JPH058230B2 - - Google Patents

Info

Publication number
JPH058230B2
JPH058230B2 JP58101517A JP10151783A JPH058230B2 JP H058230 B2 JPH058230 B2 JP H058230B2 JP 58101517 A JP58101517 A JP 58101517A JP 10151783 A JP10151783 A JP 10151783A JP H058230 B2 JPH058230 B2 JP H058230B2
Authority
JP
Japan
Prior art keywords
adhesive
heat
potassium titanate
adhesive strength
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58101517A
Other languages
Japanese (ja)
Other versions
JPS59226082A (en
Inventor
Kunitake Amano
Sadao Sato
Shozaburo Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP10151783A priority Critical patent/JPS59226082A/en
Publication of JPS59226082A publication Critical patent/JPS59226082A/en
Publication of JPH058230B2 publication Critical patent/JPH058230B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑型耐熱性接着剤に関する。さら
に詳しくは150〜200℃の高温度領域下においても
実用的に充分な接着力を有する熱可塑型耐熱性接
着剤に関する。 従来より耐熱性接着剤としては熱硬化型耐熱性
樹脂であるエポキシ樹脂またはフエノール樹脂を
基材とするものが主流であり、最近ポリイミド、
ポリアミドイミド、ポリベンゾイミダゾール、付
加型ポリイミドなども使用されるようになつてき
た。それらの熱硬化型耐熱性接着剤のなかには
260℃で長時間暴露しても接着力が低下しないな
ど耐熱性の面で非常に優れたものが存在する。 それに対してエチレン−酢酸ビニル共重合体、
ポリアミド樹脂、熱可塑性ポリエステル、ポリフ
エニレンサルフアイド(以下、PPSという)、ポ
リサルフオンおよびポリエーテルサルホンなどの
熱可塑性樹脂を主成分とする接着剤では150℃以
上の温度下で接着力が大幅に低下するという熱可
塑性樹脂であるがための耐熱性の問題が存在す
る。 また耐熱性の面で非常に優れる前記熱硬化型耐
熱性接着剤においても充分な接着力をうるために
は高温、高圧条件(たとえば320℃、50Kg/cm3
が必要なこと、昇温状態(150〜350℃)で長時間
(1〜5時間)硬化させなければならないなどの
加工上の煩雑さ、硬化時に脱水反応、脱アミン反
応が起こるため作業環境および接着条件などの工
程管理に注意しなければならないこと、および接
着性能が変動しやすいなどの問題が存在するのが
現状である。 本発明者らは熱可塑性樹脂を基材とし、150〜
200℃の温度領域において100Kg/cm2を超える引張
接着強さを有する熱可塑型耐熱性接着剤の開発を
目的として鋭意研究を重ねた結果、熱可塑性樹脂
に接着性改良充填剤としてチタン酸カリウム繊維
を3〜30%(重量%、以下同様)添加することを
特徴とする熱可塑型耐熱性接着剤が上記目的を達
成するとともに、その接着加工操作が簡単なこ
と、脱アミン反応などが起こらないため接着条件
の設定、管理が容易なこと、および作業環境を良
好に保持できることなど従来の問題点を解決しう
るものであることを見出し、本発明を完成するに
いたつた。 本発明に使用しうる熱可塑性樹脂としては PPS(繰返し単位:
The present invention relates to a thermoplastic heat-resistant adhesive. More specifically, the present invention relates to a thermoplastic heat-resistant adhesive that has practically sufficient adhesive strength even in the high temperature range of 150 to 200°C. Conventionally, the mainstream of heat-resistant adhesives has been those based on thermosetting heat-resistant resins such as epoxy resins or phenolic resins, and recently polyimide,
Polyamideimide, polybenzimidazole, addition type polyimide, etc. have also come into use. Some of those thermosetting heat-resistant adhesives
There are some products that have excellent heat resistance, with no loss of adhesive strength even when exposed to temperatures of 260°C for long periods of time. On the other hand, ethylene-vinyl acetate copolymer,
Adhesives whose main components are thermoplastic resins such as polyamide resin, thermoplastic polyester, polyphenylene sulfide (hereinafter referred to as PPS), polysulfone, and polyethersulfone have significantly greater adhesive strength at temperatures of 150°C or higher. There is a problem with heat resistance because it is a thermoplastic resin. Furthermore, even with the thermosetting heat-resistant adhesive, which has excellent heat resistance, high temperature and high pressure conditions (e.g. 320°C, 50Kg/cm 3 ) are required to obtain sufficient adhesive strength.
curing at elevated temperatures (150 to 350°C) for long periods of time (1 to 5 hours); dehydration and deamination reactions occur during curing, making the work environment and At present, there are problems such as the need to pay attention to process control such as bonding conditions and the tendency for adhesive performance to fluctuate. The present inventors used thermoplastic resin as a base material, and
As a result of extensive research aimed at developing a thermoplastic heat-resistant adhesive with a tensile strength exceeding 100 Kg/ cm2 in the temperature range of 200°C, we found that potassium titanate was added to thermoplastic resin as an adhesion-improving filler. A thermoplastic heat-resistant adhesive characterized by the addition of 3 to 30% (by weight, the same hereinafter) fibers achieves the above objectives, and also has the advantage of being easy to process and does not cause deamine reactions, etc. The present invention was completed based on the discovery that the conventional problems such as ease of setting and management of adhesion conditions and maintenance of a good working environment because of the lack of adhesive bonding conditions can be solved. The thermoplastic resin that can be used in the present invention is PPS (repeat unit:

【式】)、 ポリサルホン(繰返し単位: )、 ポリエーテルサルホン(繰返し単位:[Formula]), polysulfone (repeat unit: ), polyethersulfone (repeat unit:

【式】およびポリエーテ ルエーテルケトン(以下、PEEKという、繰返し
単位: )のなかから選ばれた樹脂を主成分とするもので
ある。 かかる各樹脂はいずれも市販品がそのまま使用
でき、かつ粉末状、ペレツト状など使用時の形態
を問わない。 また接着性または接着加工性を改良する目的で
上記樹脂に樹脂成分の2〜20%の範囲内でナイロ
ン−6、ナイロン−12、ナイロン−6,6、ナイ
ロン−6,10、ナイロン−6,12などのポイアミ
ド樹脂、 式: または を繰返し単位とする熱可塑性ポリエステル樹脂あ
るいは上記両単位からなる共重合体、式: を繰返し単位とする熱可塑性ポリカーボネート樹
脂を混合してもよい。 本発明において使用される接着性改良充填剤と
してはチタン酸カリウム繊維が最適である。炭酸
カルシウム、ケイ砂などの微粉末粒状充填剤を用
いても、また平均繊維径3〜13μm、平均繊維長
2000〜12000μmという通常の繊維サイズのガラ
ス繊維、炭素繊維などを用いても接着力の向上は
みられない。 前記チタン酸カリウム繊維とは一般式: K2O・n(TiO2) または K2O・n(TiO2)・1/2H2O (式中、nは2〜8の整数を表わす)で示される
平均繊維径が1μm未満、平均繊維長が5〜100μ
mでかつ平均繊維長1平均繊維径(以下、アスペ
クト比という)が10を超える単結晶繊維であり、
具体的にはたとえば4チタン酸カリウム繊維、6
チタン酸カリウム繊維または8チタン酸カリウム
繊維などの単一組成物またはそれらの混合組成物
が本発明に用いられる。 上記チタン酸カリウム繊維の平均繊維径、平均
繊維長およびアスペクト比は走査型電子顕微鏡に
より少なくとも5視野以上について1視野あたり
少なくとも10本以上の繊維を調べた結果のそれぞ
れの平均値である。 チタン酸カリウム繊維の平均繊維径、、平均繊
維長およびアスペクト比が前記範囲をはずれるば
あい、たとえば平均繊維径が1μmを超えて大き
く、平均繊維長が5μm未満、すなわちアスペク
ト比が10未満であるばあい接着力の向上が小さく
好ましくない。また平均繊維長が100μmを超え
て長い繊維は工業的に製造することが困難であり
実用性に欠ける。 本発明において使用されるチタン酸カリウム繊
維は「テイスモ」(TISMO、大塚化学薬品(株)製)
なる商標で市販されている平均繊維径0.2〜0.5μ
m、平均繊維長10〜20μm、アスペクト比20〜
100の高強度単結晶ウイスカーがそのまま使用で
きる。 かかるチタン酸カリウム繊維を前記熱可塑性樹
脂に対して3〜30%配合することにより接着力お
び耐熱性を向上しうる。配合量が3%未満では接
着力および耐熱性を向上する効果が小さく、30%
を超えると高温時の接着力は向上するが常温にお
ける接着力が低下する傾向にあり、かつチタン酸
カリウム繊維が非常に嵩高いため溶融粘度の小さ
いPPS以外のポリサルホン、ポリエーテルサルホ
ンおよびPEEKへの配合が困難となる。 チタン酸カリウム繊維は未処理のまま使用して
有効であるが、エポキシシラン、アミノシラン、
アクリルシランなどのシラン系カツプリング剤ま
たはイソプロピルトリオクタノイルチタネートな
どのチタネート系カツプリング剤などで表面処理
されたチタン酸カリウム繊維を使用すると接着性
または耐水性がさらに向上する。 本発明においてはミクロでかつ高強度なチタン
酸カリウム繊維を用いることにより接着層の補強
効果の向上および耐熱性の改良(熱クリープ特性
の改良)が達成されるが、前記熱可塑性樹脂以外
の熱可塑性樹脂を主成分に用いること、チタン酸
カリウム繊維を接着性改良充填剤として3〜30%
配合しても150℃を超える高温下での接着力が大
幅に低下して熱可塑型耐熱性接着剤として適さな
い。 本発明の熱可塑型耐熱性接着剤を調整する方法
としては (1) 熱可塑性樹脂粉末にチタン酸カリウム繊維3
〜30%を添加し、ミキサーで混合することによ
り粉末状接着剤とする方法 (2) 上記(1)でえられた粉末状接着剤を熱ロールま
たは押出機でフイルム状接着剤に加工する方法 (3) 熱可塑性樹脂のペレツト状物または粉末状物
を有機溶剤に分散または溶解したところにチタ
ン酸カリウム繊維を添加し均一に分散すること
により溶剤型接着剤とする方法 などがいずれも適用可能である。 また本発明の接着剤は熱ロール法、熱プレス
法、高周波加熱法、超音波溶着法などによつて接
着に使用されることができ、その適用範囲は広
い。 さらに被着体としては耐熱性のある素材、すな
わち金属、セラミツク、耐熱性樹脂などが用いら
れ、金属−金属、金属−セラミツクス、金属−耐
熱性樹脂などの接着が可能である。 本発明の熱可塑型耐熱性接着剤は従来はんだ、
リベツト、溶接などが行なわれてきた部分にそれ
らに代わつて適用しうるものであり、 (1) 極端な加熱がないので被着体の変質がないこ
と (2) 荷重伝達が分散されるので応力集中がないこ
と (3) 振動に対しセルフダンピング効果が期待でき
ること (4) 軽量化、小型化、自動化および量産スピード
の向上が画れること などの利点を有するため電気・電子部品、自動
車・航空機等の組立て、部品取付け工程などにお
ける実用性が高いものである。 以下本発明を実施例に基づいてさらに詳しく説
明するが、本発明はかかる実施例のみに限定され
るものではない。 実施例1〜6および比較例1 熱可塑性樹脂としてPPS粉末(商品名ライトン
P−4、保土谷化学工業(株)製)を用いて、該樹脂
粉末に表面無処理チタン酸カリウム繊維であるテ
イスモ−Dを5%、10%、15%、20%、25%およ
び30%それぞれ配合することにより6種の粉末状
接着剤を調整する一方、比較のためテイスモ−D
を全く含まないライトンP−4だけからなるもの
を準備した。 第1図は本発明の接着剤の各種接着強さを測定
するのに用いた接着試験片の一例を示す概念図で
ある。第1図における大きさおよび寸法の一例を
あげれば(l):15mm、m:6mm、(n):22mm、(o):15
mmφおよび(p):6mmφであり、mは引張接着力を
測定するときのつかみ用治具のはめこみ部、Aは
接着面である。 被着材として第1図に示す形状、寸法に機械加
工したステンレス鋼(SUS304)を使用し、第1
図で示す接着面Aを#100の砥粒でサンドブラス
ト処理したのちトリクロルエチレン中で10分間超
音波洗浄を行ない熱風乾燥した。ついで340℃の
炉中で30〜50分間放置することにより予加熱した
のち接着面Aに前記粉末状接着剤またはライトン
P−4を0.9g均一に散布し溶融せしめた。かか
る被着材同士を接着面Aで突合わせ340〜380℃の
保護加熱器中で接着部を加熱しながら約16Kgf/
cm2の圧力を加えて3分間放置したのち放冷するこ
とにより接着を完了させ、各種接着強さを測定し
た。 各種接着強さはインストロン型引張試験機を用
いて接着された試験片の軸方向への引張強さ、す
なわち引張接着強さ(引張速度10mm/分)として
測定し、同一条件でそれぞれ5回測定を行なつた
結果の平均値を算出して評価した。 耐熱接着強さは接着された試験片を150℃およ
び200℃の高温槽内に約30分間放置したのちのそ
れぞれの温度における前記引張接着強さであり、
連続耐熱接着強さは180℃に設定されたテストチ
ユーブ式熱老化試験機に7日間保存されたのちの
引張接着強さである。測定結果を第1表に示す。
[Formula] and polyetheretherketone (hereinafter referred to as PEEK, repeating unit: ) The main component is a resin selected from among the following. Each of these resins can be used as a commercially available product and may be in any form such as powder or pellet form at the time of use. In addition, for the purpose of improving adhesiveness or adhesion processability, nylon-6, nylon-12, nylon-6,6, nylon-6,10, nylon-6, Polyamide resin, such as 12, formula: or A thermoplastic polyester resin having repeating units or a copolymer consisting of both of the above units, formula: A thermoplastic polycarbonate resin having repeating units may be mixed. Potassium titanate fibers are most suitable as the adhesion-improving filler used in the present invention. Even if fine powder granular fillers such as calcium carbonate and silica sand are used, the average fiber diameter is 3 to 13 μm, and the average fiber length is
Even when glass fibers, carbon fibers, etc. having a normal fiber size of 2,000 to 12,000 μm are used, no improvement in adhesion is observed. The potassium titanate fiber has the general formula: K 2 O・n (TiO 2 ) or K 2 O・n (TiO 2 )・1/2H 2 O (in the formula, n represents an integer from 2 to 8). The indicated average fiber diameter is less than 1 μm, and the average fiber length is 5 to 100 μm.
m and has an average fiber length 1 average fiber diameter (hereinafter referred to as aspect ratio) of more than 10,
Specifically, for example, potassium tetratitanate fiber, 6
Single compositions such as potassium titanate fibers or potassium octitanate fibers or mixed compositions thereof may be used in the present invention. The average fiber diameter, average fiber length, and aspect ratio of the above-mentioned potassium titanate fibers are the respective average values of the results of examining at least 10 or more fibers per field in at least 5 fields of view using a scanning electron microscope. If the average fiber diameter, average fiber length, and aspect ratio of the potassium titanate fibers are outside the above ranges, for example, the average fiber diameter is larger than 1 μm and the average fiber length is less than 5 μm, that is, the aspect ratio is less than 10. In this case, the improvement in adhesion strength is small and undesirable. Furthermore, long fibers with an average fiber length exceeding 100 μm are difficult to produce industrially and lack practicality. The potassium titanate fiber used in the present invention is "TISMO" (manufactured by Otsuka Chemical Co., Ltd.)
Average fiber diameter 0.2-0.5μ, commercially available under the trademark
m, average fiber length 10~20μm, aspect ratio 20~
100 high strength single crystal whiskers can be used as is. Adhesive strength and heat resistance can be improved by blending 3 to 30% of such potassium titanate fibers to the thermoplastic resin. If the blending amount is less than 3%, the effect of improving adhesive strength and heat resistance will be small;
If it exceeds , the adhesive strength at high temperatures will improve, but the adhesive strength at room temperature will tend to decrease, and potassium titanate fibers are very bulky, so it is difficult to use polysulfone, polyethersulfone, and PEEK other than PPS, which have a low melt viscosity. It becomes difficult to blend. Potassium titanate fibers are effective when used untreated, but epoxysilanes, aminosilanes,
Adhesion or water resistance is further improved by using potassium titanate fibers whose surface has been treated with a silane coupling agent such as acrylic silane or a titanate coupling agent such as isopropyltrioctanoyl titanate. In the present invention, by using microscopic and high-strength potassium titanate fibers, an improvement in the reinforcing effect of the adhesive layer and an improvement in heat resistance (improvement in thermal creep characteristics) are achieved. Use plastic resin as the main component, potassium titanate fiber as adhesive improving filler at 3-30%
Even when blended, the adhesive strength at high temperatures exceeding 150°C is significantly reduced, making it unsuitable as a thermoplastic heat-resistant adhesive. The method for preparing the thermoplastic heat-resistant adhesive of the present invention is (1) adding potassium titanate fiber 3 to thermoplastic resin powder.
A method of making a powder adhesive by adding ~30% and mixing with a mixer (2) A method of processing the powder adhesive obtained in (1) above into a film adhesive using a heated roll or an extruder (3) Any method can be applied, such as dispersing or dissolving thermoplastic resin pellets or powder in an organic solvent, adding potassium titanate fibers and uniformly dispersing them to create a solvent-based adhesive. It is. Further, the adhesive of the present invention can be used for bonding by a hot roll method, a hot press method, a high frequency heating method, an ultrasonic welding method, etc., and has a wide range of applications. Further, heat-resistant materials such as metals, ceramics, heat-resistant resins, etc. are used as the adherend, and bonding of metal-metal, metal-ceramics, metal-heat-resistant resin, etc. is possible. The thermoplastic heat-resistant adhesive of the present invention is a conventional solder,
It can be applied in place of riveting, welding, etc., and has the following advantages: (1) There is no extreme heating, so there is no deterioration of the adherend; (2) Load transmission is dispersed, so stress is reduced. No concentration (3) A self-damping effect can be expected against vibrations (4) It has advantages such as being lighter, more compact, automated, and can improve mass production speed, so it is used in electrical/electronic parts, automobiles, aircraft, etc. It is highly practical in assembly and parts installation processes. The present invention will be described in more detail below based on Examples, but the present invention is not limited to these Examples. Examples 1 to 6 and Comparative Example 1 PPS powder (trade name Ryton P-4, manufactured by Hodogaya Chemical Industry Co., Ltd.) was used as the thermoplastic resin, and TEISMO, a surface-untreated potassium titanate fiber, was added to the resin powder. Six types of powder adhesives were prepared by blending 5%, 10%, 15%, 20%, 25% and 30% of Teismo-D, respectively, while for comparison, Teismo-D
We prepared a product consisting only of Ryton P-4, which does not contain any. FIG. 1 is a conceptual diagram showing an example of an adhesive test piece used to measure various adhesive strengths of the adhesive of the present invention. Examples of sizes and dimensions in Figure 1 are (l): 15mm, m: 6mm, (n): 22mm, (o): 15
mmφ and (p): 6 mmφ, m is the fitting part of the gripping jig when measuring the tensile adhesive force, and A is the adhesive surface. Stainless steel (SUS304) machined to the shape and dimensions shown in Fig. 1 was used as the adherend.
The adhesive surface A shown in the figure was sandblasted with #100 abrasive grains, then ultrasonically cleaned in trichlorethylene for 10 minutes and dried with hot air. After preheating by standing in a 340 DEG C. oven for 30 to 50 minutes, 0.9 g of the powdered adhesive or Ryton P-4 was uniformly spread on the adhesive surface A and melted. These adherends are butted together with adhesive surface A, and the adhesive part is heated at 340 to 380°C in a protective heater at approximately 16 kgf/.
Adhesion was completed by applying a pressure of cm 2 for 3 minutes and then cooling, and various adhesive strengths were measured. The various bond strengths were measured using an Instron type tensile tester as the tensile strength in the axial direction of the bonded test pieces, that is, the tensile bond strength (tensile speed 10 mm/min), and each test was performed five times under the same conditions. The average value of the measurement results was calculated and evaluated. The heat-resistant adhesive strength is the tensile adhesive strength at each temperature after leaving the bonded test piece in a high-temperature bath at 150 ° C and 200 ° C for about 30 minutes,
Continuous heat-resistant adhesive strength is the tensile adhesive strength after being stored in a test tube heat aging tester set at 180°C for 7 days. The measurement results are shown in Table 1.

【表】 第1表からチタン酸カリウム繊維を5〜30%配
合した本発明の接着剤は150〜200℃の耐熱接着強
さおよび連続耐熱接着強さにおいていずれも100
Kgf/cm2を超えており、また常温接着強さはチタ
ン酸カリウム繊維の配合量が10%前後で最大であ
るのに対して耐熱接着強さは同じく20%前後で最
大であり配合量が少なすぎても多すぎても接着性
の向上効果が低下するのがわかる。 実施例7〜8および比較例2〜5 熱可塑性樹脂としてポリエーテルサルホン(商
品名ビクトレツクス(VICTREX)PES100P、I.
C.I.社製)を用いて、それを塩化メチレンに溶解
したところにテイスモ−Dのアミノシラン処理さ
れたものであるテイスモ−D101(商品名、大塚化
学薬品工業(株)製)を20%配合することにより溶剤
型接着剤を、熱可塑性樹脂としてポリエーテルエ
ーテルケトン(商品名ビクトレツクス
PEEK38G、I.C.I社製)を用いて、そこにテイス
モ−D101を20%配合してペレツト化し、該ペレ
ツトを100μm厚のフイルムに押出し延伸するこ
とによりフイルム状接着剤をそれぞれ作製した。
比較のためビクトレツクスPES100Pだけのもの、
ビクトレツクスPEEK38Gだけのもの、ビクトレ
ツクスPES100Pにテイスモ−D101に代えて炭酸
カルシウム粉末(商品名NS#100、日東粉化工業
(株)製、平均粒径1.5μm)またはガラス繊維(商品
名グラスロンCS03MA497、旭フアイバーグラス
(株)製、平均繊維長3mm)を20%配合したものを準
備した。 実施例1〜6で用いたのと同じ被着材を試験片
としてそれを実施例1〜6と同様に処理したのち
上記溶剤型接着剤、フイルム状接着剤および比較
のために準備した上記4種のものについて実施例
1〜6と同様にして接着し、以下実施例8および
比較例5については250℃における耐熱接着強さ
の測定を追加し、連続耐熱接着強さを180℃に代
えて200℃で測定した以外は実施例1〜6と同様
にして各種接着強さを測定した。測定結果を第2
表に示す。
[Table] From Table 1, the adhesive of the present invention containing 5 to 30% potassium titanate fiber has a heat-resistant adhesive strength of 150-200°C and a continuous heat-resistant adhesive strength of 100%.
Kgf/ cm2 , and the room temperature adhesive strength is maximum when the amount of potassium titanate fiber is around 10%, while the heat resistant adhesive strength is also maximum when the amount of potassium titanate fiber is around 20%. It can be seen that if the amount is too small or too large, the effect of improving adhesiveness decreases. Examples 7 to 8 and Comparative Examples 2 to 5 Polyethersulfone (trade name: VICTREX) PES100P, I.
CI Co., Ltd.) is dissolved in methylene chloride, and 20% of Teismo-D101 (trade name, manufactured by Otsuka Chemical Industries, Ltd.), which is an aminosilane-treated product of Teismo-D, is blended. Polyether ether ketone (trade name: Victrex) is used as a thermoplastic resin.
PEEK38G (manufactured by ICI) was mixed with 20% Teismo D101 to form pellets, and the pellets were extruded and stretched into a 100 μm thick film to produce film adhesives.
For comparison, only Victrex PES100P,
Exclusive to Victorex PEEK38G, calcium carbonate powder (product name NS#100, Nitto Funka Kogyo Co., Ltd.
Co., Ltd., average particle size 1.5 μm) or glass fiber (product name Glasslon CS03MA497, Asahi Fiber Glass)
Co., Ltd., with an average fiber length of 3 mm) mixed at 20%. The same adherends used in Examples 1 to 6 were used as test pieces and treated in the same manner as in Examples 1 to 6, and then the above solvent-based adhesive, film adhesive, and the above 4 prepared for comparison were used. The seeds were bonded in the same manner as in Examples 1 to 6, and for Example 8 and Comparative Example 5 below, the measurement of heat-resistant adhesive strength at 250°C was added, and the continuous heat-resistant adhesive strength was changed to 180°C. Various adhesive strengths were measured in the same manner as in Examples 1 to 6, except that the measurements were performed at 200°C. The second measurement result
Shown in the table.

【表】 第2表からチタン酸カリウム繊維に代えて微粉
末粒状充填剤である炭酸カウム粉末またはガラス
繊維を用いたものは、何も配合しないものと同程
度の接着力か、または大幅に接着力が低下するの
に対して、本発明の接着剤のばあいは常温接着強
さはもちろん、耐熱接着強さ、連続耐熱接着強さ
も大幅に向上するのがわかる。またPEEKを用い
ると250℃においても接着強さが良好である。 比較例 6 実施例1〜6と同じ被着材を使用し、エポキシ
樹脂としてアラルダイトGY252(チバ・ガイギー
社製)100重量部、硬化剤としてハードナー
HY951(チバ・ガイギー社製)14重量部、希釈剤
としてDY021(チバ・ガイギー社製)10重量部、
チタン酸カリウム繊維としてテイスモーD20重量
部を混合して熱硬化性接着剤組成物を調製した。 この接着剤は被着体に塗布後、5Kg/cm2の加圧
下に、60℃で4時間硬化させる必要があり、実用
接着強度に至る迄に、非常に時間がかかつた。一
方、実施例1〜6の接着剤は340〜380℃の雰囲気
中、約16Kgf/cm2の加圧下に3分間放置でよい。 又、常温接着強さは420Kg/cm2と実施例と同等
かむしろ高い値が得られたが、200℃×30分間で
の耐熱接着強さは89Kg/cm2と実用性の基準となる
100Kg/cm2に満たず、又、180℃×7日間の連続耐
熱接着強さも94Kg/cm2と大幅に低下した。
[Table] From Table 2, it is seen that those using fine powder granular filler kaum carbonate powder or glass fiber instead of potassium titanate fiber have the same adhesion strength as those that do not contain anything, or have significantly higher adhesion. It can be seen that, while the adhesive strength of the present invention decreases, not only room temperature adhesive strength but also heat-resistant adhesive strength and continuous heat-resistant adhesive strength are significantly improved. Furthermore, when PEEK is used, the adhesive strength is good even at 250°C. Comparative Example 6 The same adherends as in Examples 1 to 6 were used, 100 parts by weight of Araldite GY252 (manufactured by Ciba Geigy) as the epoxy resin, and hardener as the hardening agent.
14 parts by weight of HY951 (manufactured by Ciba Geigy), 10 parts by weight of DY021 (manufactured by Ciba Geigy) as a diluent,
A thermosetting adhesive composition was prepared by mixing 20 parts by weight of Teismo D as potassium titanate fiber. After this adhesive was applied to the adherend, it was necessary to cure it at 60° C. for 4 hours under a pressure of 5 kg/cm 2 , and it took a very long time to reach practical adhesive strength. On the other hand, the adhesives of Examples 1 to 6 may be left in an atmosphere of 340 to 380° C. under a pressure of about 16 kgf/cm 2 for 3 minutes. In addition, the room temperature adhesive strength was 420Kg/ cm2 , which is the same as or even higher than the example, but the heat-resistant adhesive strength at 200℃ for 30 minutes was 89Kg/ cm2 , which is the standard for practicality.
It was less than 100Kg/cm 2 , and the continuous heat-resistant adhesive strength at 180°C for 7 days was significantly lower to 94Kg/cm 2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の接着剤の各種接着強さを測定
するのに用いた接着試験片の一例を示す概念図で
ある。 (図面の主要符号)、m:はめこみ部、A:接
着面。
FIG. 1 is a conceptual diagram showing an example of an adhesive test piece used to measure various adhesive strengths of the adhesive of the present invention. (Main symbols in the drawing), m: inset part, A: adhesive surface.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリフエニレンサルフアイド、ポリサルホ
ン、ポリエーテルサルホン及びポリエーテルエー
テルケトンから選ばれた樹脂を主成分とする熱可
塑性樹脂に接着性改良充填剤としてチタン酸カリ
ウム繊維を3〜30重量%添加することを特徴とす
る熱可塑型耐熱性接着剤。
1 Adding 3 to 30% by weight of potassium titanate fiber as an adhesion-improving filler to a thermoplastic resin whose main component is a resin selected from polyphenylene sulfide, polysulfone, polyether sulfone, and polyether ether ketone. A thermoplastic heat-resistant adhesive characterized by:
JP10151783A 1983-06-06 1983-06-06 Thermoplastic heat-resistant adhesive Granted JPS59226082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10151783A JPS59226082A (en) 1983-06-06 1983-06-06 Thermoplastic heat-resistant adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10151783A JPS59226082A (en) 1983-06-06 1983-06-06 Thermoplastic heat-resistant adhesive

Publications (2)

Publication Number Publication Date
JPS59226082A JPS59226082A (en) 1984-12-19
JPH058230B2 true JPH058230B2 (en) 1993-02-01

Family

ID=14302713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10151783A Granted JPS59226082A (en) 1983-06-06 1983-06-06 Thermoplastic heat-resistant adhesive

Country Status (1)

Country Link
JP (1) JPS59226082A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447391A1 (en) * 1984-12-27 1986-07-03 Otsuka Kagaku K.K., Osaka ELECTRICALLY CONDUCTIVE ALKALINE METAL TITANATE COMPOSITION AND MOLDED PARTS THEREOF
JPS62180908A (en) * 1986-01-31 1987-08-08 タツタ電線株式会社 Incombustible wire
DE3738749A1 (en) * 1987-11-14 1989-05-24 Basf Ag FIBER COMPOSITES
DE4121705A1 (en) * 1991-07-01 1993-01-07 Basf Ag THERMOPLASTIC MOLDING MATERIALS BASED ON POLYARYLENETHERS AND PARTICULAR COPOLYAMIDES
JP5532203B2 (en) * 2009-06-03 2014-06-25 日産化学工業株式会社 Adhesive composition
JP6888921B2 (en) * 2016-06-24 2021-06-18 住友化学株式会社 Aromatic polysulfone and aromatic polysulfone compositions
CN109642082A (en) 2016-08-30 2019-04-16 大塚化学株式会社 Resin combination, three-dimensional printer long filament and toner and moulder and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682242A (en) * 1979-12-11 1981-07-04 Nikkan Ind Laminated board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682242A (en) * 1979-12-11 1981-07-04 Nikkan Ind Laminated board

Also Published As

Publication number Publication date
JPS59226082A (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US6060539A (en) Room-temperature stable, one-component, thermally-conductive, flexible epoxy adhesives
US3518221A (en) Reinforcing fillers in a matrix of two thermosetting resins
JP5292091B2 (en) Bismaleimide resin system with improved manufacturing characteristics
EP0558798A2 (en) Epoxy resin composition, cured product obtained therefrom, curing method therefor, and bonding method using the composition
US6723803B1 (en) Adhesive of flexible epoxy resin and latent dihydrazide
JPH058230B2 (en)
WO2021243798A1 (en) Rubber adhesive and preparation method therefor
EP0414030A2 (en) Weld-through adhesive sealant
US5240645A (en) Weldable sealant containing electrically conductive fibers
JPH0459819A (en) Epoxy resin composition
JP2018135422A (en) Hot-melt adhesive composition and laminate
JP2008038070A (en) Epoxy adhesive, cast-molded product using the same, and method for producing the cast-molded product using the same
JPH04325590A (en) Epoxy resin adhesive composition
JPS59187054A (en) Heat-resistant thermoplastic resin composition
EP0263129A1 (en) Structural epoxy paste adhesive curable at ambient temperature and process for preparation thereof.
KR20130140436A (en) Epoxy resin composition containing silica and core-shell polymer particles
JPS6166772A (en) Adhesive containing needle-like ceramic fiber
JPH01254766A (en) Electrically conductive polyaylene sulfide resin composition
Progar et al. Adhesive evaluation of bisimide additives in LARC-TPI
KR20200063766A (en) Adhesive composition for structure, and preparing method thereof
JPS648675B2 (en)
KR101588717B1 (en) Polarity and melt flow-controlled impact-resistance epoxy adhesive composition
Ting et al. Adhesive fracture energies of some high performance polymers
JPS6351200B2 (en)
JP4873117B2 (en) Polyarylene sulfide composition and case comprising the same