JPH0582967B2 - - Google Patents

Info

Publication number
JPH0582967B2
JPH0582967B2 JP28099586A JP28099586A JPH0582967B2 JP H0582967 B2 JPH0582967 B2 JP H0582967B2 JP 28099586 A JP28099586 A JP 28099586A JP 28099586 A JP28099586 A JP 28099586A JP H0582967 B2 JPH0582967 B2 JP H0582967B2
Authority
JP
Japan
Prior art keywords
substrate
wiring
cvd
cell
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28099586A
Other languages
Japanese (ja)
Other versions
JPS63133549A (en
Inventor
Yukio Morishige
Fumihiko Uesugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP28099586A priority Critical patent/JPS63133549A/en
Priority to DE87117109T priority patent/DE3787440T2/en
Priority to EP87117109A priority patent/EP0268301B1/en
Priority to US07/123,460 priority patent/US4873413A/en
Publication of JPS63133549A publication Critical patent/JPS63133549A/en
Publication of JPH0582967B2 publication Critical patent/JPH0582967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体集積回路等の製造において用
いられ、レーザ光を利用する配線形成方法及び装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a wiring forming method and apparatus that utilize laser light and are used in the manufacture of semiconductor integrated circuits and the like.

(従来の技術) 近年、半導体プロセスにおいては、レーザを利
用した薄膜形成方法が、プロセスの低温化、マス
クレスプロセスによる工程短縮などをもたらすも
のとして盛んに研究開発が行なわれている。特に
金属や高導電性の半導体をCVD反応により直接
線状に堆積させる直接描画技術は、LSIの配線形
成への応用を指向して盛んに研究されている。こ
の技術は、LSIの設計から試作に至る開発期間を
大幅に短縮する高速配線修正を始め、カスタム
LSIにとつて不可欠な配線のカスタム化など、将
来のLSI配線形成技術の重要なプロセス技術に応
用できるものと期待されている。
(Prior Art) In recent years, in semiconductor processes, research and development have been actively conducted on thin film forming methods using lasers, as they can lower process temperatures and shorten process steps through maskless processes. In particular, direct writing technology, in which metals and highly conductive semiconductors are directly deposited in linear form through CVD reactions, is being actively researched for application to LSI interconnect formation. This technology includes high-speed wiring correction that significantly shortens the development period from LSI design to prototyping, as well as customization.
It is expected that this technology can be applied to important process technologies for future LSI interconnect formation technology, such as the customization of interconnects that are essential for LSIs.

このレーザを利用する直接描画技術では、導電
性物質の堆積に、集光照射されたレーザ光による
基板もしくは堆積した物質の加熱による原料ガス
の熱分解反応を主に利用している。この方法の外
に、紫外レーザ光を用いた光化学分解反応による
導電性物質の堆積方法もあるが、この方法では、
CdやZn等の化学的耐久性に乏しい金属しか良好
な導電性材料の堆積が実現されておらず、この方
法を実際のLSIプロセスに適用することは困難で
ある。そこで、前者の熱分解反応を用いる方法が
専ら用いられており、いつたん堆積した導電性材
料がレーザ光を吸収して生じる発熱による熱分解
反応を利用して、レーザ光の走査方向へ堆積を延
ばすことにより配線を形成していた。これまで
に、ポリSiなどの導電性半導体や、W、Mo等の
低抵抗な高融点金属の堆積が実現されている。例
えば、半導体・集積回路技術第30回シンポジウム
(昭和61年7月)の講演論文集33〜38ページに上
杉等により、光源にArレーザを用い、原料ガス
としてMO(CO)5を用いて、低抵抗のMo線を直
接描画した例が報告されている。この論文によれ
ば、SiO2/Si上のA配線間を比抵抗40μΩcm、、
Aとのコンタク抵抗効率4.1×108Ωcm2のMo線
で配線できた。これらの数値は通常のスパツタ膜
と同等の良好な値であり、レーザ配線プロセス
が、実際のLSIプロセスに十分使い得ることを示
している。
In this direct writing technique using a laser, a thermal decomposition reaction of a raw material gas is mainly used to deposit a conductive material by heating the substrate or the deposited material using focused laser light. In addition to this method, there is also a method of depositing a conductive material by a photochemical decomposition reaction using ultraviolet laser light, but with this method,
Only metals with poor chemical durability such as Cd and Zn have been able to deposit good conductive materials, making it difficult to apply this method to actual LSI processes. Therefore, the former method, which uses a thermal decomposition reaction, is exclusively used, and the thermal decomposition reaction due to the heat generated when the conductive material that has been deposited absorbs the laser beam is used to deposit the material in the scanning direction of the laser beam. Wiring was formed by stretching it. So far, conductive semiconductors such as poly-Si and low-resistance, high-melting-point metals such as W and Mo have been deposited. For example, on pages 33 to 38 of the Proceedings of the 30th Symposium on Semiconductor and Integrated Circuit Technology (July 1986), Uesugi et al. used an Ar laser as the light source and MO(CO) 5 as the raw material gas. An example of direct drawing of low-resistance Mo wire has been reported. According to this paper, the resistivity between the A wirings on S i O 2 /Si is 40 μΩcm,
Wiring with A was possible using Mo wire with a contact resistance efficiency of 4.1×10 8 Ωcm 2 . These values are good values comparable to those of ordinary sputtered films, indicating that the laser wiring process can be fully used in actual LSI processes.

(発明が解決しようとする問題点) この論文を含む従来の直接描画技術では、基板
上のレーザ光の照射パターンがガウシヤンの強度
分布を持つ円形のビームを用いている。この方法
では、細い配線幅を得るためには、基板へ顕著な
熱の流出にもとづく配線幅の拡がりが起きないう
ちにレーザ光の照射位置をずらす、つまり、レー
ザ光の走査速度を早くすることが必要である。一
方、低抵抗の配線に求められる厚い膜を形成する
には、走査速度を遅くすることが望ましい。この
トレードオフのために、従来の方法では、厚い配
線を高速に描画することが困難であつた。例え
ば、先に紹介した論文で得られている配線の描画
速度は、6μm/s程度と遅く、カスタム配線など
への応用で必要な更に高速な配線方法には適用で
きない。従来の方法で、照射パワーを変えずに走
査速度を上げると膜厚が薄くなつたり配線が途切
れたりする。またこの欠点を除くため走査速度を
上げながら同時に照射パワーを上げると配線の中
央部にダメージを生じたり原料ガスの熱分解温度
に達する範囲が配線の横方向へ広がり、線幅が広
がるなどの問題を生じていた。また、走査速度を
上げるために原料の供給量を増やすことが考えら
れるが、この場合には、膜質が劣化し比抵抗が増
加するなどの問題を生じる。このため、従来の方
法では、配線の膜質や、厚み、線幅などの特性を
劣化させることなく、高速な配線形成を行なうこ
とが困難であつた。
(Problems to be Solved by the Invention) In conventional direct writing techniques including this paper, the laser beam irradiation pattern on the substrate uses a circular beam having a Gaussian intensity distribution. In this method, in order to obtain a narrow wiring width, the laser beam irradiation position must be shifted before the wiring width expands due to significant heat leakage to the substrate, that is, the scanning speed of the laser beam must be increased. is necessary. On the other hand, in order to form a thick film required for low-resistance wiring, it is desirable to reduce the scanning speed. Because of this trade-off, it has been difficult to draw thick wiring at high speed using conventional methods. For example, the wiring drawing speed obtained in the paper introduced earlier is slow at about 6 μm/s, and cannot be applied to higher-speed wiring methods required for applications such as custom wiring. In conventional methods, if the scanning speed is increased without changing the irradiation power, the film thickness becomes thinner and the wiring becomes disconnected. In addition, in order to eliminate this drawback, if the scanning speed is increased and the irradiation power is increased at the same time, problems such as damage to the central part of the wiring and expansion of the range in which the thermal decomposition temperature of the raw material gas is reached in the horizontal direction of the wiring, resulting in an increase in the line width. was occurring. Furthermore, it is conceivable to increase the amount of raw material supplied in order to increase the scanning speed, but in this case, problems such as deterioration of film quality and increase in specific resistance arise. For this reason, with conventional methods, it has been difficult to form wiring at high speed without deteriorating characteristics such as film quality, thickness, and line width of the wiring.

また、走査に用いるステージの最小移動距離が
レーザ光のスポツトサイズに近い場合には、ステ
ージの移動に伴うビームのオーバーラツプ領域の
面積が小さくなり、このため基板上の段差部を描
画するときに、配線が途切れたり、配線の厚みが
薄くなるなどの欠点があつた。この欠点は、照射
レーザ光のスポツトサイズよりも十分小さなサブ
μmの最小移動距離を持つステージを使用すれば
解決できるが、ステージが非常に高価であるこ
と、及び性能を維持するために装置の環境にまで
注意が必要となる等の別の問題を発生し、このよ
うなステージの導入は実用上好ましい解決方法で
はない。
Furthermore, if the minimum movement distance of the stage used for scanning is close to the spot size of the laser beam, the area of the beam overlap region due to the movement of the stage will be small, and therefore, when drawing a step on the substrate, There were drawbacks such as the wiring being interrupted and the thickness of the wiring becoming thinner. This drawback can be overcome by using a stage with a minimum travel distance of sub-μm, which is much smaller than the spot size of the irradiated laser beam, but the stage is very expensive and the equipment environment must be Other problems arise, such as the need to pay special attention to

本発明の目的は、この様な従来の問題を解決し
た配線形成方法及び装置を提供することにある。
An object of the present invention is to provide a wiring forming method and apparatus that solves such conventional problems.

(問題点を解決するための手段) 本願の第1の発明によれば、熱解離反応により
導電性物質を堆積する化合物気体を含む雰囲気中
に置かれた基板上に、集光したレーザ光を照射
し、該レーザ光を基板に対し相対的に走査するこ
とにより配線を描画する配線形成方法であつて、
該基板に照射される該レーザ光のパターンが配線
描画方向に細長い形であることを特徴とする方法
が得られる。
(Means for Solving the Problems) According to the first invention of the present application, a focused laser beam is applied onto a substrate placed in an atmosphere containing a compound gas that deposits a conductive substance by a thermal dissociation reaction. A wiring forming method in which wiring is drawn by irradiating and scanning the laser light relative to a substrate,
A method is obtained in which the pattern of the laser beam irradiated onto the substrate is elongated in the wiring drawing direction.

次いで本願の第2の発明によれば、レーザ光源
と、窓を備えたCVDセルと、該レーザ光源の出
射光を該窓を介して該CVDセル内の基板上に集
光して照射する光学系と、熱解離反応により導電
性物質を堆積する化合物ガスを該CVDセルに供
給する原料ガス供給系と、該CVDセル内に該基
板を保持する機構と、該基板に対してレーザ光の
照射位置を走査するX−Yステージとを備える配
線形成装置であつて、該光学系に該基板上の照射
パターンを細長い形状にするビーム形状変換器を
備え、さらに該ビーム形状変換器を光軸に対して
回転させて該照射パターンの長軸方向を走査方向
に一致させる回転ユニツトを備えたことを特徴と
する装置が得られる。
Next, according to the second invention of the present application, there is provided a laser light source, a CVD cell having a window, and an optical system for condensing and irradiating light emitted from the laser light source onto a substrate in the CVD cell through the window. a raw material gas supply system that supplies the CVD cell with a compound gas that deposits a conductive substance through a thermal dissociation reaction, a mechanism that holds the substrate within the CVD cell, and irradiation of the substrate with laser light. The wiring forming apparatus includes an X-Y stage that scans the position, the optical system includes a beam shape converter that makes the irradiation pattern on the substrate into an elongated shape, and the beam shape converter is arranged on the optical axis. There is obtained an apparatus characterized in that it is equipped with a rotation unit that rotates the irradiation pattern so that the long axis direction of the irradiation pattern coincides with the scanning direction.

さらに本願の第3の発明によれば、レーザ光源
と、窓を備えたCVDセルと、該レーザ光源の出
射光を該窓を介して該CVDセル内の基板上に集
光して照射する光学系と、熱解離反応により導電
性物質を堆積する化合物ガスを該CVDセルに供
給する原料ガス供給系と、該CVDセル内に該基
板を保持する機構と、該基板に対してレーザ光の
照射位置を走査するXステージとを備える配線形
成装置であつて、該光学系に該基板上の照射パタ
ーンを細長い形状にするビーム形状変換器を備
え、さらに該基板の向きを制御して該照射パター
ンの長軸方向を走査方向に一致させる回転ステー
ジを備えたことを特徴とする装置が得られる。
Furthermore, according to a third invention of the present application, there is provided a CVD cell including a laser light source, a window, and an optical system for condensing and irradiating light emitted from the laser light source onto a substrate in the CVD cell through the window. a raw material gas supply system that supplies the CVD cell with a compound gas that deposits a conductive substance through a thermal dissociation reaction, a mechanism that holds the substrate within the CVD cell, and irradiation of the substrate with laser light. The wiring forming apparatus includes an X stage that scans the position, the optical system includes a beam shape converter that makes the irradiation pattern on the substrate elongated, and further controls the direction of the substrate to change the irradiation pattern. There is obtained an apparatus characterized in that it is equipped with a rotation stage that aligns the long axis direction with the scanning direction.

(作用) 本願の第1の発明の特徴は、従来基板上に照射
されるレーザ光のビームパターンが円形であつた
ものを、レーザビームの走査方向に長軸を持つ細
長い形状としたことである。こうすることによ
り、線幅方向のビームの広がりがほぼ同じ場合に
は、同一の走査速度で比べると、円形ビームを用
いる場合に比べ、各レーザ光照射位置でのレーザ
光照射の持続時間を楕円の長軸に対する短軸の長
さの比だけ長く取れる。この結果照射光強度を同
じとして、細長いビームを用いた場合には、円形
のビームを用いた場合の走査速度よりも、この比
の分だけ速い走査速度を用いるときに、円形のビ
ームを用いた場合と同等の照射条件を実現でき
る。このため、この方法によれば、円形のビーム
を用いた場合に比べて、線幅や、膜の厚み、膜質
等に影響を与えることなく、高速な配線形成を実
現できる。また、基板上の段差部へ配線を描画す
る場合にも、配線の横方向のスポツトサイズを変
えることなく走査方向のビーム径をステージの最
小ステツプよりも十分大きくとることができるの
で、この結果、照射するビームのオーバーラツプ
が十分に行なわれ段差部で配線が途切れたり、厚
みが薄くなるなどの問題も解決される。本願の第
2及び第3の発明は本願の第1の発明の実施に好
適な装置を提供するものである。
(Function) The feature of the first invention of the present application is that the beam pattern of the laser beam irradiated onto the substrate, which was conventionally circular, has been changed to an elongated shape with a long axis in the scanning direction of the laser beam. . By doing this, when the spread of the beam in the line width direction is almost the same, the duration of laser light irradiation at each laser light irradiation position becomes more elliptical than when using a circular beam at the same scanning speed. It can be made longer by the ratio of the length of the short axis to the long axis. As a result, when the irradiation light intensity is the same, when a long and narrow beam is used, the scanning speed is faster by this ratio than the scanning speed when using a circular beam. It is possible to achieve the same irradiation conditions as in the case of Therefore, according to this method, wiring can be formed at high speed without affecting the line width, film thickness, film quality, etc., compared to the case where a circular beam is used. Furthermore, even when drawing wiring onto a step on a substrate, the beam diameter in the scanning direction can be made sufficiently larger than the minimum step of the stage without changing the horizontal spot size of the wiring. The overlapping of the irradiating beams is sufficient, which solves problems such as wiring being interrupted at stepped portions and thinning. The second and third inventions of the present application provide apparatuses suitable for carrying out the first invention of the present application.

(実施例) 以下図面を参照して本願発明を一層詳細に説明
する。
(Example) The present invention will be described in more detail below with reference to the drawings.

第1図は本願の第2の発明の一実施例である配
線形成装置の構成図である。本図を参照して本願
の第1及び第2の発明の実施例を説明する。この
実施例は、SiLSI上のポリSi配線層の上にある
SiN絶縁層上にMo線を直接描画して配線の修正
を行なつた例である。Arレーザで構成されるレ
ーザ光源1からの出射光は、円形のガウシヤンビ
ームで、ビーム形状変換器2で細長い形状の楕円
形のガウシヤンビームに変換され、ミラー4で反
射され、対物レンズ7で集光され、窓8を通し
て、CVDセル5内の基板9上に照射される。ビ
ーム形状変換器2は、シリンドリカルレンズ2枚
で構成されるビームエキスパンダの構成を取つて
おり、ビームの縦方向のビーム径が5倍に拡大さ
れ、横方向はビーム径を変えないよう設計されて
いる。基板9は先に述べたSiLSIチツプである。
CVD原料のMo(CO)6は、ガス供給系6より、Ar
ガスで希釈されCVDセル5に導かれる。Mo
(CO)6の分圧は1Torr、全圧は1気圧で、反応終
了後の排気ガスは排ガス処理ユニツト10で無害
化処理される構成になつている。X−Yステージ
11は、描画するMo線の描画位置及び配線の走
査方向・速度を制御する。またビーム形状変換器
2に付属する回転ユニツト3は、X−Yステージ
の走査方向に、集光した楕円ビームの長軸が揃う
ようビーム形状変換器2の光軸のまわりの回転角
を制御する。
FIG. 1 is a configuration diagram of a wiring forming apparatus which is an embodiment of the second invention of the present application. Examples of the first and second inventions of the present application will be described with reference to this figure. This example is on top of a poly-Si interconnect layer on SiLSI.
This is an example in which wiring was corrected by drawing Mo lines directly on the SiN insulating layer. The emitted light from a laser light source 1 composed of an Ar laser is a circular Gaussian beam, which is converted into an elongated elliptical Gaussian beam by a beam shape converter 2, reflected by a mirror 4, and then reflected by an objective lens 7. The light is focused through the window 8 and irradiated onto the substrate 9 inside the CVD cell 5. The beam shape converter 2 has a beam expander configuration consisting of two cylindrical lenses, and is designed so that the beam diameter in the vertical direction is expanded five times and the beam diameter in the horizontal direction remains unchanged. ing. The substrate 9 is the SiLSI chip mentioned above.
The CVD raw material Mo(CO) 6 is supplied from the gas supply system 6 to Ar
It is diluted with gas and guided to the CVD cell 5. Mo
The partial pressure of (CO) 6 is 1 Torr and the total pressure is 1 atmosphere, and the exhaust gas after the reaction is made harmless in the exhaust gas treatment unit 10. The X-Y stage 11 controls the drawing position of the Mo line to be drawn and the scanning direction and speed of the wiring. Furthermore, a rotation unit 3 attached to the beam shape converter 2 controls the rotation angle around the optical axis of the beam shape converter 2 so that the long axis of the focused elliptical beam is aligned with the scanning direction of the X-Y stage. .

この装置の動作を以下に説明する。予め、配線
したい箇所のポリSi上のSiN膜にバイアホールを
あけた基板9を用意し、CVDセル内の所定の位
置に保持する。次にX−Yステージを動かして、
基板9上の一方のバイアホールの位置にレーザ光
の照射位置を合わせ、配線を描画する方向及び終
点の位置をX−Yステージにセツトする。なおこ
のとき回転ユニツト3により楕円の照射パターン
の長軸の向きはステージの走査方向に合わせられ
ている。そしてガス供給系6より原料ガスを流
す。これらの準備が終わつたら、レーザ光源1か
らレーザ光を出射し、同時にX−Yステージを所
定のスピードで走査させる。このようにして、所
定のポリSi間にMo線が描画される。
The operation of this device will be explained below. A substrate 9 is prepared in advance with via holes made in the SiN film on poly-Si at the locations where wiring is desired, and is held at a predetermined position within the CVD cell. Next, move the X-Y stage,
The laser beam irradiation position is aligned with the position of one of the via holes on the substrate 9, and the direction in which the wiring is drawn and the position of the end point are set on the XY stage. At this time, the rotation unit 3 aligns the long axis of the elliptical irradiation pattern with the scanning direction of the stage. Then, raw material gas is supplied from the gas supply system 6. After these preparations are completed, laser light is emitted from the laser light source 1, and at the same time the XY stage is scanned at a predetermined speed. In this way, Mo lines are drawn between predetermined poly-Si.

次に得られた結果を円形ビームを用いた場合と
比較して説明する。円形ビームのスポツトサイズ
は2μmφ、楕円ビームのスポツトサイズは長軸側
が10μm、短軸側は、2μmとした。X−Yステー
ジの最小ステツプの移動距離は1μmである。
Next, the results obtained will be explained in comparison with the case using a circular beam. The spot size of the circular beam was 2 μmφ, and the spot size of the elliptical beam was 10 μm on the long axis side and 2 μm on the short axis side. The minimum step movement distance of the X-Y stage is 1 μm.

円形ビームを用いた場合、良好な配線は、走査
速度が6μm/s、照射光量が500mwのときに得
られ、配線幅は5μm、厚みは0.5μmで比抵抗は
30μΩcmであつた。照射強度を変えずに走査速度
をこれよりも高くすると配線の厚みが減少し、基
板上の段差部で配線に断線が生じる等の問題を生
じた。また走査速度を10μm/sに上げ、照射パ
ワーを700mwに上げた場合には、膜の線幅が
7μmに広がり、線幅のばらつきが大きくなり、配
線の所々にダメージとみられるくぼみが生じるな
どの問題を生じた。つまり円形のビームを用い
て、良好な配線の得られる描画速度は6μm/s程
度であつた。
When using a circular beam, a good wiring is obtained when the scanning speed is 6 μm/s, the irradiation light intensity is 500 mW, the wiring width is 5 μm, the thickness is 0.5 μm, and the resistivity is
It was 30μΩcm. If the scanning speed was made higher than this without changing the irradiation intensity, the thickness of the wiring would decrease, causing problems such as disconnection of the wiring at stepped portions on the substrate. Furthermore, when the scanning speed was increased to 10 μm/s and the irradiation power was increased to 700 mw, the line width of the film decreased.
The line width spread to 7 μm, resulting in large variations in line width and causing problems such as dents appearing to be damage in some places in the wiring. In other words, using a circular beam, the drawing speed for obtaining good wiring was about 6 μm/s.

一方楕円ビームを用いた場合には、走査速度が
30μm/s付近で円形の場合と同等の厚み、線幅、
比抵抗の良好な配線を形成することが出来た。こ
のときの、照射光パワーは、2Wで、1.5Wから
2.5Wまで照射パワーを変えても良好な配線を形
成できた。また、段差部での配線の断線の発生頻
度は、円形ビームを用いた場合よりも著しく減少
し、また1.5μm程度の大きな段差に対しても、断
線が起こらなくなつた。
On the other hand, when using an elliptical beam, the scanning speed is
At around 30 μm/s, the thickness and line width are the same as in the circular case.
It was possible to form wiring with good resistivity. At this time, the irradiation light power was 2W, starting from 1.5W.
Good wiring could be formed even when the irradiation power was changed up to 2.5W. Furthermore, the frequency of wire breakage at step portions was significantly reduced compared to when a circular beam was used, and breakage no longer occurred even with large step differences of about 1.5 μm.

以上に説明した実施例では、ビーム形状変換器
2の構成として、ビームエキスパンダーを用いた
場合を述べたが、さらに単純な構成として、シリ
ンドリカルレンズを1枚用いるだけでもビームの
形状を楕円とすることが出来る。但しその場合、
形状と共にビームの広がり角も変わるので、光学
系の調整はやや複雑になる。そのほかのビーム形
状変換器2の構成としては、ビームスプリツタで
入射光を複数の平行な一列に並んだビームに変換
する構成も可能で、この場合には、基板上のビー
ム形状は、小さなスポツトが一列に並んだ細長い
形状に成る。また上記の実施例では原料ガスとし
てMo(CO)6を用いた場合を述べたが、本発明が、
他の熱分解反応を利用する直接描画による配線形
成方法及び装置全てに適用できることは言うまで
もない。
In the embodiment described above, a beam expander is used as the configuration of the beam shape converter 2, but as a simpler configuration, the beam shape can be made into an ellipse by using only one cylindrical lens. I can do it. However, in that case,
Adjustment of the optical system becomes somewhat complicated because the beam spread angle changes with the shape. Another possible configuration of the beam shape converter 2 is a configuration in which a beam splitter converts the incident light into a plurality of parallel beams arranged in a line. In this case, the beam shape on the substrate is changed to a small spot. It has a long and narrow shape with the lines lined up in a row. Furthermore, in the above embodiment, a case was described in which Mo(CO) 6 was used as the raw material gas, but the present invention
It goes without saying that the present invention can be applied to all other methods and devices for forming wiring by direct writing that utilize thermal decomposition reactions.

第2図は、本願の第3の発明の一実施例を示す
図である。第1図と異なる点は、ビーム形状変換
器2に回転ユニツト3がないことと、基板を走査
するステージがXステージ12と回転ステージ1
3とから成つていることである。この装置では、
照射される細長いビームの長軸を走査方向に揃え
る動作は、回転ステージ13により行なわれる点
が第1図に示される実施例の場合と異なつてい
る。この構成によれば、レーザ光の照射光学系に
可動部がなくなり、光軸のぶれなどによる配線箇
所の位置ずれの発生を抑えることができる。ま
た、回転ステージ13は、細長いビームの長軸方
向を走査方向に合わせる働きと、走査方向を基板
9上の所要配線の向きに合わせる働きを兼ねてい
るため、装置の構成が簡単で装置を安価にできる
利点がある。
FIG. 2 is a diagram showing an embodiment of the third invention of the present application. The difference from FIG. 1 is that the beam shape converter 2 does not have a rotation unit 3, and the stage for scanning the substrate is an X stage 12 and a rotation stage 1.
It consists of 3. With this device,
This embodiment differs from the embodiment shown in FIG. 1 in that the operation of aligning the long axes of the irradiated elongated beams in the scanning direction is performed by a rotary stage 13. According to this configuration, there is no movable part in the laser beam irradiation optical system, and it is possible to suppress the occurrence of misalignment of the wiring location due to optical axis deviation or the like. In addition, the rotary stage 13 has the function of aligning the long axis direction of the elongated beam with the scanning direction and the function of aligning the scanning direction with the direction of the required wiring on the substrate 9, so the configuration of the device is simple and the device is inexpensive. There are advantages that can be achieved.

(発明の効果) 以上に述べたように、本願発明によれば、従来
の円形ビームを用いた配線形成方法及び装置に比
べ、配線描画速度を著しく改善できかつ、基板上
の段差部での配線の断線を起こしにくい優れた配
線形成方法及び装置を提供することが出来る。
(Effects of the Invention) As described above, according to the present invention, the wiring drawing speed can be significantly improved compared to the conventional wiring forming method and apparatus using a circular beam, and the wiring forming process can be performed at the stepped portion on the substrate. It is possible to provide an excellent wiring forming method and device that is less likely to cause disconnection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願の第2の発明の一実施例を示す
図、第2図は本願の第3の発明の一実施例を示す
図である。 1……レーザ光源、2……ビーム形状変換器、
3……回転ユニツト、4……ミラー、5……
CVDセル、6……ガス供給系、7……レンズ、
8……窓、9……基板、10……排ガス処理ユニ
ツト、11……X−Yステージ、12……Xステ
ージ、13……回転ステージ。
FIG. 1 is a diagram showing an embodiment of the second invention of the present application, and FIG. 2 is a diagram showing an embodiment of the third invention of the present application. 1... Laser light source, 2... Beam shape converter,
3...Rotating unit, 4...Mirror, 5...
CVD cell, 6... gas supply system, 7... lens,
8...Window, 9...Substrate, 10...Exhaust gas treatment unit, 11...X-Y stage, 12...X stage, 13...Rotation stage.

Claims (1)

【特許請求の範囲】 1 熱解離反応により導電性物質を堆積する化合
物気体を含む雰囲気中に置かれた基板上に、集光
したレーザ光を照射し、該レーザ光を基板に対し
相対的に走査することにより配線を描画する配線
形成方法において、該基板に照射される該レーザ
光のパターンが配線描画方向に細長い形であるこ
とを特徴とする配線形成方法。 2 レーザ光源と、窓を備えたCVDセルと、該
レーザ光源の出射光を該窓を介して該CVDセル
内の基板上に集光して照射する光学系と、熱解離
反応により導電性物質を堆積する化合物ガスを該
CVDセルに供給する原料ガス供給系と、該CVD
セル内に該基板を保持する機構と、該基板に対し
てレーザ光の照射位置を走査するX−Yステージ
とを備える配線形成装置において、該光学系に該
基板上の照射パターンを細長い形状にするビーム
形状変換器を備え、さらに該ビーム形状変換器を
光軸に対して回転させて該照射パターンの長軸方
向を走査方向に一致させる回転ユニツトを備えた
ことを特徴とする配線形成装置。 3 レーザ光源と、窓を備えたCVDセルと、該
レーザ光源の出射光を該窓を介して該CVDセル
内の基板上に集光して照射する光学系と、熱解離
反応により導電性物質を堆積する化合物ガスを該
CVDセルに供給する原料ガス供給系と、該CVD
セル内に該基板を保持する機構と、該基板に対し
てレーザ光の照射位置を走査するXステージとを
備える配線形成装置において、該光学系に該基板
上の照射パターンを細長い形状にするビーム形状
変換器を備え、さらに該基板の向きを制御して該
照射パターンの長軸方向を走査方向に一致させる
回転ステージを備えたことを特徴とする配線形成
装置。
[Claims] 1. A substrate placed in an atmosphere containing a compound gas that deposits a conductive material by a thermal dissociation reaction is irradiated with a focused laser beam, and the laser beam is directed relative to the substrate. 1. A wiring forming method for drawing wiring by scanning, wherein the pattern of the laser beam irradiated onto the substrate is elongated in the wiring drawing direction. 2. A CVD cell equipped with a laser light source, a window, an optical system that focuses and irradiates the light emitted from the laser light source onto a substrate in the CVD cell through the window, and a conductive material that is formed by a thermal dissociation reaction. Contains compound gas that deposits
Raw material gas supply system that supplies to the CVD cell and the CVD
In a wiring forming apparatus that includes a mechanism for holding the substrate in a cell and an X-Y stage for scanning a laser beam irradiation position with respect to the substrate, the optical system is configured to form an irradiation pattern on the substrate into an elongated shape. 1. A wiring forming apparatus comprising: a beam shape converter that rotates the beam shape converter with respect to an optical axis; and a rotation unit that rotates the beam shape converter with respect to an optical axis to align the long axis direction of the irradiation pattern with the scanning direction. 3. A CVD cell equipped with a laser light source, a window, an optical system that focuses and irradiates the light emitted from the laser light source onto a substrate in the CVD cell through the window, and a conductive material formed by a thermal dissociation reaction. Contains compound gas that deposits
Raw material gas supply system that supplies to the CVD cell and the CVD
In a wiring forming apparatus that includes a mechanism for holding the substrate in a cell and an X stage that scans the irradiation position of the laser beam with respect to the substrate, the optical system is provided with a beam that makes the irradiation pattern on the substrate into an elongated shape. A wiring forming apparatus comprising a shape converter and a rotation stage that controls the orientation of the substrate to align the long axis direction of the irradiation pattern with the scanning direction.
JP28099586A 1986-11-20 1986-11-25 Method and device for wiring formation Granted JPS63133549A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28099586A JPS63133549A (en) 1986-11-25 1986-11-25 Method and device for wiring formation
DE87117109T DE3787440T2 (en) 1986-11-20 1987-11-19 Method and device for writing a line on a structured substrate.
EP87117109A EP0268301B1 (en) 1986-11-20 1987-11-19 Method and apparatus for writing a line on a patterned substrate
US07/123,460 US4873413A (en) 1986-11-20 1987-11-20 Method and apparatus for writing a line on a patterned substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28099586A JPS63133549A (en) 1986-11-25 1986-11-25 Method and device for wiring formation

Publications (2)

Publication Number Publication Date
JPS63133549A JPS63133549A (en) 1988-06-06
JPH0582967B2 true JPH0582967B2 (en) 1993-11-24

Family

ID=17632793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28099586A Granted JPS63133549A (en) 1986-11-20 1986-11-25 Method and device for wiring formation

Country Status (1)

Country Link
JP (1) JPS63133549A (en)

Also Published As

Publication number Publication date
JPS63133549A (en) 1988-06-06

Similar Documents

Publication Publication Date Title
US5459098A (en) Maskless laser writing of microscopic metallic interconnects
US8445365B2 (en) Single scan irradiation for crystallization of thin films
EP0268301A2 (en) Method and apparatus for writing a line on a patterned substrate
JP2004511908A (en) Method and apparatus for processing thin metal layers
JP2004311906A (en) Laser processing device and laser processing method
JP2009004669A (en) Method for manufacturing metal wiring substrate and metal wiring substrate formed by using it
JPH10328873A (en) Laser beam machining device
US20040137731A1 (en) Selectable area laser assisted processing of substrates
JP3185881B2 (en) Laser irradiation apparatus and laser irradiation method
JPH05183216A (en) Laser emitting device
JPH0582967B2 (en)
JP2986132B2 (en) Method for manufacturing polycrystalline semiconductor thin film and laser annealing device
JPH0644564B2 (en) Wiring formation method
JP2002270505A (en) Laser annealing device and method therefor
JPH0256932A (en) Method and apparatus for forming wiring
JP2890630B2 (en) Laser CVD equipment
KR20170112526A (en) Deposition Apparatus and Method
JPH01136973A (en) Film formation
JPS62165954A (en) Direct formation of metal pattern for integrated circuit device
JPH09152568A (en) Method for correcting defect of liquid crystal display element and device therefor
JPH06302595A (en) Wiring formation system
JP2024111900A (en) Wafer processing method and dividing device
JP2729270B2 (en) Laser processing method
JPH0324259A (en) Direct plotting device by laser
JPH01204448A (en) Wiring forming method