the electrode 21, but since there is a low resistance layer 25 that serves as an electrode for applying an electric field directly under the guide layer 24, the voltage in the guide layer 24 can be effectively adjusted. Since an electric field can be applied, the voltage required to perform phase modulation using an electric field is smaller than in the structure shown in FIG. 2 in which voltage is applied from outside the buffer layer.

しかしながらこの様な半導体材料を用いた場
合、半導体における電気光学効果が小さいため、
ガイド層の厚みなどを薄くし、パラメータを最適
化していき低電圧化を図つたとしてもせいぜい
10Vが限度であり、高速変調を行なうことができ
るTTLレベルまで電圧を下げる事は困難であつ
た。
However, when such semiconductor materials are used, the electro-optic effect in the semiconductor is small, so
Even if you try to lower the voltage by reducing the thickness of the guide layer and optimizing the parameters, at best
The voltage limit was 10V, and it was difficult to lower the voltage to the TTL level that allowed high-speed modulation.

(発明の目的) 本発明の目的は上述したような欠点を除去し、
低損失、低電圧で高速変調動作が可能であり、将
来の光集積回路の一部分を担う可能性を有する半
導体集積化導波型光素子を提供することにある。
(Object of the invention) The object of the invention is to eliminate the above-mentioned drawbacks,
The object of the present invention is to provide a semiconductor-integrated waveguide optical device that is capable of high-speed modulation operation with low loss and low voltage, and has the potential to play a part in future optical integrated circuits.

(発明の構成) 本発明によればガイド層中を伝搬している導波
光に電界を印加する事により前記導波光の制御を
行なう半導体導波型光素子であつて、前記ガイド
層の電界印加方向の両側の少なくとも一方に前記
導波光の界分布に比較して極く薄い低抵抗の層を
前記ガイド層に隣接して設け、さらに前記低抵抗
の薄い層に連続して前記ガイド層よりも屈折率が
低く、光吸収の少ない比較的厚い層を設け、前記
低抵抗の薄い層に前記導波光の変調手段となる前
記電界を印加する為の電極を設け、前記光吸収の
少ない比較的厚い層のひとつに電気的に半絶縁性
をもつた層を用い、前記半絶縁性の層と隣接した
前記低抵抗の薄い層を活性層として利用した
FETを形成し前記FETを前記導波型光素子の前
記ガイド層の電界印加の制御手段としたことを特
徴とする集積化導波型光素子が得られる。
(Structure of the Invention) According to the present invention, there is provided a semiconductor waveguide optical element that controls guided light by applying an electric field to the guided light propagating in a guide layer, wherein the guided light is controlled by applying an electric field to the guided light propagating in the guide layer. A low-resistance layer that is extremely thin compared to the field distribution of the guided light is provided adjacent to the guide layer on at least one of both sides of the direction, and further a layer that is thinner than the guide layer is provided in succession to the low-resistance thin layer. A relatively thick layer with a low refractive index and low light absorption is provided, an electrode for applying the electric field serving as a modulation means for the guided light is provided on the low resistance thin layer, and a relatively thick layer with low light absorption is provided. An electrically semi-insulating layer is used as one of the layers, and the low-resistance thin layer adjacent to the semi-insulating layer is used as an active layer.
An integrated waveguide type optical device is obtained, characterized in that a FET is formed and the FET is used as a control means for applying an electric field to the guide layer of the waveguide type optical device.

(構成の詳細な説明) 本発明は上述の構成をとることにより従来技術
の問題点を解決した。まず低損失、低電圧化を図
つた第3の従来例において光吸収の少ない比較的
厚い層に、電気的に半絶縁性の層を用い、それと
隣接した低抵抗の薄い層がFETの活性層上に利
用できるので、それらを用いて同一基板上に
FETと導波型光素子を集積化させる。このよう
に同一の基板、同一の低抵抗層(FETにおける
活性層)を利用しているのでFETを集積化した
からと言つて製作に関する手間はほとんどない。
またこのFETを用いて導波型光素子のガイド層
に電界を印加させ、その電界によつてガイド中の
導波光を制御する。よつて制御信号はFETのゲ
ートに加えればよい。このようにFETの増幅作
用を利用しガイド層に電界を印加しているためガ
イドにかかる電圧は変わらないが、FETの駆動
電圧は低くてよく、見かけの電圧を下げることが
できる。従つて半導体導波型光素子においては低
電圧化に関して限界のあつた従来に比べ本構成を
とることによりTTLレベルまでの低電圧化が実
現される。また損失に関しては従来例と同様に低
く、結局本構成を用いると、低損失、低電圧で高
速変調が可能な半導体集積化導波型光素子が得ら
れる。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. First, in the third conventional example, which aims to achieve low loss and low voltage, an electrically semi-insulating layer is used as a relatively thick layer with low light absorption, and an adjacent thin layer with low resistance is used as the active layer of the FET. can be used on the same substrate.
Integrate FET and waveguide type optical device. In this way, since the same substrate and the same low-resistance layer (active layer in the FET) are used, even if the FET is integrated, there is almost no manufacturing effort.
Furthermore, this FET is used to apply an electric field to the guide layer of the waveguide type optical element, and the guided light in the guide is controlled by the electric field. Therefore, the control signal can be applied to the gate of the FET. In this way, since the electric field is applied to the guide layer using the amplification effect of the FET, the voltage applied to the guide does not change, but the drive voltage of the FET can be low, and the apparent voltage can be lowered. Therefore, compared to the conventional semiconductor waveguide type optical device, which has limitations in terms of voltage reduction, by adopting this configuration, voltage reduction to the TTL level can be realized. Furthermore, the loss is as low as in the conventional example, and by using this configuration, a semiconductor-integrated waveguide optical device capable of high-speed modulation with low loss and low voltage can be obtained.

(実施例) 以下本発明の実施例について図面を参照して詳
細に説明する。第4図は本発明の1つの実施例を
示す図である。尚本実施例はInGaAsP/InP系の
半導体材料を用いたものにつき説明し、第4図に
は本発明の集積化導波型光素子を例として位相変
調器に適用した場合の光の導波方向に対し垂直な
面で切つたその断面図が示されている。光吸収の
少ない半絶縁性InP基板36上にn+−InP低抵抗
層(活性層)35、n-−InGaAsPガイド層34、
n-−InPバツフア層33を成長させ、p−n接合
を形成するためにn-−InPバツフア層33上にp+
−InP層32を拡散させる。その後エツチングな
どによりFET形成用の活性層35の一部分を露
出させる。その露出された活性層の一部分をエツ
チング及び絶縁膜40をつけることにより電気的
に分離し、その後ドレイン電極37、ゲート電極
38、ソース電極39を取りつけMIS−FETを
形成する。またガイドに関してはp+−InP拡散層
32上に電極31を取りつけリブ形にエツチング
を行ない3次元導波路を形成する。最後にドレイ
ン電極37とガイド電極31を配線する。ここで
述べた製作プロセスはあくまでも一例であつて低
抵抗層35上にFETが形成でき、そのFETを用
いて低抵抗層35の他方に形成された導波型光素
子のガイド層34に電界が印加するような構造が
とれれば特にプロセスの指定は必要ない。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 4 is a diagram showing one embodiment of the present invention. This embodiment will be explained using an InGaAsP/InP-based semiconductor material, and FIG. 4 shows a diagram of light waveguide when the integrated waveguide type optical device of the present invention is applied to a phase modulator as an example. A cross-sectional view thereof taken in a plane perpendicular to the direction is shown. On a semi-insulating InP substrate 36 with low light absorption, an n + -InP low resistance layer (active layer) 35, an n - -InGaAsP guide layer 34,
The n - -InP buffer layer 33 is grown, and p +
- Diffuse the InP layer 32. Thereafter, a part of the active layer 35 for forming an FET is exposed by etching or the like. A part of the exposed active layer is electrically isolated by etching and applying an insulating film 40, and then a drain electrode 37, a gate electrode 38, and a source electrode 39 are attached to form a MIS-FET. Regarding the guide, an electrode 31 is attached on the p + -InP diffusion layer 32 and etched into a rib shape to form a three-dimensional waveguide. Finally, the drain electrode 37 and guide electrode 31 are wired. The manufacturing process described here is just an example, and an FET can be formed on the low resistance layer 35, and an electric field can be applied to the guide layer 34 of the waveguide type optical element formed on the other side of the low resistance layer 35 using the FET. There is no need to specify the process if the structure is such that the voltage can be applied.

ゲート電極38にTTLレベルの高速信号41
を入力すると入力された信号はFETにより増幅
され、ドレイン37とソース39の間で取り出す
ことができ、ドレイン電極37とガイド電極31
を接続することにより、ガイド層34にガイド層
を伝搬する導波光を制御するのに十分な電界を印
加することができ、入力信号に応じた変調が可能
となる。このように第4図に示すような構成をと
ることによりTTLレベルで高速変調を行なうこ
とができる導波型光素子が得られる。
A TTL level high-speed signal 41 is applied to the gate electrode 38
When input, the input signal is amplified by the FET and can be taken out between the drain 37 and the source 39.
By connecting this, an electric field sufficient to control the guided light propagating through the guide layer can be applied to the guide layer 34, and modulation according to the input signal becomes possible. By adopting the configuration shown in FIG. 4 in this manner, a waveguide type optical element capable of performing high-speed modulation at the TTL level can be obtained.

第5図は本発明による集積化導波型光素子の等
価回路を示したものである。半導体導波型光素子
57は逆バイアスデバイスなのでダイオードの記
号で示されている。ゲート端子55に入力信号5
8が入力される。入力信号58がHighレベルの
時はFET56はON状態となりドレイン53とソ
ース54の間に電流が流れ、それらの間の電位差
はほとんどなく導波型光素子57のガイド層には
電圧がかからない。また入力信号58がLowレ
ベルの時はFET56はOFF状態となりドレイン
53とソース54の間にはほとんど電流は流れ
ず、FETのOFF抵抗とバイアス抵抗52とバイ
アス電圧51で決まる電圧が導波型光素子57に
加わり、ガイド層に電界を印加することができ
る。59は入力信号58によつて導波型光素子5
7に加わる電界の様子を示している。このように
してゲート55への信号に応じて導波型光素子5
7のガイド層へ電界を印加することができ、結局
ゲートに入力するTTLレベルの信号で導波光を
制御することができる。従つて本発明により今ま
で以上に低電圧で高速変調を行なうことができる
集積化導波型光素子を得ることができる。
FIG. 5 shows an equivalent circuit of an integrated waveguide type optical device according to the present invention. Since the semiconductor waveguide type optical element 57 is a reverse bias device, it is indicated by the symbol of a diode. Input signal 5 to gate terminal 55
8 is input. When the input signal 58 is at a high level, the FET 56 is turned on and a current flows between the drain 53 and the source 54, and there is almost no potential difference between them, so no voltage is applied to the guide layer of the waveguide optical element 57. Furthermore, when the input signal 58 is at a low level, the FET 56 is in the OFF state, and almost no current flows between the drain 53 and the source 54, and the voltage determined by the OFF resistance of the FET, the bias resistance 52, and the bias voltage 51 is the waveguide light source. In addition to element 57, an electric field can be applied to the guide layer. 59 is a waveguide type optical element 5 by input signal 58.
This shows the electric field applied to 7. In this way, depending on the signal to the gate 55, the waveguide type optical element 5
An electric field can be applied to the guide layer 7, and the guided light can be controlled by a TTL level signal input to the gate. Therefore, according to the present invention, it is possible to obtain an integrated waveguide type optical device that can perform high-speed modulation at a lower voltage than ever before.

またここではInGaAsP/InP系の半導体材料を
用いた位相変調器にFETを集積化した例を示し
たが、半導体材料としてはGaAAs/GaAs系の
ものでよく、また導波型光素子に関しては特に位
相変調器である必要はなく方向性結合器などでも
よい。さらに導波路構造について水平方向の光の
閉じ込めはリブ型だけとは限らず、基板や低抵抗
層に溝を形成することにより行なつてもよいし、
また埋め込み構造をとることにより行なつてもよ
い。また導波光の制御手段としては電気光学効果
を利用したもの以外にも、pn接合またはシヨツ
トキ接合に逆バイアスを印加すると基礎吸収端が
長波長側に移行するフランツ・ケルデイツシユ効
果や電界による空乏層の拡がりを利用したキヤリ
アの欠乏効果などを利用した導波型光素子にも本
発明は適用可能である。
In addition, here we have shown an example in which an FET is integrated into a phase modulator using InGaAsP/InP-based semiconductor materials, but GaAAs/GaAs-based semiconductor materials may be used, and waveguide type optical devices are particularly important. It does not need to be a phase modulator, and may be a directional coupler or the like. Furthermore, confinement of light in the horizontal direction in the waveguide structure is not limited to the rib type; it may also be achieved by forming grooves in the substrate or low resistance layer.
Alternatively, this may be done by using an embedded structure. In addition to the electro-optic effect as a control means for guided light, there is also the Franz-Kjeldetsch effect, in which the basic absorption edge shifts to longer wavelengths when a reverse bias is applied to a pn junction or Schottki junction, and the depletion layer effect caused by an electric field. The present invention is also applicable to a waveguide type optical element that utilizes a carrier depletion effect that utilizes expansion.

また低抵抗の薄い層(FETの活性層)がガイ
ド層の上にある場合でもガイド層に半絶縁性の層
を用いればその活性層を利用してFETを形成す
ることもできる。
Furthermore, even if a thin low-resistance layer (active layer of the FET) is placed on the guide layer, if a semi-insulating layer is used as the guide layer, the active layer can be used to form the FET.

(発明の効果) 以上詳細に説明したように、本発明によれば低
損失であることは言うまでもなく、より低電圧で
高速変調が可能な半導体集積化導波型光素子を得
ることができ、将来の光集積回路の実現に寄与す
るところ大である。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to obtain a semiconductor integrated waveguide optical device that not only has low loss but also can perform high-speed modulation at a lower voltage. This will greatly contribute to the realization of future optical integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はInGaAsP/InP系の半導体材料を用い
た場合の位相変調器の基本的な構造、動作を説明
するための図、第2図は第1図に示した位相変調
器にバツフア層を設した場合の従来例を示すため
の図、第3図は低損失、低電圧を図りガイド層の
一方に電界印加用の極く薄い層を設けた場合の従
来例を説明するための図、第4図は本発明による
集積化導波型光素子の実施例を説明するための
図、第5図は第4図の等価回路を用いてFETの
動作と導波型光素子の動作の関連を示すための図
である。 図において、1,10,20は変調用の逆バイ
アス信号、2,11,21,28,31は電極、
3,12,22,32はp+拡散層、13,15,
23,33はn-バツフア層、4,14,24,
34はガイド層、5,16はn+基板、26はn-
基板、25,35はn+−低抵抗層(FETの活性
層)、36は半絶縁性基板、37はドレイン電極、
38はゲート電極、39はソース電極、40は絶
縁膜、41はTTLレベルの入力信号、51はバ
イアス電圧、52はバイアス抵抗、53はドレイ
ン端子、54はソース端子、55はゲート端子、
56はFET、57は導波型光素子である逆バイ
アスデバイス、58は入力信号、59は入力信号
に応じて導波型光素子に印加される電界の信号を
示している。
Figure 1 is a diagram for explaining the basic structure and operation of a phase modulator using InGaAsP/InP semiconductor materials, and Figure 2 is a diagram showing a buffer layer in the phase modulator shown in Figure 1. Figure 3 is a diagram for explaining a conventional example in which an extremely thin layer for applying an electric field is provided on one side of the guide layer in order to achieve low loss and low voltage. FIG. 4 is a diagram for explaining an embodiment of the integrated waveguide type optical device according to the present invention, and FIG. 5 is a diagram showing the relationship between the operation of the FET and the operation of the waveguide type optical device using the equivalent circuit of FIG. 4. FIG. In the figure, 1, 10, 20 are reverse bias signals for modulation, 2, 11, 21, 28, 31 are electrodes,
3, 12, 22, 32 are p + diffusion layers, 13, 15,
23, 33 is n -buffer layer, 4, 14, 24,
34 is a guide layer, 5 and 16 are n + substrates, and 26 is n -
substrate, 25 and 35 are n + -low resistance layers (active layer of FET), 36 is a semi-insulating substrate, 37 is a drain electrode,
38 is a gate electrode, 39 is a source electrode, 40 is an insulating film, 41 is a TTL level input signal, 51 is a bias voltage, 52 is a bias resistor, 53 is a drain terminal, 54 is a source terminal, 55 is a gate terminal,
56 is an FET, 57 is a reverse bias device which is a waveguide optical element, 58 is an input signal, and 59 is an electric field signal applied to the waveguide optical element in response to the input signal.

Claims (1)

【特許請求の範囲】[Claims] 1 ガイド層中を伝搬している導波光に電界を印
加する事により前記導波光の制御を行なう半導体
導波型光素子であつて、前記ガイド層の電界印加
方向の両側の少なくとも一方に前記導波光の界分
布に比較して極く薄い低抵抗の層を前記ガイド層
に隣接して設け、さらに前記低抵抗の薄い層に連
続して前記ガイド層よりも屈折率が低く、光吸収
の少ない比較的厚い層を設け、前記低抵抗の薄い
層に前記導波光の変調手段となる前記電界を印加
する為の電極を設けた半導体導波型光素子におい
て前記光吸収の少ない比較的厚い層のひとつに電
気的に半絶縁性をもつた層を用い、前記半絶縁性
の層と隣接した前記低抵抗の薄い層を活性層とし
て利用したFETを形成し、前記FETを前記導波
型光素子の前記ガイド層への電界印加の制御手段
としたことを特徴とする集積化導波型光素子。
1 A semiconductor waveguide optical element that controls the guided light by applying an electric field to the guided light propagating in the guide layer, wherein the guided light is provided on at least one of both sides of the guide layer in the electric field application direction. A low-resistance layer that is extremely thin compared to the field distribution of wave light is provided adjacent to the guide layer, and a layer that is continuous with the low-resistance thin layer has a refractive index lower than that of the guide layer and has less light absorption. In a semiconductor waveguide optical element, a relatively thick layer is provided, and an electrode for applying the electric field serving as a modulation means for the guided light is provided to the thin layer with low resistance. A FET is formed using an electrically semi-insulating layer as one layer, and the low-resistance thin layer adjacent to the semi-insulating layer is used as an active layer, and the FET is connected to the waveguide optical element. An integrated waveguide type optical device characterized in that the integrated waveguide type optical device is configured as means for controlling the application of an electric field to the guide layer.
JP13430684A 1984-06-29 1984-06-29 Integrated waveguide type optical element Granted JPS6113222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13430684A JPS6113222A (en) 1984-06-29 1984-06-29 Integrated waveguide type optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13430684A JPS6113222A (en) 1984-06-29 1984-06-29 Integrated waveguide type optical element

Publications (2)

Publication Number Publication Date
JPS6113222A JPS6113222A (en) 1986-01-21
JPH0583889B2 true JPH0583889B2 (en) 1993-11-30

Family

ID=15125205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13430684A Granted JPS6113222A (en) 1984-06-29 1984-06-29 Integrated waveguide type optical element

Country Status (1)

Country Link
JP (1) JPS6113222A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164710A (en) * 1989-11-24 1991-07-16 Furukawa Electric Co Ltd:The Semiconductor light guide part
JPH03225325A (en) * 1990-01-31 1991-10-04 Furukawa Electric Co Ltd:The Light guide parts of semiconductor
JPH0572505A (en) * 1991-09-12 1993-03-26 Fujitsu Ltd Electric field absorption type optical modulating circuit
US11340512B2 (en) * 2020-04-27 2022-05-24 Raytheon Bbn Technologies Corp. Integration of electronics with Lithium Niobate photonics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245296A (en) * 1975-10-07 1977-04-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductive phototransmission pass and semiconductor emission devic e used it
JPS57179819A (en) * 1981-04-28 1982-11-05 Ibm Bus system
JPS5923303A (en) * 1982-07-29 1984-02-06 Nec Corp Composite optical integrated device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245296A (en) * 1975-10-07 1977-04-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductive phototransmission pass and semiconductor emission devic e used it
JPS57179819A (en) * 1981-04-28 1982-11-05 Ibm Bus system
JPS5923303A (en) * 1982-07-29 1984-02-06 Nec Corp Composite optical integrated device

Also Published As

Publication number Publication date
JPS6113222A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
CA2080672C (en) Vertically-coupled arrow modulators or switches on silicon
KR101157374B1 (en) Method and apparatus for high speed silicon optical modulation using pn diode
US8737772B2 (en) Reducing optical loss in an optical modulator using depletion region
US6778751B2 (en) Optical modulator and photonic semiconductor device
JP3839710B2 (en) Semiconductor optical modulator, Mach-Zehnder optical modulator, and optical modulator integrated semiconductor laser
JPH0583889B2 (en)
JPS60249117A (en) Waveguide type optical element
CA2267018C (en) Optical wavelength converter with active waveguide
JP2000162657A (en) Optical component based on semiconductor optical amplifier having few independent electrodes
JP2005331947A (en) Electroabsorption modulator and method of making the same
JP3001365B2 (en) Optical semiconductor element and optical communication device
US11435603B2 (en) TFP optical transition device and method
JPH0760237B2 (en) Waveguide type optical switch
WO2021001918A1 (en) Optical modulator
JP4280316B2 (en) Waveguide type semiconductor optical functional device
JPH0719001B2 (en) Semiconductor optical switch
JPS5913724B2 (en) light control circuit
US20040184712A1 (en) Optical switch
JPS60173519A (en) Semiconductor optical switch
JPH02298923A (en) Semiconductor optical switch
JPH03225325A (en) Light guide parts of semiconductor
JPS61270726A (en) Waveguide type optical gate switch
JPH0430115A (en) Semiconductor optical modulator
JPH04291318A (en) Optical modulator and integrated light source using the same
JPH04163986A (en) Semiconductor surface type optical modulator element