JPH0582787B2 - - Google Patents
Info
- Publication number
- JPH0582787B2 JPH0582787B2 JP58208214A JP20821483A JPH0582787B2 JP H0582787 B2 JPH0582787 B2 JP H0582787B2 JP 58208214 A JP58208214 A JP 58208214A JP 20821483 A JP20821483 A JP 20821483A JP H0582787 B2 JPH0582787 B2 JP H0582787B2
- Authority
- JP
- Japan
- Prior art keywords
- pulses
- control
- color television
- television camera
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000013139 quantization Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Control Of Position Or Direction (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、カラーテレビジヨンカメラにおいて
被制御回路を制御するための制御入力を、回転角
に比例したパルス数を出力する調整器によつて得
るカラーテレビジヨンカメラの調整装置の改良に
関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a control input for controlling a controlled circuit in a color television camera by a regulator that outputs a pulse number proportional to the rotation angle. This invention relates to improvements in adjustment devices for color television cameras.
近年カラーテレビジヨンカメラはマイクロコン
ピユータによる自動調整機能をそなえたものが一
般的となつた。しかしながら全ての調整が自動調
整の結果通りのままで運用されるとは限らない
し、自動調整項目以外の制御項目に対しては手動
の調整が行われる。これらは煩度は少ないが手動
による調整や、自動調整以上の最良の状況を得る
ためいずれにしろ行なわれている調整である。そ
してこのための手動制御入力手段としてロータリ
ーエンコーダ(以下R・Eと称す)が用いられ
る。R・Eは既に製品として市場に供給されてい
るので詳細は省略するが、R・Eの回転軸の角速
度に周波数が比例してパルス列を出力し、そのパ
ルス列は回転方向を判別するため2つの位相をも
つたものが出力される型が一般的である。そして
この2つのパルスの位相の一方を基準にし、他の
一方が90°位相が進めば例えば右回り、90°遅れれ
ば左まわりといつたように判別することができ
る。
In recent years, it has become common for color television cameras to be equipped with an automatic adjustment function using a microcomputer. However, not all adjustments are necessarily operated according to the results of automatic adjustment, and manual adjustment is performed for control items other than automatic adjustment items. Although these are less troublesome, they are manual adjustments or adjustments that are performed anyway to obtain the best situation than automatic adjustment. A rotary encoder (hereinafter referred to as R/E) is used as a manual control input means for this purpose. Since the R/E has already been supplied to the market as a product, the details will be omitted, but it outputs a pulse train whose frequency is proportional to the angular velocity of the rotating shaft of the R/E, and the pulse train has two pulse trains to determine the rotation direction. A type that outputs something with a phase is common. Then, using one of the phases of these two pulses as a reference, if the phase of the other one is advanced by 90 degrees, it can be determined that the rotation is clockwise, and if it is delayed by 90 degrees, it is counterclockwise.
このR・Eによる調整はそのパルス列を積算
し、回転角度情報及び回転方向情報を検出し、こ
れに基づいて対応する制御項目の制御が行われ
る。この制御はR・Eの回転軸を速く回せば速く
行われ、遅く回せば遅く行われ、回転軸の角速度
に比例されている。 In this R/E adjustment, the pulse train is integrated, rotation angle information and rotation direction information are detected, and the corresponding control items are controlled based on this information. This control is performed faster if the R/E rotation shaft is turned faster, and slower if it is turned slower, and is proportional to the angular velocity of the rotation shaft.
このような調整では、R・Eの出力パルス列は
一定周期でその積算結果をCPUが読みこむため、
R・Eの1パルス出力に対する制御量の変化分は
常に一定である。(すなわち回転軸の回転角に対
する制御量の変化は一定)したがつて、赤の『水
平センタリング』の場合、CPUのデイジタル信
号のビツト数を10ビツトとした場合、分解能は1/
1024すなわち約1/1000の分解能となる。これを
R・E2回転で全範囲カバーするとすると、水平
センタリング可変範囲±20%の時量子化ステツプ
は20/1000=0.02%となる。現在の放送方式での
水平センタリングの視角による検知限界は0.05%
以下であるからD/A変換器の非直線性(通常±
1/2〜1ビツト)を考えると一量子化ステツプは
検知限界を若干下まわる程度となると考えてよ
い。前述のように2回転で全範囲カバーすること
は、2回転で1000量子化ステツプ可変することで
あるから、1回転で500量子化ステツプとなり1
量子化ステツプは360°/500=0.72°の回転によつ
て得られてしまう。すなわちR・Eの回転角に対
する検知限界はクリチカルになつてしまう。これ
をさけるためには全可変範囲に対するR・Eの回
転数を増加させればよいが、今度は全可変範囲、
あるいは変化量を多く取りたい時にR・Eを手動
で数多くまわさなければならず不便であつた。 In this kind of adjustment, the CPU reads the integration results of the R/E output pulse train at a constant cycle, so
The amount of change in the control amount for one pulse output of R and E is always constant. (In other words, the change in the control amount with respect to the rotation angle of the rotation axis is constant.) Therefore, in the case of "horizontal centering" shown in red, if the number of bits of the CPU digital signal is 10 bits, the resolution is 1/
The resolution is 1024, or approximately 1/1000. Assuming that the entire range is covered by R/E2 rotations, the quantization step will be 20/1000=0.02% when the horizontal centering variable range is ±20%. The detection limit based on the viewing angle of horizontal centering in the current broadcasting system is 0.05%.
Since the non-linearity of the D/A converter (normally ±
(1/2 to 1 bit), one quantization step can be considered to be slightly below the detection limit. As mentioned above, covering the entire range in 2 rotations means changing 1000 quantization steps in 2 rotations, so 500 quantization steps in 1 rotation and 1
The quantization step is obtained by a rotation of 360°/500=0.72°. In other words, the detection limit for the rotation angle of R and E becomes critical. In order to avoid this, it is possible to increase the rotation speed of R and E for the entire variable range, but this time, for the entire variable range,
Alternatively, when a large amount of change is desired, it is inconvenient to manually turn R and E many times.
本発明は上記の欠点を除去するもので、R・E
を異る角速度で同一角度回した時、角速度の変化
によつて回転角に対応するパルス積算結果が変化
することにより、回転軸をゆつくり回した時は回
転角に対する制御量の変化が少なくなり、速くま
わした時は前述と同じ回転角であつたとしても変
化が大きくなり広い範囲、あるいは全可変範囲の
変化量が得られるカラーテレビジヨンカメラの調
整装置を提供することを目的とする。
The present invention obviates the above-mentioned drawbacks, and R.E.
When the rotation axis is rotated by the same angle at different angular velocities, the pulse integration result corresponding to the rotation angle changes due to the change in angular velocity, so when the rotation axis is slowly rotated, the change in the control amount with respect to the rotation angle becomes smaller. It is an object of the present invention to provide an adjustment device for a color television camera, in which when the rotation angle is turned quickly, even if the rotation angle is the same as described above, the change becomes large, and a change amount over a wide range or the entire variable range can be obtained.
本発明ではR・Eからの回転角に比例したパル
ス数を積算して調整制御を行うカラーテレビジヨ
ンカメラの調整装置においてパルス数積算をその
角速度に応じて変化させるものである。
In the present invention, in an adjustment device for a color television camera that performs adjustment control by integrating the number of pulses proportional to the rotation angle from R and E, the integrated number of pulses is changed in accordance with the angular velocity.
以下、本発明の一実施例について第1図を参照
して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG.
1はR・Eで上述の如く回転軸の回転に応じて
2つのパルス列信号A,Bが発生され、このパル
ス列信号がパルス積算、回転判別回路2に供給さ
れる。3はマイクロプロセツサからなる演算回路
(以下、CPUと称す)で上記回路2からのデータ
の読み込みが行われ、制御値の算出が行われる。
4−1,4−2,…4−nは制御項目を選定する
スイツチで、これらのスイツチの投入に応じて機
能選択マトリツクス4から制御項目に対応したデ
ータが発生され、その制御項目の制御が可能とさ
れる。 1 is R and E, and as described above, two pulse train signals A and B are generated in accordance with the rotation of the rotary shaft, and these pulse train signals are supplied to the pulse integration and rotation discrimination circuit 2. Reference numeral 3 denotes an arithmetic circuit (hereinafter referred to as CPU) consisting of a microprocessor, which reads data from the circuit 2 and calculates control values.
4-1, 4-2,...4-n are switches for selecting control items, and when these switches are turned on, data corresponding to the control items is generated from the function selection matrix 4, and the control of the control items is performed. It is considered possible.
スイツチ4−1,4−2,…4−nによつて制
御項目が選択された後、パルス積算、回転判別回
路2からR・E1の回転角情報及び回転方向情報
がCPU3に供給される。CPU3ではクロツクパ
ルス等に基づき設定された一定周期Tでこれらの
情報の読み込みがなされる。この周期Tで積算し
たパルス数をnとするとCPU3ではR・E1が
一定角速度で回転軸が回つていればT毎にnのパ
ルス数の読み込みが行われる。 After a control item is selected by the switches 4-1, 4-2, . In the CPU 3, these pieces of information are read at a constant cycle T set based on clock pulses and the like. If the number of pulses accumulated in this period T is n, then in the CPU 3, if R.E1 is rotating at a constant angular velocity, the number of pulses n is read every T.
また、このようなCPU3への読み込みはR・
E1の所定回転角を検出し、これによる単位回転
角毎に行つてもよい。このパルス数nの読み込み
がなされた後、CPU3では以下の演算が行われ
る。 Also, reading to CPU3 like this is done using R.
A predetermined rotation angle of E1 may be detected and the process may be performed for each unit rotation angle. After reading the number n of pulses, the CPU 3 performs the following calculations.
m=n(n/N)c ……(1)
D=A±∫mdt ……(2)
この(1)(2)式においてmは積算パルス数、Nは定
数、cは定数(c>1)、Aは前回の積算値、D
は制御値である。 m=n(n/N) c ...(1) D=A±∫mdt...(2) In equations (1) and (2), m is the cumulative number of pulses, N is a constant, and c is a constant (c> 1), A is the previous integrated value, D
is the control value.
したがつて、n=Nの時は(1)式よりm=nとな
り、n<Nの時は(n/N)c<1となるためm<
nとなり、また、n>Nの時は(n/N)c>1に
よつてm>nとなる。即ち、R・E1の回転が周
期T毎にN個のパルス数より少ないパルスを出力
する遅い回転時にはCPU3内でm<nとなるm
を算出し、Aを加算して制御値D0が得られる。 Therefore, when n=N, m=n from equation (1), and when n<N, (n/N) c <1, so m<
When n>N, m>n due to (n/N) c >1. That is, when the rotation of R・E1 is slow and outputs fewer than N pulses per cycle T, m<n in the CPU 3.
is calculated and A is added to obtain the control value D 0 .
また、R・E1がN個より多いパルスを出力す
る速い回転時にはm>nとなり、Aを加算して制
御値D1が得られる。即ち、R・E1の回転軸の
回転角速度に応じてパルス数nの積算値が変化
し、回転時をゆつくり回転させることによつて出
力パルス数が減少したのと同じとなり、速く回転
させることにより出力パルス数が増大したのと同
じとなる。なお、mは回路2によつて判別した
R・E1の回転方向情報によつてAに加算又は減
算される。CPU3で演算された制御値Dはデイ
ジタル−アナログ変換器群5,7(以下D/A変
換器群と称す)の制御項目に対応する変換ユニツ
ト5−1,5−2,…5−n,7−1,7−2,
…7−nを介して被制御回路に供給され制御が行
われる。この一方のD/A変換器群5は離隔した
カメラヘツド等に設けられるもので、これへの制
御値Dの伝送は多重化回路8、ケーブル9、多重
復調回路10を介して行われる。 Further, when R·E1 outputs more than N pulses at high speed, m>n, and the control value D1 is obtained by adding A. In other words, the integrated value of the number of pulses n changes according to the rotational angular velocity of the rotating shaft of R・E1, and it is the same as reducing the number of output pulses by rotating slowly, and rotating quickly. This is equivalent to increasing the number of output pulses. Note that m is added to or subtracted from A depending on the rotation direction information of R and E1 determined by the circuit 2. The control value D calculated by the CPU 3 is applied to the conversion units 5-1, 5-2, ... 5-n, which correspond to the control items of the digital-to-analog converter groups 5 and 7 (hereinafter referred to as the D/A converter group). 7-1, 7-2,
...7-n to the controlled circuit for control. One of the D/A converter groups 5 is provided in a remote camera head or the like, and the control value D is transmitted thereto via a multiplexing circuit 8, a cable 9, and a multiplex demodulation circuit 10.
この被制御回路の制御は上述の様にR・E1の
回転軸の回転角速度によつてNを境界にして変化
させることができn<Nの遅い回転時には微調、
n>Nの早い回転時には粗調となる。このR・E
1による微調、粗調は第2図に示す如くcをパラ
メータとしてn=Nを境にして変化される。この
ようなR・E1の制御によつて被制御回路を第3
図の様に制御することができる。即ち、図におい
て実線は従来の制御を示すものでR・Eの2回
転で全可変範囲を制御するのに対し、n>Nなる
一定の角速度でR・E1を回転させることによ
り、一点鎖線の様に2回転を行わずして制御す
ることができる。また、逆にn<Nなる角速度で
回転させると破線の様に2回転以上で全範囲を
制御することができ高精度の制御を行うことがで
き、さらに、R・E1の角速度を途中で変化させ
ることにより、二点鎖線の如くその制御状態を
変化させることができる。なお、この第3図にお
いては初期値、即ち、(2)式のAは全て零として示
してある。 As mentioned above, the control of this controlled circuit can be varied with N as the boundary depending on the rotational angular velocity of the rotating shaft of R and E1, and when n<N, slow rotation, fine adjustment can be made.
At fast rotations where n>N, coarse adjustment occurs. This R.E.
The fine adjustment and coarse adjustment according to 1 are changed with c as a parameter and n=N as the boundary, as shown in FIG. By controlling R・E1 in this way, the controlled circuit is
It can be controlled as shown in the figure. In other words, the solid line in the figure shows conventional control, in which the entire variable range is controlled by two rotations of R and E, whereas the dashed line shows control by rotating R and E1 at a constant angular velocity where n>N. It can be controlled without making two rotations. Conversely, when rotating at an angular velocity of n<N, the entire range can be controlled with two or more rotations as shown by the broken line, allowing highly accurate control.Furthermore, the angular velocity of R/E1 can be changed midway through the rotation. By doing so, the control state can be changed as shown by the two-dot chain line. In addition, in this FIG. 3, the initial values, that is, A in equation (2) are all shown as zero.
以上述べたように本発明によれば、R・Eで被
制御回路を制御するための制御値を得るカラーテ
レビジヨンカメラの調整装置において、R・Eの
回転角に対する制御値がR・Eの回転軸の角速度
をパラメータとして変化するので、R・Eをゆつ
くりまわせば微調動作となり速くまわせば粗調動
作となりすみやかに多くの可変量を得ることがで
きるので一つのR・Eが粗・微調両用となり、か
つその切換は操作員の微調時はゆつくり、粗調時
ははやく回すという人間にとつてごく自然の反応
に基づいて行なわれる制御回路が得られる。
As described above, according to the present invention, in the adjustment device for a color television camera that obtains a control value for controlling a controlled circuit with R/E, the control value for the rotation angle of R/E is Since the angular velocity of the rotating shaft is changed as a parameter, if you turn R and E slowly, you will get fine adjustment, and if you turn them quickly, you will get coarse adjustment, and you can quickly obtain a large amount of variation, so one R and E will make coarse adjustment. - A control circuit can be obtained that can be used for both fine adjustment and the switching is performed based on the natural reaction of humans, such as turning slowly when the operator is making fine adjustments and turning quickly when making coarse adjustments.
また、制御項目に対して上記(1)式のN・Cを変
化させるように記憶回路等に記憶させ、スイツチ
の選択に応じた制御項目に対しこれらの値を読み
出して制御を行うこともできる。 It is also possible to store in a memory circuit or the like such that N/C in equation (1) above is changed for each control item, and to perform control by reading out these values for the control item according to the selection of the switch. .
第1図は本発明によるカラーテレビジヨンカメ
ラの調整装置の一実施例を示す回路構成図、第2
図、第3図は第1図の動作を夫々示す動作説明図
である。
1……ロータリーエンコーダ、2……パルス積
算、回転判別回路、3……演算回路、5,7……
デイジタル−アナログ変換器群。
FIG. 1 is a circuit configuration diagram showing one embodiment of the adjustment device for a color television camera according to the present invention, and FIG.
3 are explanatory diagrams showing the operation shown in FIG. 1, respectively. 1...Rotary encoder, 2...Pulse integration, rotation discrimination circuit, 3...Arithmetic circuit, 5, 7...
Digital-to-analog converter group.
Claims (1)
タリーエンコーダを用い、その出力パルス数の積
算によつて調整を行うカラーテレビジヨンカメラ
の調整装置において、前記ロータリーエンコーダ
から出力される出力パルス数が読み込まれ、前記
ロータリーエンコーダの回転角速度を遅くした場
合には出力パルス数の積算数を減少させ、回転角
速度を速くした場合には出力パルス数の積算数を
増加させた積算パルス数を導出する第1の演算手
段と、この第1の演算手段から導出された積算パ
ルス数に応じて制御値を発生する第2の演算手段
とを具備することを特徴とするカラーテレビジヨ
ンカメラの調整装置。 2 前記パルス数の積算を所定周期毎に行うこと
を特徴とする特許請求の範囲第1項記載のカラー
テレビジヨンカメラの調整装置。 3 前記パルス数の積算をロータリーエンコーダ
の所定回転角毎に行うことを特徴とする特許請求
の範囲第1項記載のカラーテレビジヨンカメラの
調整装置。[Claims] 1. In a color television camera adjustment device that uses a rotary encoder that generates a pulse signal proportional to the rotation angle and performs adjustment by integrating the number of output pulses, the output from the rotary encoder The number of output pulses is read, and if the rotational angular velocity of the rotary encoder is slowed down, the cumulative number of output pulses is decreased, and if the rotational angular velocity is increased, the cumulative number of output pulses is increased. A color television camera comprising: a first calculation means for deriving the number of pulses; and a second calculation means for generating a control value in accordance with the cumulative number of pulses derived from the first calculation means. Adjustment device. 2. The color television camera adjustment device according to claim 1, wherein the pulse number is integrated at predetermined intervals. 3. The color television camera adjustment device according to claim 1, wherein the pulse number is integrated at every predetermined rotation angle of the rotary encoder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58208214A JPS60100885A (en) | 1983-11-08 | 1983-11-08 | Adjusting device of color television camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58208214A JPS60100885A (en) | 1983-11-08 | 1983-11-08 | Adjusting device of color television camera |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60100885A JPS60100885A (en) | 1985-06-04 |
JPH0582787B2 true JPH0582787B2 (en) | 1993-11-22 |
Family
ID=16552562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58208214A Granted JPS60100885A (en) | 1983-11-08 | 1983-11-08 | Adjusting device of color television camera |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60100885A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8853765B2 (en) | 2000-08-14 | 2014-10-07 | Sandisk 3D Llc | Dense arrays and charge storage devices |
US9053679B2 (en) | 1997-09-03 | 2015-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor display device correcting system and correcting method of semiconductor display device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62120513A (en) * | 1985-11-21 | 1987-06-01 | Fuji Electric Co Ltd | Control system for multiplication of manual pulse |
JPH01264375A (en) * | 1988-04-15 | 1989-10-20 | Hitachi Ltd | Focusing device for video camera and the like |
US5408332A (en) * | 1988-03-18 | 1995-04-18 | Hitachi, Ltd. | Focusing apparatus for video camera or the like |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57114125A (en) * | 1980-12-30 | 1982-07-15 | Dainippon Screen Mfg Co Ltd | Automatic focusing device of camera |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6027366Y2 (en) * | 1980-11-04 | 1985-08-19 | 富士写真光機株式会社 | Zooming operation method switching device for zoom lenses for television cameras |
-
1983
- 1983-11-08 JP JP58208214A patent/JPS60100885A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57114125A (en) * | 1980-12-30 | 1982-07-15 | Dainippon Screen Mfg Co Ltd | Automatic focusing device of camera |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9053679B2 (en) | 1997-09-03 | 2015-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor display device correcting system and correcting method of semiconductor display device |
US8853765B2 (en) | 2000-08-14 | 2014-10-07 | Sandisk 3D Llc | Dense arrays and charge storage devices |
US8981457B2 (en) | 2000-08-14 | 2015-03-17 | Sandisk 3D Llc | Dense arrays and charge storage devices |
Also Published As
Publication number | Publication date |
---|---|
JPS60100885A (en) | 1985-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0582787B2 (en) | ||
US4101774A (en) | X-ray system having a driving mechanism for an x-ray source and an x-ray detector | |
US4837492A (en) | Apparatus for detecting revolution using a synchro | |
JPH0519330B2 (en) | ||
JPS62265819A (en) | Rotary dial circuit | |
JPS58157386A (en) | Plural servo motor simultaneous control system | |
JPS6396511A (en) | Rotary encoder | |
JPH07301545A (en) | Interpolating device of encoder | |
JPS6321432B2 (en) | ||
JPS6118818A (en) | Rotary encoder apparatus | |
JPH0114936Y2 (en) | ||
JPH0110563Y2 (en) | ||
SU1014024A1 (en) | Device for controlling speed of rotation of motor rotor in apparatus for data recording | |
SU1042058A1 (en) | Shaft turn angle to code converter | |
US5371881A (en) | Universal timing controller for video tape recorder servo system of different formats using time multiplexed switching network | |
JPH0827657B2 (en) | Digital servo control circuit | |
JPS6022666A (en) | Rotary encoder device | |
SU1583845A1 (en) | Meter of frequency of shaft rotation | |
JPS60238717A (en) | Controlling system | |
SU1022202A1 (en) | Shaft angular position-to-code converter | |
SU1615619A2 (en) | Pickup of angular position and shaft rotational speed | |
JPH05172505A (en) | Reference circuit of angle converter | |
SU1080173A2 (en) | Displacement encoder | |
JPH02113301A (en) | Operation data storage circuit | |
SU1129635A1 (en) | Position encoder |