JPH0583117B2 - - Google Patents

Info

Publication number
JPH0583117B2
JPH0583117B2 JP1032613A JP3261389A JPH0583117B2 JP H0583117 B2 JPH0583117 B2 JP H0583117B2 JP 1032613 A JP1032613 A JP 1032613A JP 3261389 A JP3261389 A JP 3261389A JP H0583117 B2 JPH0583117 B2 JP H0583117B2
Authority
JP
Japan
Prior art keywords
radiation
irradiation
coolant
container
stock solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1032613A
Other languages
Japanese (ja)
Other versions
JPH02212597A (en
Inventor
Seiichi Wada
Masakazu Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP3261389A priority Critical patent/JPH02212597A/en
Publication of JPH02212597A publication Critical patent/JPH02212597A/en
Publication of JPH0583117B2 publication Critical patent/JPH0583117B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、金属加工油剤中に発生する微生物を
放射線を照射して殺菌する方法に関するものであ
る。 従来技術 金属の切削、圧延、研磨及び熱処理等の金属加
工をする際に、潤滑や冷却等の目的で金属加工油
剤(以下クーラントという。)が用いられており、
当該クーラントとしては、エマルジヨン系、ソリ
ブル系及びソリユーシヨン系等の水溶性油剤が多
く用いられている。又上記クーラントにあつて
は、水や有機物である油分及び金属加工時の発生
熱や夏期等の温度上昇による適度な温度等の微生
物が増殖するに適した条件が整つているため悪臭
の発生、金属加工障害及び金属の腐食等の問題が
生起する。従来上記問題を防止する対策として
は、空気を吹き込んで嫌気性菌の増殖を抑えるエ
アレーシヨン法、オゾン含有空気の吹き込みによ
るオゾン殺菌法、スチームや電熱を用いて加熱す
る加熱殺菌法及び防腐防黴剤を添加する薬剤添加
法等が用いられている。 発明が解決しようとする課題 上記従来のクーラントの殺菌方法にあつて、エ
アレーシヨン法、オゾン殺菌法及び加熱殺菌法に
おいては、設備費や運転経費が嵩むことや菌の増
殖抑制効果及び効果持続性等が低い欠点があり、
又加熱殺菌法ではエマルジヨン系クーラントにお
いてエマルジヨンを破壊する恐れもある。薬剤添
加法においては、クーラント中の界面活性剤等の
添加剤と反応し易い事、特定の薬剤は特定の菌に
のみしか増殖抑制効果がない事及び効果持続性が
短い等の欠点があり、又薬剤の蒸発や飛散による
作業環境の汚染もある。本発明は上記従来方法の
欠点を解消すくなされたもので、微生物の種類に
かかわらず殺菌及び増殖抑制効果が得られ、又安
定した効果持続性があり、クーラント自体が変
性、変質することがないクーラント中に発生する
微生物の殺菌方法を提供することを目的として成
されたものである。 課題を解決するための手段 本発明は、クーラント中に発生する微生物を放
射線を照射して殺菌する方法において、照射線量
率40〜10000キロレントゲン/時(KR/Hr)、全
吸収線量10〜5000キロラド(Krad)の殺菌条件
で連続的に処理することを特徴としている。尚、
上記において、照射線量率とは、単位時間当りの
照射線量、全吸収線量とは、クーラントが照射部
で1回に吸収した吸収線量の累加吸収線量をい
う。上記において、クーラントを照射部へ連続的
に循環通過させて放射線を照射するのが放射線遮
蔽や操作性から好ましく、又放射線源として60Co
を用いるのがよい。 以下本発明の方法を図面に基づいて詳述する。
第1図は本発明の方法の一実施例に適用した装置
の図で連続循環式装置の系統図である。第2図は
比較例の回分式装置の断面図である。第3図は連
続循環式に用いる好適な照射容器の断面図であ
る。第1図において1はクーラントの原液Aを一
定温度に保つて貯留する恒温槽、当該恒温槽1は
液温を均一にすべく温度コントローラ6及び攪拌
機7を具備している。2は上記恒温槽1から原液
Aを抜き出し供給流路8から照射部へ供給する供
給ポンプであり、原液Aの供給量は供給流路8に
具備した流量調節弁3a及びバイパス流路9に具
備した流量調節弁3bにより調節される。4は鉛
等の照射部遮蔽材で囲撓し原液Aに放射線を照射
する照射容器であり、当該容器4内に螺旋状とさ
れた供給流路8と、当該供給流路8の外側から放
射線を照射すべく設けた線源5を具備している。
10は照射処理された原液Aを恒温槽1へ循環す
る循環流路である。比較例の回分式の第2図にお
いて、4の照射容器内には原液Aを充填器する原
液容器11と、当該原液容器11の外側から放射
線を照射すべく設けられた線源5を具備してい
る。第3図は本出願人が先に出願した実願昭63−
83019号の一実施例の放射線処理容器であり、入
口側流路12及び出口側流路13とをそれぞれ複
数回屈曲した原液Aの流通流路中間部に線源5を
配設し、上記流通流路の外周部及び線源5を鉛製
の胴部及び蓋部閉囲撓した照射容器である。上記
照射容器4を本発明の実施に用いることにより、
処理作業が簡素化され、且つ作業員の被曝を大巾
に低減でき安全性も充分確保することができるた
め大変好適な照射容器である。クーラント中に発
生する微生物を放射線照射して殺菌処理する方法
において、まず連続循環式にあつては、恒温槽1
中で一定温度に保たれた原液Aは供給ポンプ2で
照射容器4中に供給され一定の滞留時間を持つて
線源5により放射線を照射されたのち循環流路1
0から恒温槽1へ戻される。上記滞留時間即ち原
液Aの流速調節は流路調節弁3a,3bを適宜調
節することにより行なうことができる。又比較例
の回分式にあつては一定量の原液Aを原液容器1
1内に充填し、照射容器4内の線源5と外側面が
対向する定位置に配設することにより行なわれ
る。上記において線源5としては線源容量5〜50
キロキユリー(Kci)、好ましくは10〜30Kiの
60Co線源を用いるのがよい。線源容量5Kci以下
であると放射線が弱過ぎて殺菌効果が少なく、処
理時間もかかる、又50Kci以上であると放射線の
遮蔽が大規模となり照射容器の運搬や設備も大規
模となる。照射する放射線の照射線量率は1時間
当り40〜10000KR、好ましくは500〜2000KR、
又原液Aが照射部において吸収する全吸収線量は
10〜5000Krad、好ましくは50〜1000Kradとする
のがよい。照射線量率が40KR/Hr以下又は全吸
収線量が10Krad以下であると殺菌効果が少なく、
増殖抑制効果も持続しにくい。照射線量率が
10000KR/Hr以上又は全吸収線量が5000Krad以
上では殺菌効果は上昇するが菌体の増殖抑制によ
る悪臭防止、金属の加工障害防止等の目的からす
ると無駄であり、又クーラント自体の変性や変質
を来す恐れがある。 実施例 1 使用済クーラントを第1図の連続循環式装置を
用いて殺菌テストを行なつた結果を第1表に示
す。尚線源としては線源容量20Kciの60Co線源を
用いた。生菌数の測定は下記条件による寒天平板
塗抹法を用いた。 培養条件 好気的培養 培地;トリ プチケース ソイ ア
ガ(Try Pticase Soy Agar) 温度;30〜32℃ 時間;1〜2日間 比較例 1 使用済クーラントを第2図の回分式装置を用い
て殺菌テストを行なつた結果を第2表に示す。尚
線源としては線源容量20Kciの60Co線源を用い
た。生菌の測定は実施例1に同じ。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for sterilizing microorganisms generated in metalworking fluids by irradiating them with radiation. Prior Art When performing metal processing such as metal cutting, rolling, polishing, and heat treatment, metal processing fluids (hereinafter referred to as coolants) are used for purposes such as lubrication and cooling.
As the coolant, water-soluble oil agents such as emulsion type, soluble type, and solution type are often used. In addition, the above-mentioned coolant has suitable conditions for the growth of microorganisms, such as water, organic oil, heat generated during metal processing, and a moderate temperature due to temperature rises in summer, etc. Problems such as metal processing failure and metal corrosion occur. Conventional measures to prevent the above problems include the aeration method by blowing air to suppress the growth of anaerobic bacteria, the ozone sterilization method by blowing ozone-containing air, the heat sterilization method by heating using steam or electric heat, and the preservative and antifungal agent. A drug addition method that adds . Problems to be Solved by the Invention Among the conventional coolant sterilization methods described above, the aeration method, ozone sterilization method, and heat sterilization method have problems such as increased equipment and operating costs, bacterial growth inhibiting effect, and effect sustainability. has the disadvantage of low
Furthermore, the heat sterilization method may destroy the emulsion in an emulsion-based coolant. The drug addition method has disadvantages such as the tendency to react with additives such as surfactants in the coolant, the fact that certain drugs have a growth inhibiting effect only on certain bacteria, and the duration of the effect is short. There is also contamination of the working environment due to evaporation and scattering of chemicals. The present invention has been made to eliminate the drawbacks of the conventional methods described above, and it has a bactericidal and growth inhibiting effect regardless of the type of microorganism, has a stable effect, and does not cause the coolant itself to denature or change in quality. This was developed with the aim of providing a method for sterilizing microorganisms generated in coolant. Means for Solving the Problems The present invention provides a method for sterilizing microorganisms generated in a coolant by irradiating them with radiation, at an irradiation dose rate of 40 to 10,000 kiloroentgen/hour (KR/Hr) and a total absorbed dose of 10 to 5,000. It is characterized by continuous processing under Krad sterilization conditions. still,
In the above, the irradiation dose rate refers to the irradiation dose per unit time, and the total absorbed dose refers to the cumulative absorbed dose of the absorbed dose absorbed by the coolant at one time in the irradiation section. In the above, it is preferable to irradiate radiation by continuously circulating the coolant to the irradiation part from the viewpoint of radiation shielding and operability .
It is better to use The method of the present invention will be explained in detail below based on the drawings.
FIG. 1 is a diagram of an apparatus applied to an embodiment of the method of the present invention, and is a system diagram of a continuous circulation type apparatus. FIG. 2 is a cross-sectional view of a batch-type device as a comparative example. FIG. 3 is a cross-sectional view of a preferred irradiation container used in a continuous circulation system. In FIG. 1, reference numeral 1 denotes a constant temperature tank in which a coolant stock solution A is maintained and stored at a constant temperature, and the constant temperature tank 1 is equipped with a temperature controller 6 and an agitator 7 to make the liquid temperature uniform. 2 is a supply pump that extracts the stock solution A from the constant temperature bath 1 and supplies it to the irradiation unit from the supply channel 8; The flow rate is adjusted by the flow control valve 3b. Reference numeral 4 denotes an irradiation container that is surrounded by an irradiation part shielding material such as lead and irradiates the raw solution A with radiation, and there is a spiral supply channel 8 in the container 4, and a supply channel 8 in which radiation is supplied from the outside of the supply channel 8. It is equipped with a radiation source 5 provided to irradiate.
Reference numeral 10 denotes a circulation channel for circulating the irradiated stock solution A to the constant temperature bath 1. In FIG. 2 of the batch-type comparative example, the irradiation container 4 is equipped with a stock solution container 11 filled with stock solution A, and a radiation source 5 provided to irradiate radiation from the outside of the stock solution container 11. ing. Figure 3 shows the Utility Application filed in 1983 by the present applicant.
This is a radiation processing container according to an embodiment of No. 83019, in which a radiation source 5 is disposed in the middle of the flow path for the stock solution A in which the inlet side flow path 12 and the outlet side flow path 13 are each bent multiple times, It is an irradiation container in which the outer periphery of the flow path and the radiation source 5 are enclosed by a lead body and lid. By using the irradiation container 4 for implementing the present invention,
This is a very suitable irradiation container because it simplifies the processing work, greatly reduces radiation exposure to workers, and ensures sufficient safety. In the method of sterilizing microorganisms generated in the coolant by irradiating it with radiation, first of all, in the continuous circulation type,
The stock solution A kept at a constant temperature inside is supplied into the irradiation container 4 by the supply pump 2, and after a certain residence time is irradiated with radiation by the radiation source 5, it is transferred to the circulation channel 1.
0 and returned to constant temperature bath 1. The above residence time, that is, the flow rate of the stock solution A can be adjusted by appropriately adjusting the flow path control valves 3a and 3b. In addition, in the batch method of the comparative example, a certain amount of stock solution A is placed in stock solution container 1.
This is carried out by filling the radiation source 1 into the irradiation container 4 and placing it in a fixed position where the outer surface faces the radiation source 5 in the irradiation container 4. In the above, the radiation source 5 has a radiation source capacity of 5 to 50
Kilokily (Kci), preferably 10-30Ki
It is better to use a 60 Co source. If the radiation source capacity is less than 5Kci, the radiation is too weak, the sterilization effect is low, and the processing time is long.If it is more than 50Kci, the shielding of the radiation will be large-scale, and the transportation of the irradiation container and the equipment will be large-scale. The irradiation dose rate of the radiation to be irradiated is 40 to 10,000 KR per hour, preferably 500 to 2,000 KR,
Also, the total absorbed dose that stock solution A absorbs in the irradiated area is
It is good to set it to 10-5000 Krad, preferably 50-1000 Krad. If the irradiation dose rate is less than 40KR/Hr or the total absorbed dose is less than 10Krad, the sterilization effect will be low;
The antiproliferative effect is also difficult to sustain. The irradiation dose rate
If the total absorbed dose is 10,000KR/Hr or more or the total absorbed dose is 5,000Krad or more, the bactericidal effect will increase, but it is useless for purposes such as preventing bad odors by suppressing the growth of bacteria and preventing metal processing problems, and it may also cause denaturation and deterioration of the coolant itself. There is a risk of Example 1 Table 1 shows the results of a sterilization test on used coolant using the continuous circulation type device shown in FIG. A 60 Co source with a source capacity of 20 Kci was used as the source. The number of viable bacteria was measured using the agar plate smear method under the following conditions. Culture conditions Aerobic culture medium; Try Pticase Soy Agar Temperature: 30-32°C Time: 1-2 days Comparative Example 1 Sterilization test of used coolant using the batch type device shown in Figure 2 The results are shown in Table 2. A 60 Co source with a source capacity of 20 Kci was used as the source. The measurement of viable bacteria was the same as in Example 1.

【表】【table】

【表】 上記表から照射線量率が50KR/Hr及び全吸収
線量が10Krad付近以上になると生菌数の減少、
即ち殺菌及び増殖抑制効果が有ることが判る。嫌
気性菌については測定していないが好気性菌より
も放射線に対し耐性が低いため好気性菌と同様又
はより以上の効果が得られる。 効 果 本発明の金属加工油剤の放射線殺菌方法は下記
効果を奏する。 イ 微生物の種類にかかわらず殺菌及び増殖抑制
効果が得られ、且つ安定した効果持続性があ
る。 ロ 充分な放射線遮蔽が容易に行なえるため、薬
剤を用いた殺菌方法と比較して、作業環境の汚
染が少なく作業員の健康上の害が防止できる。 ハ 使用される装置が簡易なため設備費が少な
く、薬剤コストも削減できる。 ニ 安定した効果が得られるためクーラントの性
状管理が簡素化でき、又金属加工製品の歩留り
を向上できる。
[Table] From the table above, when the irradiation dose rate is 50KR/Hr and the total absorbed dose is around 10Krad or more, the number of viable bacteria decreases.
That is, it can be seen that it has bactericidal and growth inhibiting effects. Although we have not measured anaerobic bacteria, they are less resistant to radiation than aerobic bacteria, so they can be as effective as or even more effective than aerobic bacteria. Effects The radiation sterilization method for metal working fluids of the present invention has the following effects. B. It has a bactericidal and growth-inhibiting effect regardless of the type of microorganism, and has a stable and long-lasting effect. (b) Since sufficient radiation shielding can be easily performed, there is less contamination of the working environment compared to sterilization methods using chemicals, and health hazards to workers can be prevented. C. Because the equipment used is simple, equipment costs are low, and drug costs can also be reduced. D. Since stable effects can be obtained, the property management of the coolant can be simplified and the yield of metal processed products can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例に適用した連
続循環式装置の系統図、第2図は比較例の回分式
装置の断面図である。第3図は連続循環式装置に
おける照射容器の一実施例の断面図である。 1…恒温槽、2…供給ポンプ、3a,3b…流
量調節弁、4…照射容器、5…線源、6…温度コ
ントローラ、7…攪拌機、8…供給流路、9…バ
イパス流路、10…循環流路、11…原液容器、
12…入口側流路、13…出口側流路。
FIG. 1 is a system diagram of a continuous circulation type device applied to an embodiment of the method of the present invention, and FIG. 2 is a sectional view of a batch type device as a comparative example. FIG. 3 is a cross-sectional view of one embodiment of an irradiation container in a continuous circulation system. DESCRIPTION OF SYMBOLS 1... Constant temperature bath, 2... Supply pump, 3a, 3b... Flow rate control valve, 4... Irradiation container, 5... Radiation source, 6... Temperature controller, 7... Stirrer, 8... Supply channel, 9... Bypass channel, 10 ... Circulation channel, 11... Stock solution container,
12... Inlet side flow path, 13... Outlet side flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 金属加工油剤中に発生する微生物を放射線照
射して殺菌する方法において、金属加工油剤を照
射部へ連続的に循環流通させ、放射線源として
60Coを用い、照射線量率40〜10000キロレントゲ
ン/時、全吸収線量10〜5000キロラドの殺菌条件
で照射処理することを特徴とする金属加工油剤の
放射線殺菌方法。
1. In a method of sterilizing microorganisms occurring in metalworking fluids by irradiation, metalworking fluids are continuously circulated to the irradiated area and used as a radiation source.
A method for radiation sterilization of metalworking fluids, which uses 60 Co and is characterized by irradiation treatment under sterilization conditions at an irradiation dose rate of 40 to 10,000 kiloroentgens/hour and a total absorbed dose of 10 to 5,000 kilorads.
JP3261389A 1989-02-14 1989-02-14 Method for radiation sterilization of metal working oil Granted JPH02212597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3261389A JPH02212597A (en) 1989-02-14 1989-02-14 Method for radiation sterilization of metal working oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261389A JPH02212597A (en) 1989-02-14 1989-02-14 Method for radiation sterilization of metal working oil

Publications (2)

Publication Number Publication Date
JPH02212597A JPH02212597A (en) 1990-08-23
JPH0583117B2 true JPH0583117B2 (en) 1993-11-24

Family

ID=12363703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261389A Granted JPH02212597A (en) 1989-02-14 1989-02-14 Method for radiation sterilization of metal working oil

Country Status (1)

Country Link
JP (1) JPH02212597A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010896A (en) * 1991-06-24 2000-01-04 Becton, Dickinson And Company Lyophilized ionizing radiation sterilized microorganisms as an additive for nutrient media for growing bacteria

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135443A (en) * 1973-04-28 1974-12-26
JPS56134152A (en) * 1980-03-17 1981-10-20 Nissan Motor Co Ltd Automatic quality control for cutting fluid
JPS58105000A (en) * 1981-12-17 1983-06-22 Idemitsu Kosan Co Ltd Putrefaction prevention of metal processing oil
JPS6043399A (en) * 1983-08-18 1985-03-07 Oriental Yeast Co Ltd Measurement of amylase activity
JPS61226050A (en) * 1985-03-29 1986-10-07 エナジー・サイエンシーズ,インコーポレーテツド Electron beam irradiation sterilizing method
JPS61257172A (en) * 1985-05-10 1986-11-14 Mitsubishi Electric Corp Sterilization by radiation
JPS63189152A (en) * 1987-02-02 1988-08-04 日本原子力研究所 Sterilization method by radiation
JPS63245494A (en) * 1987-03-31 1988-10-12 Topy Ind Ltd Method of sterilizing water-soluble cutting oil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135443A (en) * 1973-04-28 1974-12-26
JPS56134152A (en) * 1980-03-17 1981-10-20 Nissan Motor Co Ltd Automatic quality control for cutting fluid
JPS58105000A (en) * 1981-12-17 1983-06-22 Idemitsu Kosan Co Ltd Putrefaction prevention of metal processing oil
JPS6043399A (en) * 1983-08-18 1985-03-07 Oriental Yeast Co Ltd Measurement of amylase activity
JPS61226050A (en) * 1985-03-29 1986-10-07 エナジー・サイエンシーズ,インコーポレーテツド Electron beam irradiation sterilizing method
JPS61257172A (en) * 1985-05-10 1986-11-14 Mitsubishi Electric Corp Sterilization by radiation
JPS63189152A (en) * 1987-02-02 1988-08-04 日本原子力研究所 Sterilization method by radiation
JPS63245494A (en) * 1987-03-31 1988-10-12 Topy Ind Ltd Method of sterilizing water-soluble cutting oil

Also Published As

Publication number Publication date
JPH02212597A (en) 1990-08-23

Similar Documents

Publication Publication Date Title
EP2965766B1 (en) System and method for sterilizing a fluid
KR102214680B1 (en) Apparatus for generating activated cleaning fluid
JP5805620B2 (en) Apparatus and method for sterilizing milk fed to calves, etc.
RU2457866C2 (en) Method and device for cosmetic product sterilisation
CN101662961B (en) Method of washing and apparatus for use therein
JP6704448B2 (en) Sterilizer
EP0357238A2 (en) Anti-microbial composition
WO1993013674A1 (en) Process and device for exterminating microorganisms
JPH0583117B2 (en)
YU212684A (en) Process for mechanical and heat treatment of liquid materials including their sterilisation and pasteurisation
EP2407038B1 (en) Method and device for cooling food machines
US1945102A (en) Method of treating food products
EP0819388A1 (en) Apparatus for disinfection in the alimentary industry, comprising an ozonized air generator
WO2022215654A1 (en) Method for treating vegetable
Whittaker et al. The sterilization of milk bottles with calcium hypochlorite
KR20010082909A (en) Apparatus for recycling cutting oil
US3054684A (en) Process and apparatus for treating fluid materials
JP3758927B2 (en) Water sterilization method
JPH04264199A (en) Method for sterilizing water-soluble metal working oil by ultraviolet light
JP6857004B2 (en) Sterilization method
RU2109802C1 (en) Method of bactericide treatment of aqueous lubricating fluids
JP6857005B2 (en) Sterilization method
DE195012C (en)
JP2566041Y2 (en) Food salt water treatment equipment
DE3037540C2 (en) Method and device for sterilizing or disinfecting medical and dental instruments