JPH0583881A - Solar energy utilization system - Google Patents
Solar energy utilization systemInfo
- Publication number
- JPH0583881A JPH0583881A JP3239305A JP23930591A JPH0583881A JP H0583881 A JPH0583881 A JP H0583881A JP 3239305 A JP3239305 A JP 3239305A JP 23930591 A JP23930591 A JP 23930591A JP H0583881 A JPH0583881 A JP H0583881A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- battery
- solar
- load
- commercial power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Direct Current Feeding And Distribution (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】太陽エネルギ、特に、太陽電池発
電の利用分野は法的規制の緩和と相俟って、近年急速な
進歩を遂げつつある。しかし、環境破壊のない無限エネ
ルギと言われながら、自然エネルギの欠点とも言える、
持続して安定な利用が困難なことから、需要の伸び悩み
もあった。とはいえ、我国独特の気候風土と住宅の近代
化の中で、空調設備の普及は目覚ましく、夏場の電力需
給バランスが崩れつつある。このような観点から、電気
事業者にとっても、電力ピークの大幅緩和に役立つ太陽
エネルギ利用システムの開発に努力を傾注している。[Industrial application] The field of application of solar energy, especially solar cell power generation, has been rapidly advancing in recent years in combination with the relaxation of legal regulations. However, even though it is said to be infinite energy with no environmental damage, it can also be said to be a drawback of natural energy.
Demand was sluggish due to the difficulty of sustainable and stable use. However, due to the climate climate unique to Japan and the modernization of housing, the spread of air-conditioning systems has been remarkable, and the power supply and demand balance in the summer is being disrupted. From this point of view, electric utilities are also making efforts to develop a solar energy utilization system that can significantly reduce power peaks.
【0002】太陽エネルギ利用システムを本発明のよう
に構成することにより、夏場の電力ピーク緩和に寄与す
るものである。By constructing a solar energy utilization system as in the present invention, it contributes to mitigating power peaks in summer.
【0003】[0003]
【従来の技術】太陽電池を用いたエアコンシステムが文
献(第8回太陽光発電システムシンポジウム講演予講
集)に記載されている。この従来例では、商用電力と系
統連係しており、太陽電池の出力は、エアコンの直流部
に入力しており、接続は、太陽電池側のスイッチで行
う。また、太陽電池の出力は電気温水器に接続されてお
り、最大出力を得るために直流電源を併用しタップで切
替え電圧を一定に保つ細工をしている。2. Description of the Related Art An air conditioner system using a solar cell is described in a document (8th Photovoltaic System Symposium Lecture Lecture). In this conventional example, the system is linked to commercial power, the output of the solar cell is input to the DC part of the air conditioner, and the connection is made by a switch on the solar cell side. In addition, the output of the solar cell is connected to an electric water heater, and in order to obtain the maximum output, a DC power source is also used, and a tap is used to keep the switching voltage constant.
【0004】[0004]
【発明が解決しようとする課題】上記従来技術は、太陽
電池素子が高温になることによる素子の劣化や出力低下
及び日射量変化時の最適動作点の変動についての考慮が
不十分であり、また、太陽エネルギの有効利用の面で問
題があった。The above-mentioned prior art is insufficient in considering the deterioration of the solar cell element due to the high temperature of the solar cell element, the output reduction, and the fluctuation of the optimum operating point when the amount of solar radiation changes. However, there was a problem in the effective use of solar energy.
【0005】本発明の目的は、素子の耐久性の向上,素
子のエネルギ変換効率及び利用効率の高効率化並びに太
陽エネルギの有効利用を図り、さらに、低廉価なシステ
ム構成設備を提供することにある。An object of the present invention is to improve the durability of the element, improve the energy conversion efficiency and utilization efficiency of the element, and effectively utilize the solar energy, and further to provide a low-priced system constituent equipment. is there.
【0006】太陽電池の出力は天候により大きく変動す
る。その出力特性は、図2,図3に示すように、日射量
の変化と素子の温度に大きく依存し、出力が最大となる
最適動作点は常に変動する。自然現象ながら、日射量の
低下は出力電流の低下と内部抵抗の増加につながり、最
適負荷条件が変る。一方、素子温度の上昇は、出力電圧
の低下となって現われ、電力を貯蔵する上で大きな障害
となる。さらに、太陽電池の耐久性にも影響する。The output of the solar cell varies greatly depending on the weather. As shown in FIGS. 2 and 3, the output characteristic greatly depends on the change in the amount of solar radiation and the temperature of the element, and the optimum operating point where the output becomes maximum constantly fluctuates. Although it is a natural phenomenon, a decrease in the amount of solar radiation leads to a decrease in output current and an increase in internal resistance, which changes the optimum load conditions. On the other hand, an increase in element temperature appears as a decrease in output voltage, which is a great obstacle in storing electric power. Further, it also affects the durability of the solar cell.
【0007】通常エアコン運転は部屋の温度を何度にす
るか、希望する温度を設定することにより、実際の室温
との差信号を自動的に感知しながら、マイコン等でヒー
トポンプのモータ回転数を制御する方法で行われる。し
たがって、室温と設定温度の差が大きいほど回転数が高
くなり、負荷も大きくなる。例えば、モータ負荷におい
て、日射量変化分を負荷量を変えて吸収しようとして
も、太陽電池に入射する日射量と太陽電池の内部抵抗の
関係が逆比例関係にあるため難しい。すなわち、日射量
が半分になれば、太陽電池の内部抵抗はほぼ二倍にな
り、この時の最適負荷抵抗もほぼ二倍になる。これに反
して、モータ負荷は、太陽電池の出力低下分回転数を落
として吸収しようとすると、むしろ、インピーダンスが
小さくなり、太陽電池の出力をますます下げてしまうと
いう悪循環が起こり、運転継続不能となる。そこで、最
適負荷を得るため定電圧電源設備を太陽電池の出力側に
接続することが考えられるが、とうてい、日射量不足を
補えるものではない。このように負荷は太陽電池の出力
に関係無く決まるので、日射量が減ったような場合、所
要負荷が太陽電池出力を越えることが度々起こる。この
ような時は何等らかの補助動力が要求される。通常バッ
クアップ動力として、商用電源が考えられるが、これと
て、インピーダンスマッチング等,インターフェース上
の問題がある。なぜなら、エアコンのインバータ負荷
は、急激な変動を嫌う反面、日射量は変化が大きいの
で、負荷追尾がしずらい。このため、どうしても、出力
変動の緩和のためバッテリ等電力貯蔵設備が不可欠とな
る。しかし、このバッテリも定電圧電源として作用する
のみで、日射量の変化に伴う太陽電池の出力変動には対
応し得ても、太陽電池素子の温度上昇に伴う出力電圧の
低下には、何等効力がない。In normal air-conditioning operation, the temperature of the room is set to a desired value and the desired temperature is set to automatically detect the difference signal from the actual room temperature, while the microcomputer or the like determines the rotation speed of the heat pump motor. It is done in a controlled way. Therefore, the larger the difference between the room temperature and the set temperature, the higher the rotation speed and the larger the load. For example, in a motor load, it is difficult to absorb a change in solar radiation amount by changing the load amount, because the relationship between the amount of solar radiation incident on the solar cell and the internal resistance of the solar cell is in inverse proportion. That is, if the amount of solar radiation is halved, the internal resistance of the solar cell is almost doubled, and the optimum load resistance at this time is almost doubled. On the other hand, if the motor load tries to absorb the decrease in the number of revolutions of the solar cell by lowering the number of revolutions, the impedance rather decreases, causing a vicious cycle in which the output of the solar cell is further reduced, and operation cannot continue. Becomes Therefore, it is conceivable to connect a constant-voltage power supply facility to the output side of the solar cell in order to obtain the optimum load, but it cannot compensate for the lack of solar radiation. Since the load is thus determined regardless of the output of the solar cell, the required load often exceeds the output of the solar cell when the amount of solar radiation decreases. In such a case, some auxiliary power is required. Usually, a commercial power supply is considered as backup power, but this also has an interface problem such as impedance matching. This is because the inverter load of the air conditioner dislikes sudden changes, but the amount of solar radiation changes greatly, so it is difficult to track the load. For this reason, electric power storage facilities such as batteries are indispensable for mitigating output fluctuations. However, this battery also acts as a constant-voltage power supply, and although it can cope with the output fluctuation of the solar cell due to the change in the amount of solar radiation, it has no effect on the decrease of the output voltage due to the temperature rise of the solar cell element. There is no.
【0008】[0008]
【課題を解決するための手段】ある太陽電池素子温度で
の最適負荷電圧は、図2に示すように、日射量が変化し
ても殆んど変るものではないが、太陽電池の最大出力を
得るための負荷抵抗は、日射量と共に変ることを意味し
ている。このため、例えば、汎用のインバータエアコン
のコンプレッサ駆動モータを太陽電池出力で動かそうと
しても、日射量変化に伴う太陽電池の内部抵抗変化とモ
ータ負荷のインピーダンスマッチングが図られず、運転
不可であることは前述のとおりである。そこで、負荷と
太陽電池の間にバッテリなどのような電力貯蔵設備を設
ける。その結果、バッテリが太陽電池に対して定電圧装
置のように働き、日射量が変化しても、バッテリが過充
電でないかぎり、最適負荷として作用するようになる。
なお、過放電防止は、太陽電池出力電流と負荷電流との
電流差分をDC−ACコンバータなどと比べ電力損失の
極めて小さい、サイリスタとダイオードで構成される商
用電源の整流器で常時充電してやればよい。As shown in FIG. 2, the optimum load voltage at a certain solar cell element temperature does not change even if the amount of solar radiation changes, but the maximum output of the solar cell is It means that the load resistance to obtain changes with the amount of solar radiation. Therefore, for example, even if the compressor drive motor of a general-purpose inverter air conditioner is to be operated with the solar cell output, the internal resistance change of the solar cell due to the change in solar radiation and the impedance matching of the motor load cannot be achieved, and the operation cannot be performed. Is as described above. Therefore, a power storage facility such as a battery is provided between the load and the solar cell. As a result, the battery acts as a constant voltage device for the solar cell, and even if the amount of solar radiation changes, the battery acts as an optimum load unless it is overcharged.
In order to prevent over-discharge, the current difference between the output current of the solar cell and the load current may be constantly charged by a rectifier of a commercial power source composed of a thyristor and a diode, which has extremely small power loss as compared with a DC-AC converter.
【0009】他方、過充電防止は、電圧比較器(リミッ
タ)により、バッテリ電圧を常に計測し、規定電圧以下
の時、商用電圧からの充電を行うものである。ただし、
太陽電池出力の余剰分は、常時バッテリに充電できるよ
うにする。On the other hand, in the overcharge prevention, the battery voltage is constantly measured by a voltage comparator (limiter), and when the voltage is below a specified voltage, charging is performed from a commercial voltage. However,
The surplus of the solar cell output should always be able to charge the battery.
【0010】次に、太陽電池素子温度は、夏場で100
℃を越えることがよくあるが、その問題解決手段を示
す。図3は、日射量100%(入射エネルギ100mW
/cm2)における電圧−電流特性の温度依存度を示す。
出力電流は温度が25℃から100℃に変化しても、それ
ほど変るものではないが、太陽電池素子温度100℃に
おける電圧は、25℃のときの約60%程度に落ちてし
まう。すなわち、約40%の出力低下に相当する。この
ような電圧低下は、いくら日射量が多くても、モータ負
荷の回転不能やバッテリ負荷への充電不能に繋がるもの
である。Next, the temperature of the solar cell element is 100 in summer.
It often exceeds ℃, but the means for solving the problem is shown. Fig. 3 shows the amount of solar radiation 100% (incident energy 100 mW
/ Cm 2 ) shows the temperature dependence of the voltage-current characteristics.
The output current does not change so much even when the temperature changes from 25 ° C to 100 ° C, but the voltage at the solar cell element temperature of 100 ° C drops to about 60% of that at 25 ° C. That is, it corresponds to an output reduction of about 40%. Such a voltage drop leads to the inability to rotate the motor load and the inability to charge the battery load regardless of the amount of solar radiation.
【0011】太陽電池は、通常市販されているもので、
一パネル当たり、温度25℃で、20V前後のものが多
い。インバータ負荷の所要電圧がだいたい220〜26
0Vなので、この電圧を得るには、太陽電池パネル11
〜13枚を直列に接続する必要がある。しかし、温度上
昇による電圧の四割ドロップは90〜100Vに当た
り、太陽電池パネル五枚分に相当する。したがって予備
パネルを置き、温度上昇に伴う電圧ドロップ分を補充す
る方法もあるが、太陽電池の値段がワット当たり一千円
もする現状では、設備費が嵩むばかりで得策でない。そ
ればかりか折角の熱エネルギをわざわざ電気出力の低下
に作用させておくことはエネルギの無駄使いにほかなら
ない。そこで、太陽電池パネル下側に設けた冷却器を温
水器と兼用させ、太陽電池の出力向上と共に二次的に発
生した温水を給湯設備等に注入し有効利用を図る。Solar cells are commercially available,
Most of them are around 20V at a temperature of 25 ° C per panel. The required voltage of the inverter load is 220-26.
Since it is 0V, to obtain this voltage, the solar cell panel 11
It is necessary to connect ~ 13 sheets in series. However, the 40% drop in voltage due to the temperature rise corresponds to 90 to 100 V, which is equivalent to five solar cell panels. Therefore, there is a method of placing a spare panel and replenishing the voltage drop amount due to the temperature rise, but in the current situation where the price of the solar cell is 1,000 yen per watt, the equipment cost only increases and it is not a good idea. Not only that, it is nothing but waste of energy to cause the thermal energy to act on the reduction of the electric output. Therefore, the cooler provided on the lower side of the solar cell panel is also used as a water heater to improve the output of the solar cell and inject hot water generated secondarily into hot water supply equipment and the like for effective use.
【0012】太陽電池は、もともと野晒しで使用される
ため、完全防水構造でできており、冷却ジャケット方式
にして、水にジャブ漬けしても電気的に問題はない。し
かし、電極引き出し端子部が、通常パネル裏面に取付け
られているので、ここでは、ポリエチレンパイプ等、絶
縁パイプをパネル裏面に接着取付ける構造を採用した。
このように冷却して温度を下げることにより、太陽電池
の出力向上はもとより、防水用絶縁材等太陽電池構成材
の劣化や膨潤が防げ、格段の長寿命化も図れる。Since the solar cell is originally used by being exposed to the field, it has a completely waterproof structure, and there is no electrical problem even if it is made into a cooling jacket system and soaked in water. However, since the electrode lead-out terminal portion is usually attached to the rear surface of the panel, a structure in which an insulating pipe such as a polyethylene pipe is adhesively attached to the rear surface of the panel is adopted here.
By cooling and lowering the temperature in this way, not only the output of the solar cell is improved, but also deterioration and swelling of the solar cell constituent material such as a waterproof insulating material can be prevented and the life can be remarkably extended.
【0013】[0013]
【作用】(1) 冷却設備がない場合、太陽電池素子温度
は夏場など100℃を越えることがあり、40%近い大
幅な出力ダウンを招く、しかし、ヒートパイプ又は冷水
配管による冷却設備のうち、低コストの冷水配管設備
で、太陽電池の出力と耐久性の向上という目的は十分達
成される。(1) If there is no cooling equipment, the temperature of the solar cell element may exceed 100 ° C in summer, leading to a drastic output reduction of nearly 40%. However, among the cooling equipment using heat pipes or cold water piping, With the low-cost chilled water piping system, the objective of improving the output and durability of the solar cell is sufficiently achieved.
【0014】(2) 太陽電池出力にインバータエアコン
負荷を接いだ場合、インバータが電圧変動を極端に嫌う
もので、電力貯蔵設備としてバッテリを用いることによ
り、日射量変化に伴う大幅な電力変動を吸収し、常に最
適負荷条件としての出力が得られる。(2) When a solar cell output is connected to an inverter air conditioner load, the inverter extremely dislikes voltage fluctuations. By using a battery as power storage equipment, a large amount of power fluctuations due to changes in the amount of solar radiation is caused. It absorbs and always obtains the output as the optimum load condition.
【0015】(3) リミッタ変換器により、過充・放電
防止が可能なため、通常の使用状態のバッテリに比べ寿
命を延ばすこともできる。(3) Since the limiter converter can prevent overcharging / discharging, the life of the battery can be extended as compared with a battery in normal use.
【0016】(4) 太陽電池素子の適温制御のほか、バ
ッテリの充放電電流の適正化により、日射量変動時に
も、最適動作点での負荷追従制御が可能となる。(4) In addition to the appropriate temperature control of the solar cell element, by optimizing the charging / discharging current of the battery, load follow-up control at the optimum operating point is possible even when the amount of solar radiation changes.
【0017】[0017]
【実施例】図1に太陽電池,電力貯蔵設備,負荷設備な
どで構成される太陽エネルギ利用システムの一実施例を
示す。EXAMPLE FIG. 1 shows an example of a solar energy utilization system including a solar cell, electric power storage equipment, load equipment and the like.
【0018】1は太陽電池パネルで素子温度25℃にお
いて、一パネル当たり、定格電圧22.5V,定格電流
2.84Aのもの12枚直列に接いだもの二組を並列接
続して構成している。太陽電池裏面には、冷却水出入口
パイプ2,3と連結して温水器を兼ねた冷却パイプ部を
形成している。コントロール弁4と太陽電池温度測定用
温度計5の温度信号をもとに、太陽電池パネル最終段出
口水温を風呂等に利用可能な42℃程度に制御できる。Reference numeral 1 is a solar cell panel having an element temperature of 25 ° C., and each panel has a rated voltage of 22.5 V and a rated current of 2.84 A. There is. On the back surface of the solar cell, a cooling pipe portion that also functions as a water heater is formed by connecting with the cooling water inlet / outlet pipes 2 and 3. Based on the temperature signals of the control valve 4 and the thermometer 5 for measuring the temperature of the solar cell, the outlet water temperature of the final stage of the solar cell panel can be controlled to about 42 ° C., which can be used in a bath or the like.
【0019】一方、太陽電池の正負電極端からの出力
は、逆流防止ダイオード15aと電流計(シャント抵
抗)6を経由して、電力貯蔵設備7(例えば最も廉価な
大衆乗用車用バッテリ12V×20個直列接続でよい)
に接続される。さらに、負荷電流計(シャント抵抗)8
と逆流防止ダイオード15bを経て、負荷設備9(例え
ばインバータエアコンの直流部)に入力される。負荷の
電流帰還路もバッテリ7を介在した形で太陽電池1に接
続される。変換器10は、シャント抵抗6,8の差電圧
信号を取り出すためのもので、この信号により、サイリ
スタ(ダイオードを含む)11と商用電源12の回路電
流を制御して、太陽電池電流の負荷電流に対する不足電
流分が電力貯蔵設備であるバッテリ7に充電される。電
圧計13は、バッテリ電圧が太陽電池電圧より高くなら
ないようにするためのもので、この電圧信号とリミッタ
14との電圧比較をもって太陽電池電流と負荷電流の差
電流分制御とは別に、サイリスタ11の電流のオン,オ
フ制御もできるようにしている。このような構成によ
り、太陽電池側より見たバッテリ及びエアコンなどの負
荷は、日射量の変化時も常に最適負荷と見なすことがで
きる。On the other hand, the output from the positive and negative electrode terminals of the solar cell is passed through the backflow prevention diode 15a and the ammeter (shunt resistance) 6 and the power storage facility 7 (for example, the cheapest mass-use passenger car battery 12V × 20 pieces). Series connection is acceptable)
Connected to. In addition, load ammeter (shunt resistance) 8
Then, it is input to the load equipment 9 (for example, the DC part of the inverter air conditioner) via the backflow prevention diode 15b. The current return path of the load is also connected to the solar cell 1 with the battery 7 interposed. The converter 10 is for taking out the voltage difference signal between the shunt resistors 6 and 8, and controls the circuit current of the thyristor (including the diode) 11 and the commercial power supply 12 by this signal to load the solar cell current. The shortage of current corresponding to is charged in the battery 7, which is a power storage facility. The voltmeter 13 is for preventing the battery voltage from becoming higher than the solar cell voltage, and by comparing the voltage signal of this voltage signal with the limiter 14, the thyristor 11 is controlled separately from the difference current component control of the solar cell current and the load current. It is also possible to control the on / off of the current. With such a configuration, the load of the battery and the air conditioner viewed from the solar cell side can be always regarded as the optimum load even when the amount of solar radiation changes.
【0020】[0020]
【発明の効果】本発明は、以上説明したように構成され
るので、以下に記載するような効果を奏する。Since the present invention is constructed as described above, it has the following effects.
【0021】太陽電池温度の極端な上昇を抑えることが
できるので、太陽電池構成材の劣化、特に接着材の膨
潤,剥離が防止でき、耐久性の向上につながる。また、
電圧低下が防止されるため、常に最適負荷条件で出力が
取り出せるので、高効率化が図られる。すなわち、太陽
電池出力は日射量の大小に拘らず常に最大電力を負荷あ
るいは電力貯蔵設備に供給が可能となり、効率がよくな
る。熱エネルギの利用を含めると最大で50〜60%エ
ネルギ向上が図られる。また、従来の太陽エネルギ利用
システムに比べて低コスト設備でありながら、構成材の
劣化が小さくなるので長寿命化が図られる。バッテリの
充放電率が常にバランス(消費電力と供給電力を一致さ
せる)により、蓄電池の寿命も長くなる。Since it is possible to suppress an extreme rise in the temperature of the solar cell, it is possible to prevent the deterioration of the constituent material of the solar cell, especially the swelling and peeling of the adhesive material, which leads to the improvement of the durability. Also,
Since the voltage drop is prevented, the output can always be taken out under the optimum load condition, so that the efficiency can be improved. That is, the solar cell output can always supply the maximum power to the load or the power storage facility regardless of the amount of solar radiation, and the efficiency is improved. When the utilization of heat energy is included, the energy can be improved by 50 to 60% at the maximum. Further, as compared with the conventional solar energy utilization system, the cost of the equipment is low, but the deterioration of the constituent materials is small, so that the service life can be extended. Since the charge / discharge rate of the battery is always balanced (power consumption and supply power are matched), the life of the storage battery is extended.
【図1】本発明を太陽エネルギ利用システムに適用した
場合の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment when the present invention is applied to a solar energy utilization system.
【図2】入射エネルギ密度をパラメータとした場合の太
陽電池の電流−電圧特性を示す説明図。FIG. 2 is an explanatory diagram showing current-voltage characteristics of the solar cell when the incident energy density is used as a parameter.
【図3】入射エネルギ密度を一定とし、温度をパラメー
タとした時の太陽電池の電流−電圧特性を示す説明図。FIG. 3 is an explanatory diagram showing current-voltage characteristics of the solar cell when the incident energy density is constant and the temperature is a parameter.
1…温水器兼用の太陽電池パネル、4…コントロール
弁、5…温度計、7…電力貯蔵設備、6,8…電流計、
9…負荷設備、10…変換器、11…サイリスタ、12
…商用電源、14…リミッタ、15a,15b…逆流防
止サイリスタ。1 ... Solar cell panel also serving as a water heater, 4 ... control valve, 5 ... thermometer, 7 ... power storage facility, 6,8 ... ammeter,
9 ... Load equipment, 10 ... Converter, 11 ... Thyristor, 12
... commercial power supply, 14 ... limiters, 15a, 15b ... backflow prevention thyristors.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H02J 1/00 304 H 7373−5G 3/38 G 7373−5G 7/35 H 9060−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication H02J 1/00 304 H 7373-5G 3/38 G 7373-5G 7/35 H 9060-5G
Claims (4)
た太陽電池発電システムにおいて、常に、太陽電池の最
適動作点で発電電力の利用が可能となるように、前記商
用電力系統に整流器を介して接続した電力貯蔵設備と、
太陽電池パネル下側に太陽電池冷却設備を具備したこと
を特徴とする太陽エネルギ利用システム。1. In a solar cell power generation system in which a solar cell system and a commercial power system are connected in parallel, a rectifier is provided to the commercial power system so that the generated power can always be used at an optimum operating point of the solar cell. Connected electricity storage facility,
A solar energy utilization system comprising a solar cell cooling facility below a solar cell panel.
で商用電力を供給するための太陽電池と負荷との電流差
変換器出力信号により、商用電源用サイリスタを制御す
ることを特徴とする太陽エネルギ利用システム。2. A thyristor for commercial power supply is controlled by a current difference converter output signal between a solar cell and a load for supplying commercial power in an optimum state according to a load state and an amount of stored electricity. Solar energy utilization system.
設備に対する過充電及び過放電を防止するためのリミッ
タを具備した太陽エネルギ利用システム。3. The solar energy utilization system according to claim 1, further comprising a limiter for preventing overcharge and overdischarge of the power storage facility.
可能となるように太陽電池パネル下側に具備した太陽電
池冷却設備が温水器を兼ねることを特徴とする太陽エネ
ルギ利用システム。4. A solar energy utilization system characterized in that the solar cell cooling equipment provided below the solar cell panel also serves as a water heater so that the generated power can be utilized at the optimum operating point of the solar cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3239305A JPH0583881A (en) | 1991-09-19 | 1991-09-19 | Solar energy utilization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3239305A JPH0583881A (en) | 1991-09-19 | 1991-09-19 | Solar energy utilization system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0583881A true JPH0583881A (en) | 1993-04-02 |
Family
ID=17042746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3239305A Pending JPH0583881A (en) | 1991-09-19 | 1991-09-19 | Solar energy utilization system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0583881A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0789405A2 (en) | 1996-02-07 | 1997-08-13 | Toyota Jidosha Kabushiki Kaisha | Method of cooling solar cells |
US6005185A (en) * | 1996-12-25 | 1999-12-21 | Toyota Jidosha Kabushiki Kaisha | Coolant sealing structure for a solar cell |
US6806415B2 (en) | 2000-11-10 | 2004-10-19 | Canon Kabushiki Kaisha | Method for controlling a solar power generation system having a cooling mechanism |
JP2006032674A (en) * | 2004-07-16 | 2006-02-02 | Sanyo Electric Co Ltd | Solar energy generation apparatus and heat pump apparatus using it |
JP2009141088A (en) * | 2007-12-06 | 2009-06-25 | National Institute Of Advanced Industrial & Technology | Temperature control system of solar-battery module |
JP2010129677A (en) * | 2008-11-26 | 2010-06-10 | Sharp Corp | Photovoltaic power generation system and control program of the same |
KR20110117805A (en) * | 2010-04-22 | 2011-10-28 | 삼성전자주식회사 | Apparatus and method for charging in portable terminal using a solar cell |
JP2013527613A (en) * | 2010-05-18 | 2013-06-27 | エスエムエー ソーラー テクノロジー アーゲー | Photovoltaic system and method for diagnosing contact of apparatus |
WO2013157589A1 (en) * | 2012-04-18 | 2013-10-24 | 株式会社 東芝 | Optical power generation system and electrical storage apparatus |
CN105854754A (en) * | 2016-06-06 | 2016-08-17 | 无锡市翱宇特新科技发展有限公司 | Solar photovoltaic heating reaction device |
CN117249506A (en) * | 2023-11-15 | 2023-12-19 | 珠海格力电器股份有限公司 | Photovoltaic air conditioning system and control method thereof |
-
1991
- 1991-09-19 JP JP3239305A patent/JPH0583881A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0789405A2 (en) | 1996-02-07 | 1997-08-13 | Toyota Jidosha Kabushiki Kaisha | Method of cooling solar cells |
US6005185A (en) * | 1996-12-25 | 1999-12-21 | Toyota Jidosha Kabushiki Kaisha | Coolant sealing structure for a solar cell |
DE19756234C2 (en) * | 1996-12-25 | 2001-10-18 | Toyota Motor Co Ltd | Coolant-enclosing arrangement for a solar cell |
US6806415B2 (en) | 2000-11-10 | 2004-10-19 | Canon Kabushiki Kaisha | Method for controlling a solar power generation system having a cooling mechanism |
US7754963B2 (en) | 2000-11-10 | 2010-07-13 | Canon Kabushiki Kaisha | Solar power generation system having cooling mechanism |
JP2006032674A (en) * | 2004-07-16 | 2006-02-02 | Sanyo Electric Co Ltd | Solar energy generation apparatus and heat pump apparatus using it |
JP2009141088A (en) * | 2007-12-06 | 2009-06-25 | National Institute Of Advanced Industrial & Technology | Temperature control system of solar-battery module |
JP2010129677A (en) * | 2008-11-26 | 2010-06-10 | Sharp Corp | Photovoltaic power generation system and control program of the same |
KR20110117805A (en) * | 2010-04-22 | 2011-10-28 | 삼성전자주식회사 | Apparatus and method for charging in portable terminal using a solar cell |
JP2013527613A (en) * | 2010-05-18 | 2013-06-27 | エスエムエー ソーラー テクノロジー アーゲー | Photovoltaic system and method for diagnosing contact of apparatus |
WO2013157589A1 (en) * | 2012-04-18 | 2013-10-24 | 株式会社 東芝 | Optical power generation system and electrical storage apparatus |
JP2013222661A (en) * | 2012-04-18 | 2013-10-28 | Toshiba Corp | Photovoltaic power generation system and power storage device |
TWI500203B (en) * | 2012-04-18 | 2015-09-11 | Toshiba Kk | Photovoltaic power generation system and power storage device |
CN105854754A (en) * | 2016-06-06 | 2016-08-17 | 无锡市翱宇特新科技发展有限公司 | Solar photovoltaic heating reaction device |
CN117249506A (en) * | 2023-11-15 | 2023-12-19 | 珠海格力电器股份有限公司 | Photovoltaic air conditioning system and control method thereof |
CN117249506B (en) * | 2023-11-15 | 2024-02-20 | 珠海格力电器股份有限公司 | Photovoltaic air conditioning system and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5824614B2 (en) | Charge / discharge system | |
US20120094151A1 (en) | Battery management system and method thereof, and power storage apparatus using the same | |
JPWO2003034523A1 (en) | Home fuel cell system | |
Harrington et al. | Battery charge controller characteristics in photovoltaic systems | |
CN114402526B (en) | Device, method and apparatus for maximizing charging current by series-parallel hybrid connection of photovoltaic arrays using branching | |
JPH0583881A (en) | Solar energy utilization system | |
US6002220A (en) | Electric power storage air-conditioning system | |
JPH0749721A (en) | Protection device for electric apparatus using solar battery as power supply | |
JPH05252671A (en) | Control system for photovoltaic power generation | |
JPS60109728A (en) | Fuel battery/battery hybrid system with battery charging level control | |
JP3530519B2 (en) | Voltage equalizing device for power storage device and power storage system provided with the device | |
JP2015065770A (en) | Power storage system | |
US10826320B2 (en) | Solar power system | |
Todd | Controls for small wind/solar/battery systems | |
CN201699463U (en) | Welder storage battery charging and power supplying device | |
JPH10117448A (en) | Power storage type air-conditioning system | |
Siemer et al. | TCO analysis for Lithium Ion Batteries in BTS applications | |
US20120061152A1 (en) | Method for generating electricity from solar panels for emergency and utility vehicles | |
Loois et al. | Technical set-up and use of PV diesel systems for houseboats and barges | |
CN214255742U (en) | Charger with water replenishing pump | |
CN113437743B (en) | power supply system | |
Chacko et al. | Design Aspects of Solar PV Modules, Selection of Battery, and Protection Schemes | |
JPH0340062Y2 (en) | ||
JPH0984278A (en) | Uninterruptible solar power source | |
JPH0433529A (en) | Power storage type power supply device |