JPH058249B2 - - Google Patents

Info

Publication number
JPH058249B2
JPH058249B2 JP62220989A JP22098987A JPH058249B2 JP H058249 B2 JPH058249 B2 JP H058249B2 JP 62220989 A JP62220989 A JP 62220989A JP 22098987 A JP22098987 A JP 22098987A JP H058249 B2 JPH058249 B2 JP H058249B2
Authority
JP
Japan
Prior art keywords
coke
furnace
core
reducing agent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62220989A
Other languages
Japanese (ja)
Other versions
JPS6465219A (en
Inventor
Yoshio Kimura
Shoken Shimizu
Shinichi Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22098987A priority Critical patent/JPS6465219A/en
Publication of JPS6465219A publication Critical patent/JPS6465219A/en
Publication of JPH058249B2 publication Critical patent/JPH058249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高炉炉芯固体還元剤層の充填状態を
固体還元剤の軸心装入によつて制御するに当た
り、高炉炉芯固体還元剤層の充填状態に円周方向
の偏りあるいは局所的偏在があるとき、これに対
処する方法に関するものである。尚固体還元剤と
してはコークスの他、木炭や塊状炭等の各種炭素
質材料が例示されるが、本明細書では固体還元剤
としてもつとも代表的なコークスを取りあげて説
明を進める。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for controlling the filling state of the solid reducing agent layer in the blast furnace core by charging the solid reducing agent in the axial center. The present invention relates to a method for dealing with cases where there is circumferential deviation or local uneven distribution in the filling state of the layer. In addition to coke, various carbonaceous materials such as charcoal and lump charcoal are exemplified as the solid reducing agent, but in this specification, coke will be taken up as a representative example of the solid reducing agent.

[従来の技術] 第2図は高炉炉内状況を示す断面説明図で、高
炉頂部から交互に装入される鉱石OとコークスC
は層状を呈しつつ塊状帯Kを徐々に降下し、羽口
Bから吹込まれる熱風とコークスCとの反応によ
つて生成する還元性ガス(CO)の作用で還元さ
れ、軟化融着帯SMを形成した後、溶滴は炉芯コ
ークス層Aの隙間を通りぬけて炉底部に溶銑Fと
して貯留する。そしてこの溶銑Fは、定期的にま
たは連続的に出湯口Eより抜き出される。
[Prior art] Fig. 2 is a cross-sectional explanatory diagram showing the situation inside the blast furnace, in which ore O and coke C are charged alternately from the top of the blast furnace.
gradually descends through the massive zone K while exhibiting a layered structure, and is reduced by the action of reducing gas (CO) generated by the reaction between the hot air blown from the tuyere B and the coke C, forming a softened cohesive zone SM. After forming, the droplets pass through the gaps in the coke layer A of the furnace core and are stored as hot metal F at the bottom of the furnace. This hot metal F is periodically or continuously extracted from the tap E.

この様な高炉操業を安定にしかも効率よく進め
るには、炉内を上昇するガス流分布を適正に制御
することが重要である。即ち第3図及び第4図は
炉内レースウエイL近傍の炉内ガスの流れを示す
要部断面図であり、第4図に示す様に炉芯コーク
ス層Aの充填状態(通気性)が悪化した場合、羽
口Bから吹込まれる熱風は炉芯側へ進入し難くな
り炉壁側へ流れて周辺流を形成する。そしてガス
の周辺流化によつて吹き抜けや付着物の生成が起
こり、また融着帯形状がW字形となり高炉操業が
不安定となる。これに対し第3図に示す様に炉芯
コークス層Aの通気性が良好な場合は、熱風は炉
芯コークス層Aの中心部まで侵入し易くなりガス
流は中心流を形成して軟化融着帯形状も逆V字形
となる。この結果高炉操業状態は安定化する。
In order to operate such a blast furnace stably and efficiently, it is important to appropriately control the gas flow distribution rising inside the furnace. That is, FIGS. 3 and 4 are main part sectional views showing the flow of gas in the furnace near the raceway L in the furnace, and as shown in FIG. 4, the filling state (air permeability) of the furnace core coke layer A is If the situation worsens, the hot air blown from the tuyeres B will have difficulty entering the furnace core side and will flow toward the furnace wall side, forming a peripheral flow. The peripheral flow of gas causes blow-through and the formation of deposits, and the cohesive zone becomes W-shaped, making blast furnace operation unstable. On the other hand, as shown in Figure 3, when the permeability of the core coke layer A is good, the hot air easily penetrates to the center of the core coke layer A, and the gas flow forms a central flow to soften and melt. The shape of the belt is also inverted V-shape. As a result, the operating conditions of the blast furnace are stabilized.

一方高炉解体調査の結果から炉底耐火物損傷の
最大の問題は炉底と炉芯部側壁の接続部(コーナ
ー部)における異常侵食であることが指摘されて
いるが、この点に関し特に本発明者等が確認した
新しい事実は、炉芯コークス層Aの充填状態がコ
ーナー部異常侵食に深い関係があるという事実で
ある。即ち第5図及び第6図は炉床の溶銑流れを
示す水平断面説明図であり、第6図に示す様に炉
芯コークス層Aの充填状態(通液性)が悪い場合
は、溶銑及び溶滓は炉芯コークス層を迂回して炉
芯側壁側を流れ周辺流を形成し、この周辺流が前
記コーナー部の異常侵食を促進する。これに対し
第5図に示す様に炉芯コークス層Aの充填状態が
良好である場合は、溶銑及び溶滓は炉芯コークス
層Aの隙間を通つて炉体全体に万編なく流れた後
中心流を形成する。上記の様に炉芯コークス層の
充填状態(通気性、通液性)は、高炉操業状態や
炉底耐火物の寿命に重大な影響を与える因子であ
り、高炉操業上重要な監視項目の一つであるが、
現在のところこれを制御する有効な手段は見出さ
れていない。尚中心ガス流の制御手段を開示する
ものとして実公昭61−42896、装入物分布均等化
方法を開示するものとして特開昭61−227109等が
夫々出願されているが、これらはいずれも炉芯コ
ークス層の充填状態を制御しようとするものでは
なく、また炉芯コークス層の高炉操業に与える影
響を述べたものでもない。
On the other hand, the results of blast furnace dismantling investigations indicate that the biggest problem with damage to the bottom refractories is abnormal erosion at the joints (corners) between the bottom and the side walls of the furnace core. A new fact confirmed by these authors is that the filling state of the core coke layer A has a deep relationship with abnormal corner erosion. That is, FIGS. 5 and 6 are horizontal cross-sectional views showing the flow of hot metal in the hearth. As shown in FIG. The slag bypasses the core coke layer and flows along the side wall of the furnace core to form a peripheral flow, and this peripheral flow promotes abnormal erosion of the corner portion. On the other hand, as shown in Figure 5, when the filling state of the furnace core coke layer A is good, the hot metal and slag flow throughout the furnace body through the gaps in the furnace core coke layer A. Forms a central flow. As mentioned above, the filling state of the core coke layer (air permeability, liquid permeability) is a factor that has a significant impact on the operational status of the blast furnace and the life of the bottom refractory, and is one of the important monitoring items in the operation of the blast furnace. However,
At present, no effective means to control this has been found. Furthermore, Utility Model Publication No. 61-42896, which discloses a means for controlling the central gas flow, and Japanese Patent Application Laid-open No. 61-227109, which discloses a method for equalizing the charge distribution, have been filed, but both of these patent applications apply to furnaces. This paper does not attempt to control the filling state of the core coke layer, nor does it describe the influence of the core coke layer on blast furnace operation.

[発明が解決しようとする問題点] 本発明者等はこうした事情に着目し、高炉操業
の安定化や炉底耐火物の損耗に大きな影響を及ぼ
す炉芯コークス層充填状態の制御方法について検
討を重ねた結果、高炉頂部からコークスおよび鉱
石を装入するに当たり鉱石層の炉軸心部領域にコ
ークスを適宜装入するか又はコークス層の炉軸心
部領域に通気性および通液性の向上に適したコー
クスを適宜装入することによつて炉芯コークス層
の充填状態を適正に制御する方法を完成し、別途
特許出願[昭和62年9月3日提出の特許出願(1)]
した。
[Problems to be Solved by the Invention] Focusing on these circumstances, the present inventors have investigated a method for controlling the filling state of the core coke layer, which has a significant effect on the stabilization of blast furnace operation and the wear and tear of the bottom refractory. As a result, when charging coke and ore from the top of the blast furnace, it is necessary to appropriately charge coke into the core region of the ore layer or to improve air permeability and liquid permeability in the core region of the coke layer. Completed a method to properly control the filling state of the furnace core coke layer by appropriately charging appropriate coke, and filed a separate patent application [Patent application (1) filed on September 3, 1985]
did.

実用高炉においても上記出願方法は優れた効果
を発揮したが、操業状態が円周方向に見て偏つた
場合には、円周方向のばらつきがないことを前提
にした前記出願(1)の制御方法に何らかの修飾を施
す必要があることが分かつた。
The above-mentioned application method has shown excellent effects in practical blast furnaces, but when the operating conditions are biased in the circumferential direction, the control method of the above-mentioned application (1) assumes that there is no variation in the circumferential direction. It was found that some modification of the method was necessary.

即ち本発明は、実操業上問題となる操業状態の
円周方向偏りを適確に把握し、さらに該偏りに対
処し得る方法を提供しようとするものであり、こ
れにより前記出願(1)に係る炉芯コークス層の充填
状態制御方法の実効を十分にあげようとするもの
である。
That is, the present invention aims to provide a method for accurately grasping the deviation in the circumferential direction of the operational state, which is a problem in actual operation, and furthermore, providing a method for dealing with the deviation. The purpose of this invention is to fully improve the effectiveness of the method for controlling the filling state of the coke layer in the furnace core.

[問題点を解決するための手段] しかして本発明方法は、高炉頂部から固体還元
剤および鉱石を交互に装入して固体還元剤層およ
び鉱石層を積層していくに当たり、鉱石層の炉軸
心部領域に固体還元剤を適宜装入するか又は固体
還元剤層の炉軸心部領域に通気性および通液性の
向上に適した固体還元剤を適宜装入することによ
つて高炉炉芯固体還元剤層の通気性分布あるいは
通液性分布を調整することを基本制御に置きつ
つ、高炉全周の羽口における燃焼の円周方向バラ
ンスを偏心させることによつて前記軸心装入コー
クスによる炉芯の更新領域を偏心させ、炉芯にお
ける固体還元剤層の充填構造を調整する点に要旨
を有するものである。
[Means for Solving the Problems] According to the method of the present invention, when the solid reducing agent and ore are alternately charged from the top of the blast furnace and the solid reducing agent layer and ore layer are stacked, the ore layer is The blast furnace can be improved by appropriately charging a solid reducing agent into the axial center area or by appropriately charging a solid reducing agent suitable for improving air permeability and liquid permeability into the axial center area of the solid reducing agent layer. While the basic control is to adjust the air permeability distribution or liquid permeability distribution of the solid reducing agent layer in the core, the above-mentioned axis The gist of this method is to eccentrically change the renewal area of the furnace core by injected coke and adjust the filling structure of the solid reducing agent layer in the furnace core.

[作 用] 本発明方法を理解する上で重要な位置を占める
前記出願(1)の方法についてその完成に至る経緯並
びに概要を説明する。
[Function] The process leading to its completion and an overview of the method of application (1), which occupies an important position in understanding the method of the present invention, will be explained.

本発明者等は、まず始めに高炉の1/37縮少全
周模型を用いて高炉内の装入物降下時の装入物の
流線を調査した。第7図は模型実験から得られた
高炉内装入物の流線を模式的に示す断面説明図で
あり、この図から炉芯部Aへ供給されるコークス
は炉頂軸心部に装入したコークスによつて占めら
れることを見出した。尚実験においては、高炉模
型の羽口部に相当する位置に抜出し口Exを設け
て所定速度でコークスを抜出すと共に、炉底部を
昇降可能な円形テーブルで形成して、実験中は所
定速度で降下させることによつて実炉における炉
芯コークスの消費(燃焼および溶銑への侵炭・溶
解)を再現した。即ち炉頂軸心部に堆積したコー
クスは炉芯コークス層頂部まで降下した後、炉芯
コークスの降下速度が遅い為に(炉芯コークスが
入れ替わるには1〜2週間を要するとされてい
る)、炉芯コークス層の斜面に沿つて周辺部へ流
れていくが、その過程で軸心部堆積コークスの一
部が炉芯部へとり込まれ炉芯コークス層を形成す
る。そこで炉頂軸心部に堆積させた軸心装入コー
クスがどのようにして炉芯コークスの形成に影響
を与えるかについてさらに検討を重ねた。
The present inventors first investigated the streamlines of the charge as it descends inside the blast furnace using a 1/37 scaled model of the entire circumference of the blast furnace. Fig. 7 is a cross-sectional explanatory diagram schematically showing the flow lines of the contents in the blast furnace obtained from the model experiment, and from this figure, the coke supplied to the furnace core A is charged into the top axis of the furnace. It was found that it was dominated by coke. In the experiment, an extraction port Ex was provided at a position corresponding to the tuyere of the blast furnace model to extract coke at a predetermined speed, and the bottom of the furnace was formed with a circular table that could be raised and lowered, and the coke was extracted at a predetermined speed during the experiment. By lowering it, we reproduced the consumption of core coke (combustion and carburization/dissolution into hot metal) in an actual furnace. In other words, after the coke deposited at the axial center of the furnace top falls to the top of the furnace core coke layer, the rate of descent of the furnace core coke is slow (it is said that it takes 1 to 2 weeks for the furnace core coke to be replaced). The coke flows to the periphery along the slope of the core coke layer, and in the process, part of the coke deposited in the shaft core is taken into the core and forms the core coke layer. Therefore, we further investigated how the core-charged coke deposited at the core of the furnace top affects the formation of core coke.

即ち第7図に示される炉頂軸心部の無次元半径
rt/Rt(rt:炉頂部における中心堆積コークスの
堆積半径、Rt:炉頂部半径)が、0.06、0.08、
0.10、0.12の領域内にトレーサーコークスを送り
込んだ場合のトレーサーコークスによる炉芯の更
新状況(炉芯内でのトレーサーコークスの濃度分
布の変化状況)を調べたところ第8図が得られ
た。即ち第8図から明らかなように、炉芯コーク
ス層は高炉の軸心部を降下するトレーサーコーク
スによつて更新され、その更新領域は炉頂軸心部
に対するトレーサーコークス装入半径、即ちrt/
Rtの増大とともに拡大していることが分かる。
例えばrt/Rt:0.12の領域にトレーサーコークス
を装入した場合には、周辺部の一部を除き、炉芯
のほぼ全域がトレーサーコークスによつて更新さ
れており、前記領域に炉芯の通気性や通液性の調
整を目的とするコークスを装入すれば炉芯コーク
ス層の充填状態即ち炉芯の通気性や通液性を任意
に制御できることが分かる。
In other words, the dimensionless radius of the furnace top axis shown in Figure 7
rt/Rt (rt: deposition radius of centrally deposited coke at the furnace top, Rt: furnace top radius) is 0.06, 0.08,
When tracer coke was fed into the 0.10 and 0.12 regions, the renewal status of the furnace core by tracer coke (changes in the concentration distribution of tracer coke in the furnace core) was investigated, and the results shown in Figure 8 were obtained. That is, as is clear from FIG. 8, the furnace core coke layer is renewed by the tracer coke descending down the shaft center of the blast furnace, and the renewal area is the tracer coke charging radius with respect to the furnace top shaft center, that is, rt/
It can be seen that it expands as Rt increases.
For example, when tracer coke is charged in the region of rt/Rt: 0.12, almost the entire area of the furnace core is renewed with tracer coke except for a part of the periphery, and the furnace core is ventilated in this region. It can be seen that by charging coke for the purpose of adjusting the air permeability and liquid permeability, it is possible to arbitrarily control the filling state of the coke layer in the furnace core, that is, the permeability and liquid permeability of the furnace core.

こうした実験結果を更に積重ねたところ、軸心
装入コークスによつて炉芯コークスが更新される
としても高炉の規模や各種操業条件によつて左右
される炉芯コークスの更新期間が短いものほど上
記主旨の軸心装入コークスの装入領域は広くする
必要があり、更新期間が長いものでは装入領域を
可なり狭くしても炉芯コークスの構成を支配でき
ることが分かつた(後に詳しく述べる)。これら
を総合的に勘案した結果、前記無次元半径rt/Rt
(rt:炉頂部における中心堆積コークスの堆積半
径、Rt:炉頂部半径)が0.03の炉軸心部領域を最
下限として当該領域のコークス層形成域に通気性
及び通液性の向上に適したコークスを装入する
か、あるいは当該領域の鉱石層形成域にコークス
を別装入すれば、炉芯コークス層は当該コークス
で占められることになり、第2,3図で説明した
様に高炉上昇ガスは中心流を形成すると共に軟化
融着帯は逆V字形を安定に保ち、高い操業効率が
保障されるばかりでなく、出湯時の溶銑は第5図
で説明した如く炉床部を万遍なく出湯口方向へ流
れることとなり、炉底周辺壁の溶損も最小限に抑
えられる。尚上記rt/Rt≧0.03という限界値は高
炉の通常の炉芯コークス更新時間が7〜14日であ
ることから最も長い14日を若干上回る時間を基に
して規定したものであり、更新時間が短くなると
rt/Rtの許容下限値は0.03より大きくなる。ちな
みに第9図は炉芯コークスの全量更新期間が7
日、10日及び14日である場合のrt/Rtとrh/Rh
(rh:炉床位置における軸心装入コークスによつ
て更新される炉芯コークス層Aの半径、Rh:炉
床半経を示す)の関係を示したグラフであり、
(a),(b),(c)は更新時間が夫々10日、7日、14日の
場合の結果を示している。
After accumulating these experimental results, we found that even if the core coke is renewed by the coke charged in the core, the shorter the renewal period of the core coke, which is influenced by the scale of the blast furnace and various operating conditions, the above. It is necessary to widen the charging area of core-charged coke, and it was found that for long renewal periods, the composition of core coke can be controlled even if the charging area is quite narrow (details will be discussed later). . As a result of comprehensively considering these, the dimensionless radius rt/Rt
(rt: deposition radius of centrally deposited coke at the top of the furnace, Rt: radius of the furnace top) is the lowest limit in the core region of the furnace shaft of 0.03, and is suitable for improving air permeability and liquid permeability in the coke layer forming area If coke is charged or coke is charged separately into the ore layer forming area in the area, the core coke layer will be occupied by the coke, and as explained in Figures 2 and 3, the blast furnace will rise. The gas forms a central flow, and the softened cohesive zone maintains a stable inverted V-shape, which not only guarantees high operational efficiency, but also ensures that the molten metal flows throughout the hearth area as explained in Figure 5. This allows the melt to flow in the direction of the tap outlet, minimizing melting damage to the walls around the bottom of the furnace. Note that the above limit value of rt/Rt≧0.03 was specified based on the time slightly longer than 14 days, which is the longest since the normal core coke renewal time in blast furnaces is 7 to 14 days. When it gets shorter
The allowable lower limit value of rt/Rt is greater than 0.03. By the way, Figure 9 shows that the period for renewing the total amount of core coke is 7.
rt/Rt and rh/Rh for days, 10th and 14th
(rh: radius of the core coke layer A updated by core charged coke at the hearth position, Rh: hearth half meridian);
(a), (b), and (c) show the results when the update time was 10 days, 7 days, and 14 days, respectively.

そして(a),(b),(c)は夫々次式で表わすことがで
きる。
And (a), (b), and (c) can be respectively expressed by the following equations.

(a)…(rt/Rt)=0.164(rh/Rh)+0.082 (b)…(rt/Rt)=0.227(rh/Rh)+0.073 (c)…(rt/Rt)=0.114(rh/Rh)+0.036 前記出願(1)の方法の構成並びに作用効果は概略
以上の通りであるが、この方法は高炉操業状態に
円周方向のばらつきがないことを前提にして構成
されており(第7,8図参照)、炉頂軸心へ装入
されたコークスがそのままほぼ真下方向へ降下し
炉芯コークス層の頂点へ到達する装入物降下流線
を形成している場合には炉頂軸心装入コークスを
炉芯部へ効率良くしかも均一に堆積させることが
できる。
(a)…(rt/Rt)=0.164(rh/Rh)+0.082 (b)…(rt/Rt)=0.227(rh/Rh)+0.073 (c)…(rt/Rt)=0.114( rh/Rh)+0.036 The structure and effects of the method of application (1) are as outlined above, but this method is constructed on the premise that there is no variation in the operating conditions of the blast furnace in the circumferential direction. (see Figures 7 and 8), when the coke charged to the furnace top axis descends almost directly downwards, forming a downward charge flow line that reaches the top of the furnace core coke layer. The coke charged at the top of the furnace can be efficiently and uniformly deposited in the furnace core.

しかしながら炉芯コークス層の充填状態は必ず
しも円周方向に均等であるとは限らず、炉芯の通
気性や通液性が局所的(あるいは部分的)に悪化
した場合には、ガス流や溶銑流に偏りが生じ、高
炉の反応効率や熱効率の低下並びに熱損失の増大
や荷下がりの不安定化の原因となる。
However, the filling state of the furnace core coke layer is not necessarily uniform in the circumferential direction, and if the permeability or liquid permeability of the furnace core is locally (or partially) deteriorated, the gas flow or hot metal This creates an imbalance in the flow, which causes a decrease in the reaction efficiency and thermal efficiency of the blast furnace, an increase in heat loss, and destabilization of unloading.

本発明においては、炉芯コークス層充填状態の
こうした局部的悪化に対処する為に、前記構成に
示される様に羽口燃焼の偏心化という手法を採用
しており、これにより前記出願(1)の方法における
問題点を解消することに成功した。
In the present invention, in order to deal with such local deterioration of the filling state of the core coke bed, a method of eccentricity of tuyere combustion is adopted as shown in the above configuration, and this makes the above-mentioned application (1) We succeeded in solving the problems in this method.

第1図は、模型実験において、高炉模型の周面
に配設された羽口相当抜出し口ExのうちX方向
近傍の数個の抜出し口を封鎖してX方面での荷下
がりを停止した場合(実高炉での羽口燃焼停止に
相当する)の装入物降下流線を示す断面説明図で
あり、軸心部を降下する装入物粒子は炉芯表層部
においてX方向と逆の方向に傾斜しつつ降下して
いる。このことは、高炉全周の羽口における燃焼
を特定方向だけ停止あるいは出力低下させれば当
該方向の荷下がりが停止あるいは遅滞して、該特
定方向とは反対の方向へ軸心装入コークスを重点
的に供給できることを意味しており、重点供給を
受けた炉芯部のコークスのみを更新できることを
示唆している。
Figure 1 shows a case in which unloading in the X direction was stopped by blocking several of the tuyere-equivalent extraction ports Ex provided on the circumference of the blast furnace model near the X direction in a model experiment. This is a cross-sectional explanatory diagram showing the charge descending flow line (corresponding to tuyere combustion stoppage in an actual blast furnace), and the charge particles descending down the shaft center are directed in the opposite direction to the X direction at the surface layer of the core. It is descending with an incline. This means that if the combustion in the tuyeres around the entire circumference of the blast furnace is stopped or the output is reduced only in a specific direction, unloading in that direction will be stopped or delayed, and the core-charged coke will be moved in the opposite direction. This means that coke can be supplied in a concentrated manner, suggesting that only the coke in the furnace core that has been supplied in a concentrated manner can be replaced.

即ち前記出願(1)に係る軸心装入コークスによる
炉芯コークス層充填状態の制御を実施する中で、
何らかの理由により炉芯コークス層充填状態が局
部的あるいは片面的に悪化して通気性や通液性に
偏りが生じた場合に、この偏りを是正する為に、
上記制御を行ないながら充填状態の悪化した領域
と180゜反対の方向の羽口における燃焼を停止ある
いは出力低下させることによつて円周方向の燃焼
バランスを偏心させ、目的とする方位の炉芯部側
へ軸心装入コークスを供給して当該炉芯部コーク
スを更新することができる。その結果目的とする
方位の通気性や通液性を任意に目的値に近づける
ことができ、さらには炉況の偏りによつて生じた
炉体温度のばらつきを解消することができる。
That is, while carrying out the control of the filling state of the furnace core coke layer by the shaft-centered coke according to the above-mentioned application (1),
If for some reason the filling condition of the furnace core coke layer deteriorates locally or on one side, resulting in an imbalance in air permeability or liquid permeability, in order to correct this imbalance,
While performing the above control, by stopping combustion or reducing the output at the tuyeres in the direction 180° opposite to the region where the filling condition has deteriorated, the combustion balance in the circumferential direction is eccentrically adjusted, and the furnace core is oriented in the desired direction. The core coke can be renewed by supplying core-charged coke to the side. As a result, the air permeability and liquid permeability in the desired direction can be arbitrarily brought close to the target values, and furthermore, it is possible to eliminate variations in furnace body temperature caused by unbalanced furnace conditions.

本発明方法の基本構成は上記の通りであるが、
炉頂軸心部へコークスを装入するに際しては、軸
心装入コークスの粒度分布、冷間強度、熱間強度
等を調節することにより炉芯コークス層の通気
性、通液性を任意に制御することができる。また
炉芯の通気性あるいは通液性のみに着目するなら
ば軸心装入物は必ずしもコークスに制限する必要
はなく塊状炭やれんが等も使用することができ
る。
The basic configuration of the method of the present invention is as described above,
When charging coke to the core of the furnace top, the permeability and liquid permeability of the core coke layer can be adjusted as desired by adjusting the particle size distribution, cold strength, hot strength, etc. of the coke charged at the core. can be controlled. Further, if attention is focused solely on the air permeability or liquid permeability of the furnace core, the core charge need not necessarily be limited to coke, but lump charcoal, bricks, etc. can also be used.

又軸心部へコークスを装入する方法としては、
種々考えられるが、例えば第10,11図に示す
様にベル式あるいはベルレス式の装入装置におい
て高炉中心部に到達する装入シユートを高炉上部
側方から炉軸心まで傾斜状に設け、該装入シユー
トの先端部から軸心装入コークスを装入すればよ
い。またベルレス式装入装置においては、分配シ
ユートを炉口軸心位置近傍に指向させることによ
り適確な軸心装入を実施することができる。
Also, as a method of charging coke into the shaft center,
For example, as shown in Figures 10 and 11, in a bell-type or bell-less type charging device, a charging chute that reaches the center of the blast furnace is provided in an inclined manner from the side of the upper part of the blast furnace to the furnace axis. The axially charged coke may be charged from the tip of the charging chute. In addition, in the bellless type charging device, by directing the distribution chute near the axial center position of the furnace mouth, accurate axial center charging can be carried out.

[発明の効果] 本発明は以上の様に構成されており、炉芯コー
クス層の充填状態に応じて軸心装入コークスによ
る充填状態制御を実施しつつ、上記充填状態に円
周方向の偏りがある場合に、該偏りを相殺する様
に高炉羽口燃焼の円周方向バランスを偏心させる
ことによつて偏りを是正することができ、前記出
願(1)の方法による制御効果を十分に発揮させて炉
芯部の通気性並びに通液性を改善することができ
る。
[Effects of the Invention] The present invention is configured as described above, and while controlling the filling state using the axially charged coke according to the filling state of the furnace core coke layer, it is possible to control the filling state with respect to the filling state in the circumferential direction. In such cases, the bias can be corrected by eccentrically adjusting the circumferential balance of the blast furnace tuyere combustion so as to offset the bias, and the control effect of the method of application (1) can be fully exerted. As a result, the air permeability and liquid permeability of the furnace core can be improved.

かくして高炉操業状態を安定化させ、且つ炉底
耐火物の損傷を防止することができる。
In this way, the operating conditions of the blast furnace can be stabilized and damage to the bottom refractory can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はX方向の荷下がりを停止した場合の装
入物降下状況を示す高炉模型炉内状態を示す断面
説明図、第2図は高炉操業時の内部状況を示す断
面模式図、第3図は中心ガス流下の操業状況を示
す要部断面模式図、第4図は周辺ガス流下の操業
状況を示す要部断面模式図、第5,6図は出銑時
の溶銑の流れを示す水平断面説明図、第7図は中
心装入コークスの降下状況を示す模式図、第8図
はトレーサーコークス装入領域(rt/Rt)を変え
た場合の炉芯部トレーサーコークス濃度を示すグ
ラフ、第9図は炉芯コークスの更新時間が7日、
10日、14日の場合の(rt/Rt)と(rh/Rh)の
関係を示すグラフ、第10〜12図はコークス中
心装入方法の実施態様を示す断面説明図である。 O…鉱石(層)、C…コークス(固体還元剤)
層、K…塊状帯、SM…軟化融着帯、B…羽口、
L…レースウエイ、A…炉芯コークス(固体還元
剤)、F…溶銑、E…出湯口、Ct…トレーサーコ
ークス、1…ベル、2,4…原料装入シユート、
3…分配シユート。
Fig. 1 is a cross-sectional explanatory diagram showing the internal state of the blast furnace model furnace, showing the load lowering situation when unloading in the X direction is stopped, Fig. 2 is a cross-sectional schematic diagram showing the internal state during blast furnace operation, and Fig. 3 Figure 4 is a schematic cross-sectional view of the main part showing the operating status under the central gas flow, Figure 4 is a schematic cross-sectional view of the main part showing the operating status under the peripheral gas flow, and Figures 5 and 6 are horizontal diagrams showing the flow of hot metal during tapping. 7 is a schematic diagram showing the falling situation of center-charged coke, and FIG. 8 is a graph showing the tracer coke concentration in the furnace core when the tracer coke charging area (rt/Rt) is changed. Figure 9 shows that the furnace core coke renewal time is 7 days.
Graphs showing the relationship between (rt/Rt) and (rh/Rh) in the case of 10th and 14th days, and FIGS. 10 to 12 are cross-sectional explanatory views showing an embodiment of the coke center charging method. O...Ore (layer), C...Coke (solid reducing agent)
layer, K...massive zone, SM...softened cohesive zone, B...tuyere,
L... Raceway, A... Furnace core coke (solid reducing agent), F... Hot metal, E... Tap, Ct... Tracer coke, 1... Bell, 2, 4... Raw material charging chute,
3...Distribution shot.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉頂部から固体還元剤および鉱石を交互に
装入して固体還元剤層および鉱石層を積層してい
くに当たり、鉱石層の炉軸心部領域に固体還元剤
を適宜装入するか又は固体還元剤層の炉軸心部領
域に通気性および通液性の向上に適した固体還元
剤を適宜装入することによつて高炉炉芯固体還元
剤層の通気性分布あるいは通液性分布を調整する
ことを基本制御に置きつつ、高炉羽口における燃
焼の円周方向バランスを偏心させることによつて
前記軸心装入コークスによる炉芯の更新領域を偏
心させ、炉芯における固体還元剤層の充填構造を
調整することを特徴とする炉芯充填構造の制御方
法。
1. When the solid reducing agent and ore are alternately charged from the top of the blast furnace and the solid reducing agent layer and ore layer are stacked, the solid reducing agent is appropriately charged into the core region of the furnace axis of the ore layer, or the solid reducing agent is By appropriately charging a solid reducing agent suitable for improving air permeability and liquid permeability into the axial region of the reducing agent layer, the air permeability distribution or liquid permeability distribution of the solid reducing agent layer in the blast furnace core can be improved. By making the circumferential balance of combustion in the blast furnace tuyere eccentric, the renewal area of the furnace core by the axially charged coke is eccentric, and the solid reducing agent layer in the furnace core is adjusted. A method for controlling a furnace core filling structure, the method comprising: adjusting the filling structure of a furnace core.
JP22098987A 1987-09-03 1987-09-03 Method for controlling furnace core packing structure Granted JPS6465219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22098987A JPS6465219A (en) 1987-09-03 1987-09-03 Method for controlling furnace core packing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22098987A JPS6465219A (en) 1987-09-03 1987-09-03 Method for controlling furnace core packing structure

Publications (2)

Publication Number Publication Date
JPS6465219A JPS6465219A (en) 1989-03-10
JPH058249B2 true JPH058249B2 (en) 1993-02-01

Family

ID=16759724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22098987A Granted JPS6465219A (en) 1987-09-03 1987-09-03 Method for controlling furnace core packing structure

Country Status (1)

Country Link
JP (1) JPS6465219A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609714B (en) * 2018-12-04 2020-07-24 江苏省沙钢钢铁研究院有限公司 Diagnosis method for large-scale blast furnace core accumulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056003A (en) * 1983-09-02 1985-04-01 Kobe Steel Ltd Method for charging coke into blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056003A (en) * 1983-09-02 1985-04-01 Kobe Steel Ltd Method for charging coke into blast furnace

Also Published As

Publication number Publication date
JPS6465219A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
US6270552B1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
JP4745731B2 (en) Method of melting hot metal with cupola
JP2003105415A (en) Method and device for producing molten metal
JP6809248B2 (en) How to use electrodes for electric furnaces, electric furnaces and electric furnaces
CA1213928A (en) Method of carrying out metallurgical or chemical processes in a shaft furnace, and a low shaft furnace therefor
US3900696A (en) Charging an electric furnace
JPH058249B2 (en)
JPH058246B2 (en)
US2993779A (en) Process of reducing metal oxides
JP3037062B2 (en) Operating method of scrap melting furnace
JP3171066B2 (en) Blast furnace operation method
JPH08269508A (en) Operation method of blast furnace
JPH0826368B2 (en) A method for estimating the deviation of the filling state of the solid reducing agent layer in the core
JP2921392B2 (en) Blast furnace operation method
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace
JPS5941402A (en) Operation of blast furnace
EP1414759B1 (en) Method of preparing a fiberizable melt of a mineral material
RU2223330C1 (en) Method of forming protective skull in blast furnace hearth
RU2223329C1 (en) Method of forming protective skull in blast furnace hearth
JP2897362B2 (en) Hot metal production method
JPH07197114A (en) Coke packing layer type vertical smelting furnace
KR20000043781A (en) Method of controlling distribution of proper charged material for high pulverized coal ratio
RU2221874C1 (en) Method of protection of blast-furnace hearth lining
JPH0225508A (en) Method for operating blast furnace
JPH11229008A (en) Method for charging raw material for blast furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 15