JPH0582677A - Hybrid integrated circuit - Google Patents

Hybrid integrated circuit

Info

Publication number
JPH0582677A
JPH0582677A JP3243587A JP24358791A JPH0582677A JP H0582677 A JPH0582677 A JP H0582677A JP 3243587 A JP3243587 A JP 3243587A JP 24358791 A JP24358791 A JP 24358791A JP H0582677 A JPH0582677 A JP H0582677A
Authority
JP
Japan
Prior art keywords
wire
resin
circuit element
substrate
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3243587A
Other languages
Japanese (ja)
Inventor
Noriaki Sakamoto
則明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3243587A priority Critical patent/JPH0582677A/en
Publication of JPH0582677A publication Critical patent/JPH0582677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent the disconnection of a wire connecting an element and a conductor due to stress developed during heating and cooling cycles. CONSTITUTION:The surface of a chip-shaped circuit element 4 mounted on a substrate 1 is exclusively covered with a resin thin-film 6 having a low which approxiomates to the thermal expansion coefficient of the element 4, and a neck portion 5B of a wire 5 on the substrate 1 is covered with a resin having a thermal expansion coefficient which is approximately the same as alpha of the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、混成集積回路に関し、
特にベアチップ実装型の混成集積回路に関する。
FIELD OF THE INVENTION This invention relates to hybrid integrated circuits,
In particular, it relates to a bare chip mounting type hybrid integrated circuit.

【0002】[0002]

【従来の技術】一般的な混成集積回路は、例えばセラミ
ックスあるいはアルミニウム等の金属基板上に形成され
た銅材を材料とする導電路上にトランジスタ、チップ抵
抗、チップコンデンサ等の複数の回路素子が固着されて
所望機能を有した混成集積回路が形成される。また、高
密度実装化に伴い基板上にLSI、VLSI等のベアチ
ップが搭載された多種多用の混成集積回路が出現してい
る。
2. Description of the Related Art In a general hybrid integrated circuit, a plurality of circuit elements such as transistors, chip resistors, and chip capacitors are fixed on a conductive path made of copper material formed on a metal substrate such as ceramics or aluminum. Thus, a hybrid integrated circuit having a desired function is formed. Also, with the high-density mounting, a wide variety of hybrid integrated circuits in which bare chips such as LSI and VLSI are mounted on a substrate have appeared.

【0003】前述したLSI、VLSI等のベアチップ
をアルミニウム基板上に搭載した場合、耐湿信頼性を確
保するために、図5に示す如く、ベアチップ(21)と
ベアチップ表面の電極と導電路(22)を接続する、例
えばAl等のワイヤ線(23)をエポキシ樹脂(24)
で被覆する。かかる、エポキシ樹脂の熱膨張係数は基板
の熱膨張係数と略同一となるように調整されているため
に、基板とエポキシ樹脂との密着性が良く、水分が浸入
しにくくなり、耐湿信頼性が向上する。本出願人は、エ
ポキシ樹脂と基板の両者の熱膨張係数を合せることに関
して既に出願済である(特願平3−118812号参
照)。
When the above-mentioned bare chip such as LSI or VLSI is mounted on an aluminum substrate, as shown in FIG. 5, a bare chip (21), an electrode on the bare chip surface, and a conductive path (22) are provided in order to ensure reliability against humidity. For connecting the wire wire (23) such as Al to the epoxy resin (24)
Cover with. Since the coefficient of thermal expansion of the epoxy resin is adjusted to be substantially the same as the coefficient of thermal expansion of the substrate, the adhesion between the substrate and the epoxy resin is good, moisture does not easily enter, and the moisture resistance reliability is high. improves. The applicant has already applied for matching the thermal expansion coefficients of both the epoxy resin and the substrate (see Japanese Patent Application No. 3-118812).

【0004】[0004]

【発明が解決しようとする課題】前述したように、エポ
キシ樹脂の封止剤と基板の熱膨張係数をマッチングさせ
ることで、両者の密着性が向上する反面、エポキシ樹脂
とベアチップとの熱膨張係数の差が著しく異なるため
に、温度変化(温度サイクル)により、封止剤とベアチ
ップとの接着部に繰返し応力が加わり、ベアチップ表面
でのワイヤボンディング部のネック切れあるいは電極か
ら剥離するという不良が発生する問題がある。
As described above, by matching the coefficient of thermal expansion of the epoxy resin and the coefficient of thermal expansion of the substrate, the adhesion between the two is improved, but the coefficient of thermal expansion between the epoxy resin and the bare chip is improved. The difference in temperature is remarkably different, and due to temperature change (temperature cycle), stress is repeatedly applied to the bonding part between the sealant and the bare chip, causing a defect such as a neck break in the wire bonding part on the bare chip surface or peeling from the electrode. I have a problem to do.

【0005】かかる、不良は本発明者の実験によると、
ベアチップのコーナ部に集中し、また、ワイヤ断線不良
となった周辺でチップ表面と封止剤の界面が剥離すると
いうことが判明した。これは、冷熱サイクルを繰返すこ
とで、最大応力がコーナ部に加わる。従ってそのコーナ
部で剥離が生じ、接着力でおさえられていたせん断方向
の歪がワイヤボンディング部に加わり、断線するものと
考えられている。
According to an experiment conducted by the present inventor, such defects are
It was found that the interface between the chip surface and the encapsulant was peeled off around the corner of the bare chip and where the wire disconnection failure occurred. This is because the maximum stress is applied to the corner portion by repeating the cooling / heating cycle. Therefore, it is considered that peeling occurs at the corner portion, strain in the shearing direction which is suppressed by the adhesive force is applied to the wire bonding portion, and the wire is broken.

【0006】これを図6のA及びBに基づいて説明す
る。図6のAは、熱衝撃によってエポキシ樹脂とチップ
との熱膨張係数の差によるせん断方向への応力が加わっ
ているが、エポキシ樹脂がチップと接着しているため
に、せん断方向の動きを抑制している。それに対して、
図6のBは、熱衝撃を繰返すことによって、最大応力が
加わるチップコーナ部でエポキシ樹脂が剥離し(斜線領
域)、せん断方向の歪がワイヤのボンディング部に加わ
り、最終的に断線に至るものである。
This will be described with reference to FIGS. 6A and 6B. In A of FIG. 6, stress in the shearing direction is applied due to the difference in thermal expansion coefficient between the epoxy resin and the chip due to thermal shock, but since the epoxy resin is bonded to the chip, movement in the shearing direction is suppressed. is doing. On the other hand,
FIG. 6B shows that the epoxy resin peels off at the corners of the chip where the maximum stress is applied (shaded areas) due to repeated thermal shocks, and strain in the shearing direction is applied to the wire bonding portion, eventually leading to disconnection. Is.

【0007】また、図7は、チップサイズの大きさを異
ならしめてワイヤ断線不良実験を行った結果である。実
験条件として、アルミニウム基板上に形成された銅箔上
にベアチップをAgペーストを介して固着搭載し、ベア
チップと銅箔とをAlワイヤ線でボンディングし、ベア
チップとワイヤ線をエポキシ樹脂で封止したものを−5
5℃/5min〜150℃/5min(液相)の熱衝撃
試験を行った。図7において、(A)はチップサイズが
5.47×8.05、(B)はチップサイズが5.16
×6.2であり、夫々10個のチップが用いられた。
Further, FIG. 7 shows the results of a wire disconnection failure experiment conducted with different chip sizes. As experimental conditions, a bare chip was fixedly mounted on a copper foil formed on an aluminum substrate via an Ag paste, the bare chip and the copper foil were bonded with an Al wire wire, and the bare chip and the wire wire were sealed with an epoxy resin. -5
A thermal shock test was performed at 5 ° C / 5 min to 150 ° C / 5 min (liquid phase). In FIG. 7, (A) has a chip size of 5.47 × 8.05, and (B) has a chip size of 5.16.
× 6.2, and 10 chips were used for each.

【0008】図7からわかるように、チップサイズが小
さい(B)は2000サイクル時で不良が発生し、チッ
プサイズが大きい(A)は500サイクル時で不良が発
生している。チップサイズがある程度小さいものはワイ
ヤ曲線不良の発生率は2000サイクル時でも低いため
環境条件が厳しい車載用の混成集積回路としても用いる
ことは可能である。
As can be seen from FIG. 7, a small chip size (B) has a defect at 2000 cycles, and a large chip size (A) has a defect at 500 cycles. If the chip size is small to a certain extent, the occurrence rate of wire curve defects is low even at 2000 cycles, so that it can be used as a vehicle-mounted hybrid integrated circuit under severe environmental conditions.

【0009】しかし、チップサイズが比較的大きいもの
は500サイクルで不良が発生し、前述したように使用
環境条件が厳しい車載用の混成集積回路として実装する
ことができないということが確認された。
However, it has been confirmed that a chip having a relatively large chip size fails in 500 cycles and cannot be mounted as a hybrid integrated circuit for use in a vehicle under severe environmental conditions as described above.

【0010】[0010]

【課題を解決するための手段】本発明は上述した課題を
解決して為されたものであり、所望形状の導電路が形成
された金属基板と、前記導電路の所定位置のパッド上に
固着されたチップ状の回路素子と、前記回路素子の近傍
に延在された複数の前記導電路と前記回路素子の電極と
を接続する複数のワイヤ線と、前記回路素子と前記ワイ
ヤ線を密封封止する封止樹脂とを具備し、前記封止樹脂
層はシリコン系樹脂が用いられ、前記回路素子上面にの
み熱膨張係数の低い絶縁樹脂薄膜が形成され、前記ワイ
ヤ線と前記導電路とが接続される接続部を前記基板の熱
膨張係数と実質的に略近似した熱膨張係数を有した樹脂
で被覆したことを特徴とする。
The present invention has been made to solve the above-mentioned problems, and is fixed on a metal substrate on which a conductive path having a desired shape is formed and a pad at a predetermined position of the conductive path. A chip-shaped circuit element, a plurality of wire lines connecting the plurality of conductive paths extending in the vicinity of the circuit element and electrodes of the circuit element, and the circuit element and the wire line are hermetically sealed. The sealing resin layer is made of a silicon-based resin, an insulating resin thin film having a low thermal expansion coefficient is formed only on the upper surface of the circuit element, and the wire wire and the conductive path are The connection part to be connected is coated with a resin having a coefficient of thermal expansion substantially similar to the coefficient of thermal expansion of the substrate.

【0011】また、このような混成集積回路であって、
前記絶縁樹脂膜は溶剤性フェノール系エポキシ樹脂を用
いたことを特徴とする。また、このような混成集積回路
であって、前記ワイヤ線はアルミニウム線を用いたこと
を特徴とする。また、このような混成集積回路であっ
て、前記金属基板はアルミニウム基板を用いたことを特
徴とする。
Further, in such a hybrid integrated circuit,
The insulating resin film is characterized by using a solvent-based phenolic epoxy resin. Further, in such a hybrid integrated circuit, the wire wire is an aluminum wire. Further, in such a hybrid integrated circuit, an aluminum substrate is used as the metal substrate.

【0012】[0012]

【作用】この様に本発明の混成集積回路では、チップ状
の回路素子上には熱膨張係数の低い絶縁樹脂膜が形成さ
れているため、絶縁樹脂膜とチップ状素子との熱膨張係
数の差が著しく緩和される。その結果、絶縁樹脂膜とチ
ップ状素子との界面での温度変化(冷熱サイクル)によ
る剥離が抑制される。またチップ素子上の電極と接続さ
れるワイヤ線のネック部は絶縁樹脂膜によって補強され
る構造となるため、冷熱サイクルによるせん断力が回転
素子側のワイヤ線のネック部に生じたとしても断線する
恐れはない。
As described above, in the hybrid integrated circuit of the present invention, since the insulating resin film having a low coefficient of thermal expansion is formed on the chip-shaped circuit element, the coefficient of thermal expansion between the insulating resin film and the chip-shaped element is reduced. The difference is significantly reduced. As a result, peeling due to temperature change (cooling / heating cycle) at the interface between the insulating resin film and the chip-shaped element is suppressed. Further, since the neck portion of the wire wire connected to the electrode on the chip element is reinforced by the insulating resin film, even if shearing force due to the cooling / heating cycle is generated in the neck portion of the wire wire on the rotating element side, it is disconnected. There is no fear.

【0013】また、導電路と接続されるワイヤ線のネッ
ク部分には基板の熱膨張係数と略近似した値を有する樹
脂で被覆されているため、冷熱サイクル時において基板
側でのワイヤ線のネック部での断線も発生しない。
Further, since the neck portion of the wire wire connected to the conductive path is covered with a resin having a value substantially similar to the coefficient of thermal expansion of the board, the neck of the wire wire on the board side during the thermal cycle. There is no disconnection in any part.

【0014】[0014]

【実施例】以下に、図1乃至図4に示した実施例に基づ
いて、本発明の混成集積回路を説明する。図1は本発明
の混成集積回路の要部拡大断面図であり、(1)は硬質
基板、(2)は絶縁樹脂層、(3)は導電路、(4)は
チップ状の回路素子、(5)はワイヤ線、(6)は絶縁
樹脂薄膜、(7)はシリコン樹脂層、(9)は被覆樹脂
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A hybrid integrated circuit according to the present invention will be described below based on the embodiments shown in FIGS. FIG. 1 is an enlarged cross-sectional view of a main part of a hybrid integrated circuit of the present invention. (1) is a hard substrate, (2) is an insulating resin layer, (3) is a conductive path, (4) is a chip-shaped circuit element, (5) is a wire wire, (6) is an insulating resin thin film, (7) is a silicon resin layer, and (9) is a coating resin.

【0015】硬質基板(1)は、例えばアルミニウム基
板等の金属基板が用いられる。かかるアルミニウム基板
表面には周知の陽極酸化技術により酸化アルミニウム膜
が形成されている。この基板(1)の一主面にはエポキ
シ樹脂等の絶縁樹脂層(2)を介して所望形状の導電路
(3)が形成される。かかる、導電路(3)は銅箔によ
り形成され、例えば前述した絶縁樹脂層(2)と銅箔と
がクラッド状に一体化された材料を基板(1)上に貼着
し、所定のエッチング技術によってパターン化される。
As the hard substrate (1), a metal substrate such as an aluminum substrate is used. An aluminum oxide film is formed on the surface of such an aluminum substrate by a known anodic oxidation technique. A conductive path (3) having a desired shape is formed on one main surface of the substrate (1) through an insulating resin layer (2) such as an epoxy resin. The conductive path (3) is formed of a copper foil, and for example, a material in which the above-mentioned insulating resin layer (2) and the copper foil are integrated in a clad shape is adhered to the substrate (1) and a predetermined etching is performed. Patterned by technology.

【0016】図1からでは明らかにされてないが、導電
路(3)は基板(1)の略全面の領域に形成されてお
り、所定の位置に回路素子を固着するパッド(3A)が
形成され、かかるパッド(3A)の周辺近傍には複数の
導電路(3)が延在形成されている。各パッド(3A)
上には複数の回路素子(4)が固着搭載される。例え
ば、トランジスタ、チップ抵抗等の回路素子及びLS
I、VLSI等のチップ状の回路素子(4)がAgペー
スト等の接着剤(8)を介してパッド(3A)上に固着
される。一方、回路素子(4)上の電極と導電路(3)
との接続は約20〜40μ径のAlワイヤ線(5)によ
り、超音波ボンディング等の接続手段を用いて電気的に
接続される。
Although not clearly shown in FIG. 1, the conductive path (3) is formed in a region of substantially the entire surface of the substrate (1), and a pad (3A) for fixing a circuit element is formed at a predetermined position. A plurality of conductive paths (3) are formed to extend near the periphery of the pad (3A). Each pad (3A)
A plurality of circuit elements (4) are fixedly mounted on the top. For example, circuit elements such as transistors and chip resistors and LS
A chip-shaped circuit element (4) such as I or VLSI is fixed onto the pad (3A) via an adhesive (8) such as Ag paste. On the other hand, the electrodes and conductive paths (3) on the circuit element (4)
The connection is made with an Al wire wire (5) having a diameter of about 20 to 40 μm and is electrically connected using a connecting means such as ultrasonic bonding.

【0017】本発明の特徴とするところは、チップ状の
回路素子(4)上に熱膨張係数の低い絶縁樹脂薄膜
(6)(以下樹脂薄膜という)を設け、且つ、導電路
(3)上に接続されるワイヤ線(5)のネック部(5
B)を基板(1)と略近似した熱膨張係数を有した樹脂
で被覆するところにある。先ず、樹脂薄膜(6)につい
て説明すると、樹脂薄膜(6)の熱膨張係数は、回路素
子(4)の熱膨張係数と略同一かあるいは近似した値に
まで低く設定されている。即ち、回路素子(4)の熱膨
張係数は約3〜4×10-6/℃と比較的低いために、本
実施例で用いられる樹脂薄膜(6)の熱膨張係数はシリ
カ等のフィラーを高密度充填し約10×10-6/℃に調
整されている。更に述べると、樹脂薄膜(6)は前述し
たように、回路素子(4)上に薄く形成する必要がある
ために溶剤性のフェノール硬化系エポキシ樹脂が用いら
れる。溶剤性のフェノール硬化系樹脂は液状であるため
にフィラーが高密度充填されているにもかかわらず約1
00μ〜500μ程度の膜厚の樹脂薄膜(6)を回路素
子上に容易に形成することができる。
A feature of the present invention is that an insulating resin thin film (6) having a low coefficient of thermal expansion (hereinafter referred to as a resin thin film) is provided on a chip-shaped circuit element (4), and a conductive path (3) is provided. The neck (5) of the wire (5) connected to
B) is covered with a resin having a coefficient of thermal expansion substantially similar to that of the substrate (1). First, the resin thin film (6) will be described. The thermal expansion coefficient of the resin thin film (6) is set to a value substantially the same as or close to the thermal expansion coefficient of the circuit element (4). That is, since the thermal expansion coefficient of the circuit element (4) is relatively low at about 3 to 4 × 10 −6 / ° C., the thermal expansion coefficient of the resin thin film (6) used in the present example is a filler such as silica. It is densely packed and adjusted to about 10 × 10 -6 / ° C. Further, since the resin thin film (6) needs to be thinly formed on the circuit element (4) as described above, a solvent-based phenol-curable epoxy resin is used. Solvent-based phenol-curing resin is liquid, so it is about 1
The resin thin film (6) having a film thickness of about 00 μ to 500 μ can be easily formed on the circuit element.

【0018】回路素子(4)上に樹脂薄膜(6)を形成
する場合、前述したように樹脂が溶剤性であるために、
回路素子(4)の大きさに対応した適量の樹脂をポッテ
ィングし、加熱処理するだけで形成できる。即ち、回路
素子(4)上の略全面には前述した樹脂薄膜(6)が形
成されるために、ワイヤ線(5)のネック部(5A)は
樹脂薄膜(6)によって補強されることになる。
When the resin thin film (6) is formed on the circuit element (4), since the resin is solvent-based as described above,
It can be formed only by potting an appropriate amount of resin corresponding to the size of the circuit element (4) and heat treatment. That is, since the resin thin film (6) is formed on substantially the entire surface of the circuit element (4), the neck portion (5A) of the wire wire (5) is reinforced by the resin thin film (6). Become.

【0019】本実施例では、樹脂薄膜(6)の樹脂材料
として、溶剤性のフェノール硬化性樹脂を用いたが、そ
の他の材料として酸無水物硬化系エポキシ樹脂あるいは
アミン硬化系エポキシ樹脂を用いることができる。しか
し、それらの中でフェノール系硬化樹脂が一番耐湿性が
優れているため本実施例ではフェノール硬化系を用い
た。
In this embodiment, a solvent-based phenol curable resin is used as the resin material of the resin thin film (6), but an acid anhydride cured epoxy resin or amine cured epoxy resin is used as the other material. You can However, among these, the phenol-based curable resin has the highest moisture resistance, and therefore the phenol-cured system is used in this embodiment.

【0020】一方、基板(1)側のワイヤ線(5)のネ
ック部(5B)を被覆する被覆樹脂(9)の熱膨張係数
は前述したように基板(1)の熱膨張係数と略同一に調
整されている。即ち、本発明に用いる被覆樹脂(9)は
冷熱サイクル条件に設定して種々に変更される。例え
ば、冷熱サイクル条件が−50〜+150℃範囲である
場合、その条件の上限以上の150℃以上のガラス転移
温度(TG)を有するエポキシ系樹脂を用い、その樹脂
中に約57重量比%の無機フィラー(シリカ等)を混入
させることにより被覆樹脂(9)のαを基板(1)のα
と同一の約25×10-6/℃に調整することができる。
On the other hand, the thermal expansion coefficient of the coating resin (9) for coating the neck portion (5B) of the wire (5) on the substrate (1) side is substantially the same as the thermal expansion coefficient of the substrate (1) as described above. Has been adjusted to. That is, the coating resin (9) used in the present invention is variously changed by setting it in the cold heat cycle condition. For example, when the thermal cycle condition is in the range of −50 to + 150 ° C., an epoxy resin having a glass transition temperature (TG) of 150 ° C. or higher, which is equal to or higher than the upper limit of the condition, is used, and about 57 wt% of the resin is used. By mixing an inorganic filler (silica or the like), α of the coating resin (9) is changed to α of the substrate (1).
The same can be adjusted to about 25 × 10 −6 / ° C.

【0021】ところで、前述した樹脂は回路素子(4)
表面に直接コーティングされるために耐湿信頼性を確保
する必要があるために高純度化された樹脂が用いられて
いる。本実施例で用いられた樹脂は硬化物中の不純物イ
オン濃度が非常に低く(Cl -10ppm,Na+2〜3
ppm)、LSI用のトランスファーモールド樹脂と同
レベルまで高純度化されている。従って、回路素子
(4)との密着性が良く、水分が浸入しにくいため、高
い耐湿信頼性が得られる。また、α線によるソフトエラ
ーを発生しやすいDRAM等のチップ状回路素子を実装
する場合であっても問題はない。
By the way, the above-mentioned resin is the circuit element (4).
Ensures moisture resistance reliability as it is coated directly on the surface
Highly purified resin is used for
There is. The resin used in this example is an impurity in the cured product.
Very low on concentration (Cl -10 ppm, Na+2-3
ppm), same as transfer mold resin for LSI
It is highly purified to the level. Therefore, the circuit element
(4) Adhesion is good and it is difficult for moisture to enter, so
High moisture resistance reliability is obtained. In addition, soft error due to α rays
Chip-like circuit elements such as DRAM that easily generate
There is no problem even if you do.

【0022】このように、本発明に依れば、回路素子
(4)上に低い熱膨張率を有する樹脂薄膜(6)を形成
することにより、回路素子(4)と樹脂薄膜(6)との
熱膨張係数がマッチングされるため、冷熱サイクル時に
おいても素子(4)と樹脂薄膜(6)との界面が剥離し
ない。従って、厳しい冷熱サイクル条件下でせん断力が
回路素子(4)のコーナ部に加わったとしても、前述し
たように回路素子(4)と樹脂薄膜(6)の界面が剥離
せず、又ワイヤ線(5)のネック部(5A)が樹脂薄膜
(6)によって補強されているために、ワイヤ線(5)
の固着強度が増加し、従来のようなヒートサイクル時に
おけるワイヤ線断線不良を著しく抑制することができ
る。
As described above, according to the present invention, by forming the resin thin film (6) having a low coefficient of thermal expansion on the circuit element (4), the circuit element (4) and the resin thin film (6) are formed. Since the coefficient of thermal expansion is matched, the interface between the element (4) and the resin thin film (6) does not peel even during the thermal cycle. Therefore, even if a shearing force is applied to the corner portion of the circuit element (4) under severe thermal cycling conditions, the interface between the circuit element (4) and the resin thin film (6) is not separated as described above, and the wire wire is not removed. Since the neck portion (5A) of (5) is reinforced by the resin thin film (6), the wire wire (5)
The adhesive strength of the wire is increased, and the wire disconnection failure during the heat cycle as in the conventional case can be remarkably suppressed.

【0023】また、基板(1)側のワイヤ線(5)のネ
ック部(5B)には基板(1)の膨張係数と同一の値を
有した樹脂被覆されているために、冷熱サイクル時にお
いても基板(1)と被覆樹脂(9)との熱膨張係数の差
がないためにワイヤ線(5)のネック部(5B)に応力
が発生せず、ネック部(5B)は被覆樹脂(9)で強固
に補強されることになる。
Further, since the neck portion (5B) of the wire wire (5) on the side of the substrate (1) is coated with a resin having the same expansion coefficient as that of the substrate (1), the neck portion (5B) is covered with the resin during the heat cycle. Since there is no difference in the coefficient of thermal expansion between the substrate (1) and the coating resin (9), no stress is generated in the neck portion (5B) of the wire wire (5), and the neck portion (5B) is covered with the coating resin (9). ) Will be strongly reinforced.

【0024】その結果、比較的大型のチップ状の回路素
子(4)であっても、本発明を用いることで、使用環境
の厳しい、例えば車載用の混成集積回路基板上に実装し
ても十分な信頼性が確認されている。ところで、図2及
び図3は、Alワイヤ線の引張り試験の結果を示す分布
グラフである。図2はコーティングなしの状態で行った
もので、図3は樹脂薄膜(6)を回路素子(4)上に形
成し且つネック部(5B)を被覆樹脂(9)で被覆して
行ったものである。測定条件としては、アルミニウム基
板上に形成した銅箔上に40μ径のAlワイヤを64本
ボンディングしたLSIチップを10個測定した。ま
た、図4に示すようにテンションゲージの先に取付けた
カギ状の針金(10)をAlワイヤ線(5)のループに
かけて、ひき上げていき、曲線したときのゲージの目盛
りを読んだものである。
As a result, by using the present invention, even a relatively large chip-shaped circuit element (4) can be mounted on a hybrid integrated circuit board for use in a harsh environment such as a vehicle. The reliability is confirmed. By the way, FIG. 2 and FIG. 3 are distribution graphs showing the results of the tensile test of the Al wire wire. 2 is performed without coating, and FIG. 3 is performed with the resin thin film (6) formed on the circuit element (4) and the neck portion (5B) covered with the coating resin (9). Is. As the measurement conditions, 10 LSI chips in which 64 Al wires having a diameter of 40 μm were bonded on a copper foil formed on an aluminum substrate were measured. In addition, as shown in FIG. 4, a hook-shaped wire (10) attached to the tip of the tension gauge was hooked on the loop of the Al wire wire (5) and pulled up to read the scale of the gauge when curved. is there.

【0025】図2に示すように、コーティングなし構造
では、引張強度が5.4g〜16.3g内の間で分布
し、その平均引張強度は12.3gである。また、ほと
んどの断線モードがLSI側のボンディング部のネック
切れであった。それに対して、図3では引張強度が1
8.7g〜27.4g内で分布し、その平均引張強度は
22.0gである。図2及び図3を比較すると図3の方
が分布範囲が挟まく、且つ引張強度も向上していること
がわかる。また、図3の断線モードは全てワイヤ線の測
定部での破断であった。従って、前述したように、大型
のDRAM等のチップ状の回路素子(4)を基板(1)
上にダイボンドし、環境条件及び高信頼性が要求され
る、例えば車載用等の混成集積回路として用いることが
できる。
As shown in FIG. 2, in the uncoated structure, the tensile strength is distributed within the range of 5.4 g to 16.3 g, and the average tensile strength is 12.3 g. Most of the disconnection modes were broken necks in the bonding part on the LSI side. On the other hand, in FIG. 3, the tensile strength is 1
It is distributed within 8.7 g to 27.4 g and has an average tensile strength of 22.0 g. Comparing FIGS. 2 and 3, it can be seen that the distribution range is narrower and the tensile strength is improved in FIG. The disconnection modes shown in FIG. 3 were all fractures at the measurement portion of the wire. Therefore, as described above, the chip-shaped circuit element (4) such as a large DRAM is mounted on the substrate (1).
It can be die-bonded on top and used as a hybrid integrated circuit that is required for environmental conditions and high reliability, such as for a vehicle.

【0026】ところで、前述したように回路素子(4)
上に樹脂薄膜(6)を形成した後、図1に示すように回
路素子(4)と複数のワイヤ線(5)はシリコーンゲル
(7)で完全に封止される。かかる、シリコーンゲル
(7)によりワイヤ線(5)の腐食が防止される。ま
た、シリコーンゲル(7)は極めて低弾性のために、冷
熱サイクル時に膨張収縮してもワイヤ線(5)を断線さ
せるだけの応力が発生しないので、シリコーンゲル
(7)によりワイヤ線(5)が断線されることはない。
更に、冷熱サイクルによる発生する回路素子(4)と基
板(1)間の熱膨張係数の差による応力は、ワイヤ線
(5)のループ形状部分で緩和吸収されるためにワイヤ
線(5)のボンディング部に何んら問題は発生しない。
By the way, as described above, the circuit element (4)
After forming the resin thin film (6) thereon, the circuit element (4) and the plurality of wire lines (5) are completely sealed with silicone gel (7) as shown in FIG. The silicone gel (7) prevents corrosion of the wire (5). In addition, since the silicone gel (7) has extremely low elasticity, no stress enough to break the wire wire (5) is generated even when the silicone gel (7) expands and contracts during the heat cycle, so the silicone gel (7) prevents the wire wire (5) from being broken. Will not be disconnected.
Furthermore, the stress due to the difference in the coefficient of thermal expansion between the circuit element (4) and the substrate (1) generated by the thermal cycle is relaxed and absorbed by the loop-shaped portion of the wire (5), so that the stress of the wire (5) is reduced. No problem occurs in the bonding part.

【0027】更に、シリコーンゲル(7)を塗布する際
に、基板(1)上に被覆樹脂(9)があらかじめネック
部(5B)に形成されているために、被覆樹脂(9)が
流止防止材の働きを行うことになる。
Further, when the silicone gel (7) is applied, the coating resin (9) is formed on the substrate (1) in advance on the neck portion (5B), so that the coating resin (9) stops flowing. It will act as a preventive material.

【0028】[0028]

【発明の効果】以上に詳細した如く、本発明に依れば、
使用環境条件及び高信頼性が要求される車載用の混成集
積回路基板上に比較的大型のチップ状の回路素子を実装
したとしても、冷熱サイクル時に回路素子と導体とを接
続するワイヤ線が断線することがない。その結果、本発
明を用いることで、極めて高信頼性の混成集積回路を提
供することができる。
As described above in detail, according to the present invention,
Even if a relatively large chip-shaped circuit element is mounted on a vehicle-mounted hybrid integrated circuit board that requires high environmental conditions and high reliability, the wire that connects the circuit element and the conductor during a thermal cycle is broken. There is nothing to do. As a result, by using the present invention, a highly reliable hybrid integrated circuit can be provided.

【0029】また、前述したように、大型のチップ状の
回路素子をダイボンドできるために厳しい環境化で使用
できる混成集積回路の高密度実装化を実況できる。その
結果、高密度且つ極めて小型化された混成集積回路を提
供することができる。
Further, as described above, since a large chip-shaped circuit element can be die-bonded, high density packaging of a hybrid integrated circuit which can be used in a harsh environment can be implemented. As a result, it is possible to provide a high-density and extremely miniaturized hybrid integrated circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明を説明する混成集積回路の要部拡
大断面図である。
FIG. 1 is an enlarged sectional view of an essential part of a hybrid integrated circuit for explaining the present invention.

【図2】図2はワイヤ線引張り試験のデータである。FIG. 2 is data from a wire pull test.

【図3】図3はワイヤ線張り試験のデータである。FIG. 3 is data of a wire drawing test.

【図4】図4は図2及び図3の試験の状態を示す断面図
である。
FIG. 4 is a cross-sectional view showing a state of the test of FIGS. 2 and 3.

【図5】図5は従来の混成集積回路を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing a conventional hybrid integrated circuit.

【図6】図6は熱衝撃がワイヤ線のネック部に加わると
きの説明図である。
FIG. 6 is an explanatory diagram when a thermal shock is applied to the neck portion of the wire wire.

【図7】図7はワイヤ線の断線不良率を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing a disconnection defect rate of a wire wire.

【符号の説明】[Explanation of symbols]

(1) 基板 (2) 絶縁樹脂層 (3) 導電路 (4) 回路素子 (5) ワイヤ線 (6) 樹脂薄膜 (7) シリコーンゲル (9) 被覆樹脂 (1) Substrate (2) Insulating resin layer (3) Conductive path (4) Circuit element (5) Wire wire (6) Resin thin film (7) Silicone gel (9) Coating resin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所望形状の導電路が形成された金属基板
と、前記導電路の所定位置のパッド上に固着されたチッ
プ状の回路素子と、前記回路素子の近傍に延在された複
数の前記導電路と前記回路素子の電極とを接続する複数
のワイヤ線と、前記回路素子と前記ワイヤ線を密封封止
する封止樹脂とを具備し、前記封止樹脂層はシリコン樹
脂が用いられ、前記回路素子上面にのみ熱膨張係数の低
い絶縁樹脂膜が形成され、前記ワイヤ線と前記導電路が
接続される接続部を前記基板の熱膨張係数と実質的に略
近似した熱膨張係数を有した樹脂で被覆したことを特徴
とする混成集積回路。
1. A metal substrate on which a conductive path having a desired shape is formed, a chip-shaped circuit element fixed on a pad at a predetermined position of the conductive path, and a plurality of circuit elements extending in the vicinity of the circuit element. A plurality of wire lines that connect the conductive paths and the electrodes of the circuit element are provided, and a sealing resin that hermetically seals the circuit element and the wire line is provided, and a silicone resin is used for the sealing resin layer. An insulating resin film having a low coefficient of thermal expansion is formed only on the upper surface of the circuit element, and a connecting portion where the wire wire and the conductive path are connected has a coefficient of thermal expansion that is substantially approximate to the coefficient of thermal expansion of the substrate. A hybrid integrated circuit, characterized in that it is covered with a resin.
【請求項2】 前記絶縁樹脂膜は溶剤性フェノール系エ
ポキシ樹脂を用いたことを特徴とする請求項1記載の混
成集積回路。
2. The hybrid integrated circuit according to claim 1, wherein the insulating resin film uses a solvent-based phenolic epoxy resin.
【請求項3】 前記ワイヤ線はアルミニウム線を用いた
ことを特徴とする請求項1記載の混成集積回路。
3. The hybrid integrated circuit according to claim 1, wherein the wire wire is an aluminum wire.
【請求項4】 前記金属基板はアルミニウム基板を用い
たことを特徴とする請求項1記載の混成集積回路。
4. The hybrid integrated circuit according to claim 1, wherein the metal substrate is an aluminum substrate.
JP3243587A 1991-09-24 1991-09-24 Hybrid integrated circuit Pending JPH0582677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3243587A JPH0582677A (en) 1991-09-24 1991-09-24 Hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3243587A JPH0582677A (en) 1991-09-24 1991-09-24 Hybrid integrated circuit

Publications (1)

Publication Number Publication Date
JPH0582677A true JPH0582677A (en) 1993-04-02

Family

ID=17106039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3243587A Pending JPH0582677A (en) 1991-09-24 1991-09-24 Hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPH0582677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288426A (en) * 1995-04-20 1996-11-01 Nec Corp Semiconductor device
EP0771029A3 (en) * 1995-10-24 1997-07-30 Oki Electric Ind Co Ltd Semiconductor device having an improved structure for preventing cracks, and method of manufacturing the same
JP2019067876A (en) * 2017-09-29 2019-04-25 Hoya Candeo Optronics株式会社 Optical semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288426A (en) * 1995-04-20 1996-11-01 Nec Corp Semiconductor device
EP0771029A3 (en) * 1995-10-24 1997-07-30 Oki Electric Ind Co Ltd Semiconductor device having an improved structure for preventing cracks, and method of manufacturing the same
US5864174A (en) * 1995-10-24 1999-01-26 Oki Electric Industry Co., Ltd. Semiconductor device having a die pad structure for preventing cracks in a molding resin
EP1039540A1 (en) * 1995-10-24 2000-09-27 Oki Electric Industry Co., Ltd. Semiconductor device having an improved structure for preventing cracks, improved small-sized semiconductor and method of manufacturing the same
US6177725B1 (en) 1995-10-24 2001-01-23 Oki Electric Industry Co., Ltd. Semiconductor device having an improved structure for preventing cracks, improved small-sized semiconductor and method of manufacturing the same
US6459145B1 (en) 1995-10-24 2002-10-01 Oki Electric Industry Co., Ltd. Semiconductor device having an improved structure for preventing cracks, and improved small-sized semiconductor
US6569755B2 (en) 1995-10-24 2003-05-27 Oki Electric Industry Co., Ltd. Semiconductor device having an improved structure for preventing cracks, improved small sized semiconductor and method of manufacturing the same
JP2019067876A (en) * 2017-09-29 2019-04-25 Hoya Candeo Optronics株式会社 Optical semiconductor device

Similar Documents

Publication Publication Date Title
US6576993B2 (en) Packages formed by attaching a semiconductor chip to a leadframe with a footprint of about the same size as the chip
US4172907A (en) Method of protecting bumped semiconductor chips
JP2501953B2 (en) Semiconductor device
JPH0582677A (en) Hybrid integrated circuit
JPH0582676A (en) Hybrid integrated circuit
JPH0582678A (en) Hybrid integrated circuit
JPH0590448A (en) Hybrid integrated circuit
KR100438876B1 (en) Chip module
JPS63239826A (en) Semiconductor device
JPH01192125A (en) Mounting structure of semiconductor device
JPH05109927A (en) Hybrid integrated circuit and manufacture thereof
JP3508478B2 (en) Method for manufacturing semiconductor device
JP2903013B2 (en) Circuit package including metal substrate and mounting method
JPH0590449A (en) Hybrid integrated circuit
JP3331146B2 (en) Manufacturing method of BGA type semiconductor device
JPH0777226B2 (en) Semiconductor device and manufacturing method thereof
JP2509509B2 (en) Tape carrier and tape carrier device using the same
US20020106903A1 (en) Manufacturing method of semiconductor device
JPH04150061A (en) Semiconductor device
JP2707984B2 (en) Semiconductor device
JP3145892B2 (en) Resin-sealed semiconductor device
JP2779322B2 (en) Semiconductor package manufacturing method
JPS6329533A (en) Semiconductor device
JPS5848932A (en) Preparation of semiconductor device
JPH05251602A (en) Manufacture of hybrid ic