JPH0582033B2 - - Google Patents

Info

Publication number
JPH0582033B2
JPH0582033B2 JP60060151A JP6015185A JPH0582033B2 JP H0582033 B2 JPH0582033 B2 JP H0582033B2 JP 60060151 A JP60060151 A JP 60060151A JP 6015185 A JP6015185 A JP 6015185A JP H0582033 B2 JPH0582033 B2 JP H0582033B2
Authority
JP
Japan
Prior art keywords
power
battery
flow type
electrolyte flow
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60060151A
Other languages
Japanese (ja)
Other versions
JPS61218076A (en
Inventor
Takeshi Nozaki
Juichi Akai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60060151A priority Critical patent/JPS61218076A/en
Publication of JPS61218076A publication Critical patent/JPS61218076A/en
Publication of JPH0582033B2 publication Critical patent/JPH0582033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解液流通型電解槽を有する電池、即
ち流通型電池を用いた電力の貯蔵及び/又は変圧
を行う電池システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a battery having a flow-through type electrolytic cell, that is, a battery system that stores and/or transforms electric power using a flow-through type battery.

〔従来技術〕[Prior art]

電力は各種のエネルギーへの変換が容易で制御
し易く、消費時の環境汚染がないので、エネルギ
ー消費に占める割合は年毎に増加している。これ
までこの電力は、水力発電、火力発電、原子力発
電によりその大部分が発電されて来ている。しか
し、今後は、電力使用量の増加への対応及び省資
源及び発電時の環境汚染の問題点から、太陽光発
電、風力発電等による発電の割合が増大すると考
えられる。更に、僻地、遠隔地の電力使用におい
ても、これまでは長距離にわたつて送電線を設け
るか、燃料を運んでのデイーゼルエンジン等によ
る自家発電を行うかであつた所が、独立した発電
設備である太陽光発電、風力発電等が置き換えら
れるであろうと考えられる。
Electricity is easy to convert into various forms of energy, easy to control, and does not pollute the environment when consumed, so its share in energy consumption is increasing every year. Until now, most of this electricity has been generated through hydroelectric power, thermal power generation, and nuclear power generation. However, in the future, it is thought that the proportion of power generation by solar power generation, wind power generation, etc. will increase in response to the increase in power consumption, resource conservation, and environmental pollution issues during power generation. Furthermore, in order to use electricity in remote or remote areas, where up until now it was necessary to install power transmission lines over long distances or to generate electricity in-house using a diesel engine or other device that transports fuel, it is now possible to use independent power generation facilities. It is thought that solar power generation, wind power generation, etc. will be replaced.

一方、電力供給の特異な点として電力消費に即
応しながら供給しなければならないという点があ
る。従つて、太陽光発電、風力発電等は、日照、
風等によつてその発電量が左右されることから、
少なくとも地上では、単独で十分な電力供給源と
は成り得ず、何らかの蓄電設備と組み合わせて、
はじめて安定した電力供給源となる。
On the other hand, a unique feature of power supply is that it must be supplied in a manner that responds promptly to power consumption. Therefore, solar power generation, wind power generation, etc.
Since the amount of power generated is affected by factors such as wind,
At least on the ground, it cannot be a sufficient power supply source on its own, but in combination with some kind of power storage equipment,
For the first time, it becomes a stable power supply source.

上記の太陽光発電、風力発電等と組合せる蓄電
設備として様々なものが考えられるが、その中で
特に有力なものが、電解液流通型電解槽を有する
電池、即ち流通型電池である。即ち、流通他電池
は、定格より微弱な電流に対しても電流に応じた
反応が生じること、定格より小さな電圧に対して
もセル数の切り替えにより対応が出来ること、電
解液の量だけで電力貯蔵量が決定出来ること、入
力電圧と出力電圧を異なる電圧とする変圧機能を
有すること等の大きな対応性を有するので、太陽
光発電、風力発電等、発電電力の変動が大きな発
電設備と組み合わせる蓄電設備として、優れてい
ると言える。
Various types of power storage equipment can be considered to be combined with the above-mentioned solar power generation, wind power generation, etc., but among them, a particularly effective one is a battery having an electrolyte flow type electrolytic cell, that is, a flow type battery. In other words, with commercially available batteries, a reaction occurs depending on the current even when the current is weaker than the rated value, it is possible to respond to a voltage smaller than the rated value by switching the number of cells, and it is possible to generate electricity just by using the amount of electrolyte. It has great compatibility, such as being able to determine the storage amount and having a transformer function that makes the input voltage and output voltage different, so it is suitable for power storage in combination with power generation equipment that has large fluctuations in generated power, such as solar power generation and wind power generation. As a facility, it can be said to be excellent.

ここで、流通型電池の一例として、レドツク
ス・フロー電池の原理の概要について、第1図、
第2図を用いて説明する。
Here, as an example of a flow-through battery, an overview of the principle of a redox flow battery is shown in Figure 1.
This will be explained using FIG.

第1図はレドツクス・フロー電池を用いた電力
充放電システムの充電時の状態を示し、第2図は
同じく放電時の状態を示す。
FIG. 1 shows a charging state of a power charging/discharging system using a redox flow battery, and FIG. 2 similarly shows a discharging state.

これらの図において、1は充電電源、2は負
荷、3はインバータ、4はレドツクス電池で、タ
ンク5a,5b,6a,6bとポンプ7,8及び
流通型電解槽9から構成される。流通型電解槽9
は正極10と負極11、及び両電極間を分離する
隔膜12とを備え、隔膜12で仕切られた左右の
室内には正極液13、負極液14が収容される。
正極液13はFeイオンを含む塩酸溶液とし、負
極液14はCrイオンを含む塩酸溶液とする例を
示した。
In these figures, 1 is a charging power source, 2 is a load, 3 is an inverter, and 4 is a redox battery, which is composed of tanks 5a, 5b, 6a, 6b, pumps 7, 8, and a flow-through type electrolytic cell 9. Flow type electrolytic cell 9
is equipped with a positive electrode 10, a negative electrode 11, and a diaphragm 12 separating the two electrodes, and a positive electrode liquid 13 and a negative electrode liquid 14 are housed in left and right chambers partitioned by the diaphragm 12.
An example is shown in which the positive electrode liquid 13 is a hydrochloric acid solution containing Fe ions, and the negative electrode liquid 14 is a hydrochloric acid solution containing Cr ions.

次に作用について説明する。 Next, the effect will be explained.

充電電源1から送電された電力はレドツクス・
フロー電池4により適当な電圧に変圧され、イン
バータ3により交直変換を行い、負荷2に供給さ
れる。一方、余剰電力が出ると、レドツクス・フ
ロー電池4に充電が行われる。この場合は、第1
図に示すようにタンク5bから5aへ、タンク6
aから6bの方へポンプ7,8で正、負極液1
3,14を徐々に送りながら充電が行われる。正
極液13にFeイオン、負極液14にCrイオンを
使用する場合、流通型電解槽9内で起こる反応は
下記第(1)〜(3)式中の充電側の反応となる。
The power transmitted from charging power source 1 is redox
The voltage is transformed to an appropriate voltage by the flow battery 4, AC/DC conversion is performed by the inverter 3, and the voltage is supplied to the load 2. On the other hand, when surplus power is generated, the redox flow battery 4 is charged. In this case, the first
from tank 5b to tank 5a as shown in the figure.
Positive and negative electrode liquids 1 are pumped from a to 6b with pumps 7 and 8.
Charging is performed while gradually feeding 3 and 14. When Fe ions are used in the positive electrode solution 13 and Cr ions are used in the negative electrode solution 14, the reactions that occur in the flow-through electrolytic cell 9 are reactions on the charging side in the following equations (1) to (3).

正極側:Fe3++e放電 ――→ ←―― 充電Fe2+ ……(1) 負極側:Cr2+放電 ――→ ←―― 充電Cr3++e ……(2) 全反応:Fe3++Cr2+放電 ――→ ←―― 充電Fe2++Cr3+ ……(3) このようにして、電力が正極液13、負極板1
4の中に蓄積される。
Positive electrode side: Fe 3+ +e discharge――→ ←―― Charge Fe 2+ …(1) Negative electrode side: Cr 2+ discharge――→ ←―― Charge Cr 3+ +e …(2) Total reaction: Fe 3+ +Cr 2+ discharge――→ ←―― Charge Fe 2+ +Cr 3+ …(3) In this way, power is transferred to the positive electrode liquid 13 and the negative electrode plate 1.
It is accumulated in 4.

一方、供給電力が需要電力よりも少ない場合
は、上記第(1)〜(3)式中の放電側の反応が行われ、
インバータ3により直交変換が行われ、負荷2に
電力が供給される。
On the other hand, if the supplied power is less than the demanded power, the reactions on the discharge side in equations (1) to (3) above are performed,
Orthogonal transformation is performed by the inverter 3 and power is supplied to the load 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、以上に述べたレドツクス・フロー電
池を含む流通型電池では、電解液を循環させる為
のポンプ等の可動部分、及びその運転の為の動力
を必要とする。流通型電池においてはこのポンプ
動力が損失となり、電池の総合効率を引き下げる
ことになる。また、複数個のセル又はスタツク
(集合電池)を直列接続して使用する場合にはシ
ヤント電流(液絡による漏れ電流)が生じ、これ
が損失となつて、電池の総合効率を低下させるこ
とになる。
Incidentally, the flow-through type battery including the above-described redox flow battery requires movable parts such as a pump for circulating the electrolyte and power for operating the movable parts. In a flow-through type battery, this pump power becomes a loss, reducing the overall efficiency of the battery. In addition, when multiple cells or stacks (collected batteries) are connected in series, shunt current (leakage current due to liquid junction) occurs, which becomes a loss and reduces the overall efficiency of the battery. .

流通型電池を、太陽光発電、風力発電等の電力
貯蔵及び/又は変圧に用いる場合に、その発電電
力(KW)の変動が大きく、従つて電池の入力電
力(KW)の変動が大きいと考えられるが、入力
電力が小さくなつても動力及びシヤント電流が入
力電力に比例して小さくならなければ、入力に対
する電池の効率は低下することになる。放電時に
負荷側電力(KW)即ち電池出力(KW)が変動
する場合にも同様である。従つて、入力電力及び
出力電力の変動に対応して、ポンプの運転台数切
り替え、速度制御などにより電解液循環量も変動
させ、ポンプ動力を小さくすること又、使用する
スタツク(重合電池)の数を切り替えることによ
りシヤント電流の値を小さくすることが考えられ
る。
When using a flow-through battery for power storage and/or voltage transformation for solar power generation, wind power generation, etc., the generated power (KW) fluctuates widely, and therefore the battery input power (KW) fluctuates widely. However, even if the input power decreases, unless the power and shunt current decrease in proportion to the input power, the efficiency of the battery with respect to the input power will decrease. The same applies when the load side power (KW), that is, the battery output (KW) fluctuates during discharging. Therefore, in response to fluctuations in input power and output power, the amount of electrolyte circulation can be varied by switching the number of pumps in operation, controlling speed, etc., reducing the pump power, and reducing the number of stacks (polymerized batteries) used. It is conceivable to reduce the value of shunt current by switching.

しかし、電池の定格充放電電力(KW)に対し
て、極めて小さな入力電力又は出力電力で充放電
を行う場合には、ポンプの制御上の問題、電池で
の水素発生の懸念などから、上記の方法のみで対
応することは困難となる。又、上述のように、充
放電電力の変動に対応してポンプの運転台数を切
り替える方法では、ポンプの起動・停止の頻度及
びインターバルに制約が有り、発電電力及び/又
は必要な負荷電力の変動に対して、必ずしも瞬時
に対応することは出来ず、発電電力及び/又は、
必要な負荷電力と、流通型電池の充放電電力と
が、一致しない時間帯が生じることになる。
However, when charging and discharging with extremely small input power or output power compared to the rated charge/discharge power (KW) of the battery, there are problems with pump control, concerns about hydrogen generation in the battery, etc. It will be difficult to respond using methods alone. Furthermore, as mentioned above, in the method of switching the number of pumps in operation in response to fluctuations in charging and discharging power, there are restrictions on the frequency and interval of starting and stopping the pumps, and fluctuations in generated power and/or required load power It is not always possible to respond instantly, and the generated power and/or
There will be times when the required load power and the charging/discharging power of the circulation type battery do not match.

ところで、従来の太陽光発電又は風力発電と、
流通型電池とを組合せた実施例(例えば、
17thIECEC、829103、DESIGN FLEXIBILITY
OF REDOX FLOW SYSTEMS)では、上記
の流通型電池の弱点、即ち微弱な発電電力及び/
又は負荷電力での充放電時の効率低下、及び、発
電電力及び/又は負荷電力の変動に対する追従性
の悪さについては、特に対策は設けられていなか
つた。
By the way, conventional solar power generation or wind power generation,
Examples of combinations with flow-through batteries (for example,
17thIECEC, 829103, DESIGN FLEXIBILITY
OF REDOX FLOW SYSTEMS), the weaknesses of the above-mentioned flow-through type batteries, namely the weak generated power and/or
Or, no particular countermeasures have been taken for the reduction in efficiency during charging and discharging with load power and the poor followability to fluctuations in generated power and/or load power.

本発明は、これらの従来の流通型電池の問題点
を解決し、発電電力又は負荷電力の変動に対して
も迅速でかつ過不足のない対応が可能である電解
液流通型電池システムを提供することを目的とし
たものである。
The present invention solves these problems of conventional flow-through type batteries and provides an electrolyte flow-type battery system that can respond quickly and accurately to fluctuations in generated power or load power. It is intended for this purpose.

さらに本発明は微弱な発電電力又は負荷電力に
対しても高効率での充放電を行うことができる電
解液流通型電池システムを提供することを第二の
目的としたものである。
A second object of the present invention is to provide an electrolyte flow type battery system that can charge and discharge with high efficiency even weak generated power or load power.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電解液流通型電解槽と、ポンプ等の
可動部とを有する電解液流通型電池を太陽光発
電、風力発電等の電力貯蔵及び/又は変圧に用い
る場合に、該電解液流通型電池とポンプ等の可動
部分を必要としない鉛蓄電池等とを組み合せ、太
陽光などの発電電力の短時間変動及び負荷電力の
短時間変動を緩衝するため、前記鉛蓄電池の充電
回路及び放電回路を前記電解液流通型電池の充電
回路及び放電回路にそれぞれ並列になるように接
続したことを特徴とする電解液流通型電池システ
ムとすること、さらに重要な特徴として、 電解液流通型電解槽とポンプ等の可動部とを有
する電解液流通型電池を太陽光発電、風力発電等
の電力貯蔵及び/又は変圧に用いる場合に、該電
解液流通型電池とポンプ等の可動部分を必要とし
ない鉛蓄電池等とを組み合せ、電解液流通型電池
においてポンプ動力を含めた効率が著しく低下す
る低入力及び低出力の場合に、前記ポンプの起動
停止をタイマーで避けて、前記蓄電池等によつて
のみ充放電を行うことを特徴とする電解液流通型
電池システムとすることである。
The present invention provides an electrolyte flow type electrolytic cell and an electrolyte flow type battery having a movable part such as a pump when used for power storage and/or voltage transformation such as solar power generation and wind power generation. By combining batteries with lead-acid batteries, etc. that do not require moving parts such as pumps, charging circuits and discharging circuits for the lead-acid batteries are used to buffer short-term fluctuations in generated power such as solar power and short-term fluctuations in load power. The electrolyte flow type battery system is characterized in that the electrolyte flow type battery system is connected in parallel to the charging circuit and the discharging circuit of the electrolyte flow type battery, and as an important feature, an electrolyte flow type electrolytic cell and a pump are provided. A lead-acid battery that does not require the electrolyte flow type battery and moving parts such as a pump when used for power storage and/or voltage transformation for solar power generation, wind power generation, etc. In the case of low input and low output, where the efficiency including the pump power of the electrolyte flow type battery is significantly reduced, the pump can be charged and discharged only by the storage battery, etc., by using a timer to avoid starting and stopping the pump. An object of the present invention is to provide an electrolyte flow type battery system characterized by performing the following.

〔実施例〕〔Example〕

以下に、従来のシステムによる場合と、本発明
により改良を行つた場合の比較説明を実施例につ
いて図を用いて行う。
A comparative explanation of a conventional system and an improved system according to the present invention will be given below with reference to the drawings.

第3図及び第4図は、太陽光発電又は風力発電
の蓄電装置として流通型電池を使用した場合の概
念を示す図であり、第3図は本発明を適用しない
場合の系統について、又、第4図は本発明を適用
した場合の系統について、各々示す。
3 and 4 are diagrams showing the concept of using a flow-through type battery as a power storage device for solar power generation or wind power generation, and FIG. 3 shows a system in which the present invention is not applied, and FIG. 4 shows each system to which the present invention is applied.

第3図及び第4図において、15は太陽光発電
装置又は風力発電装置などの発電装置、16は流
通型電池、17はインバータ(直流交流変換装
置)、18は負荷、19はポンプ等の可動部分を
必要としない鉛蓄電池等の電池を各々示す。
In Figures 3 and 4, 15 is a power generation device such as a solar power generation device or a wind power generation device, 16 is a flow-through type battery, 17 is an inverter (DC/AC converter), 18 is a load, and 19 is a movable device such as a pump. Each shows a battery such as a lead-acid battery that does not require parts.

第5図は本発明を適用した実施例に於ける、充
電の場合の時間と動力の関係を示し、第6図は本
発明を適用した実施例における、放電の場合の、
時間と電力の関係を示す。第5図において、斜線
を施した部分が鉛蓄電池等での充電部分を示し、
その他の部分が流通型電池充電部分を示す。又、
第6図において、斜線を施した部分が鉛蓄電池等
での放電部分を示し、その他の部分が流通型電池
の放電部分を示す。なお、本実施例では、流通型
電池としてレドツクス・フロー電池500Wスタツ
ク(集合電池)2個で計1KW、発電装置として、
太陽光発電パネル200W4枚で計800W、鉛蓄電池
等として、鉛蓄電池500W1個としている。
FIG. 5 shows the relationship between time and power in the case of charging in an embodiment to which the present invention is applied, and FIG. 6 shows the relationship between time and power in the case of discharging in the embodiment to which the present invention is applied.
Shows the relationship between time and power. In Figure 5, the shaded area indicates the charging area with a lead-acid battery, etc.
The other parts show the flow-through battery charging part. or,
In FIG. 6, the shaded area shows the discharge area in a lead-acid battery or the like, and the other areas show the discharge area in a flow-through type battery. In addition, in this example, two 500W redox flow batteries stack (collected batteries) are used as circulating type batteries, totaling 1KW, and as a power generation device,
Four 200W solar panels provide a total of 800W, and one 500W lead-acid battery is used.

まず、第5図について、以下に詳細な説明を行
う。太陽光発電電力即ち、電池全体(レドツク
ス・フロー電池及び鉛蓄電池)の充電電力がA点
となつたことを検知し、タイマーで△T時間保持
した後に確認して、1セツト目のスタツクの起動
又は停止を行う。同様に、充電電力がB点となつ
たことを検知し、△T時間後確認して、2セツト
目のスタツクの起動又は停止を行う。よつて、
T1の時点で発電電力がAとなりタイマーが作動
するが、△Tの確認時間を要する為、T1′までの
時間の発電電力(斜線部分)が、レドツクス・フ
ロー電池では無く、鉛蓄電池により充電される。
同様に、T10の時点で発電電力がAとなるが、△
T時間後のT10′の時点で1セツト目のスタツクが
停止し、T10′以後のAよりも小さな電力を、鉛蓄
電池で充電する。
First, FIG. 5 will be described in detail below. Detects that the solar power generation power, that is, the charging power of the entire battery (redox flow battery and lead-acid battery) has reached point A, and after holding it for △T time with the timer, confirms and starts the first set of stacks. Or stop it. Similarly, it is detected that the charging power has reached point B, and this is confirmed after ΔT time, and the second set of stacks is started or stopped. Then,
At time T 1 , the generated power becomes A and the timer operates, but since it takes time to confirm △T, the generated power (shaded area) up to T 1 ' is generated not by the redox flow battery but by the lead-acid battery. It will be charged.
Similarly, at T 10 , the generated power becomes A, but △
After T time, at time T 10 ', the first set of stacks is stopped, and the lead-acid battery is charged with electric power smaller than A after T 10 '.

もし、本発明を適用せず鉛蓄電池を設けない場
合には、図でT1′より左側及びT10′より右側のA
より小さな電力については、充電を行わないか、
或いは、1セツト目の流通型電池(定格500Wに
より効率の低い充電(この場合1セツト目の起
動・停止に対するタイマーは設けない)を行うこ
とになる。即ち、本発明により、微弱な充電電力
に対して、効率の高い充電を行うことが可能とな
る。
If the present invention is not applied and a lead-acid battery is not provided, A on the left side of T 1 ' and on the right side of T 10 ' in the figure
For smaller power, do not charge or
Alternatively, the first set of flow-through type batteries (rated at 500W) is charged with low efficiency (in this case, a timer for starting and stopping the first set is not provided).In other words, the present invention enables charging with weak charging power. On the other hand, it becomes possible to perform charging with high efficiency.

一方、ポンプの短時間内の多頻度の起動・停止
を避ける為にタイマーをもうけることが必要であ
る。タイマーが無ければT3、T5、T7の時点で
各々2セツト目のスタツクが停止し、T4、T6
T8の時点で2セツト目のスタツクが起動するこ
とになるが、タイマーを設けることにより、△T
時間後のT3′、T5′、T7′の時点で確認を行うまで
2セツト目の停止は行われないので、実際には、
2セツト目は連続的に運転を続けることになり、
T3からT4、T5からT6、T7からT8という短時間
の電力変動による起動・停止を避けている。この
タイマーを設けることにより、T2の時点で電力
は2セツト目の起動電力のBの値に達するが、実
際には△T時間後のT2′の時点で2セツト目が起
動することになる。そして、このT2からT2′の間
で、1セツト目の容量500Wを超える分の発電電
力(斜線部分)が鉛蓄電池により充電される。
On the other hand, it is necessary to provide a timer to avoid frequent starting and stopping of the pump within a short period of time. If there is no timer, the second set of stacks will stop at T 3 , T 5 , and T 7 , and T 4 , T 6 , and
The second set of stacks will start at T 8 , but by providing a timer, △T
The second set of stops will not occur until confirmation is made at time T 3 ′, T 5 ′, and T 7 ′, so in reality,
The second set will continue to operate,
This avoids starting and stopping due to short-term power fluctuations such as from T 3 to T 4 , from T 5 to T 6 , and from T 7 to T 8 . By providing this timer, the power reaches the value of B, the starting power of the second set, at time T 2 , but the second set actually starts at time T 2 ', which is △T time later. Become. Then, between T 2 and T 2 ', the generated power (shaded area) exceeding the first set's capacity of 500 W is charged by the lead-acid battery.

即ち、本発明を適用し鉛蓄電池を設けたことに
よりタイマーにる確認時間△Tの間の1セツト目
の容量を超える分の発電電力も充電可能となり、
全体としての充電効率を高くすることが出来る。
That is, by applying the present invention and providing a lead-acid battery, it is possible to charge the generated power that exceeds the capacity of the first set during the timer confirmation time ΔT.
The overall charging efficiency can be increased.

本発明を適用せず鉛蓄電池等を設けない場合に
は、タイマーによる確認時間△Tの間の1セツト
目の容量を超える分の発電電力は充電されないこ
とになる。
If the present invention is not applied and a lead-acid battery or the like is not provided, the generated power exceeding the capacity of the first set during the confirmation time ΔT by the timer will not be charged.

次に第6図について、以下に詳細な説明を行
う。負荷電力即ち、電池全体(レドツクス・フロ
ー電池及び鉛蓄電池)の放電電力がa点となつた
ことを検知し、タイマーで△t時間保持した後に
確認して、1セツト目のスタツクの起動又は停止
を行う。同様に放電電力がb点となつたことを検
知し、△t時間後確認して、2セツト目のスタツ
ク起動又は停止を行う。よつて、t1の時点で負荷
電力がaを超えタイマーが作動するが、△tの確
認時間を要するため、t1′までの時間の負荷電力
(斜線部分)が、レドツクス・フロー電池では無
く、鉛蓄電池により放電される。同様にt8の時点
で負荷電力がa以下となるが、△t時間後の
t8′の時点で1セツト目スタツクが停止し、t8′以
後のaよりも小さな電力を鉛蓄電池で放電する。
Next, FIG. 6 will be described in detail below. Detects that the load power, that is, the discharge power of the entire battery (redox flow battery and lead-acid battery) has reached point a, and after holding it for △t time with a timer, confirms and starts or stops the first set of stacks. I do. Similarly, it is detected that the discharge power has reached point b, and this is confirmed after Δt time, and the second set of stacks is started or stopped. Therefore, at time t 1 , the load power exceeds a and the timer is activated, but since it takes time to confirm △t, the load power (shaded area) up to t 1 ' is not due to the redox flow battery. , discharged by a lead-acid battery. Similarly, at time t 8 , the load power becomes less than a, but after time △t
At time t 8 ', the first set of stacks stops, and the lead-acid battery discharges a smaller amount of power than a after t 8 '.

もし、本発明を適用せず鉛蓄電池を設けない場
合には、図でt1′より左側及びt8′より右側のaよ
り小さな電力については、放電を行わないか、或
いは、1セツト目の流通型電池(定格500W)に
より効率の低い放電(この場合1セツト目の起
動・停止に対するタイマーは設けない)を行うこ
とになる。即ち、本発明により、微弱な放電電力
に対して、効率の高い放電を行うことが可能とな
る。
If the present invention is not applied and a lead-acid battery is not provided, the power smaller than a on the left side of t 1 ' and on the right side of t 8 ' in the figure will not be discharged, or the first set of A flow-through type battery (rated at 500W) results in low-efficiency discharge (in this case, there is no timer for starting and stopping the first set). That is, according to the present invention, it is possible to perform highly efficient discharge with weak discharge power.

一方、ポンプの短時間の多頻度の起動・停止を
避ける為に、充電時と同様、放電時においても、
タイマーを設けることが必要である。タイマーが
無ければt3、t5の時点で各々、2セツト目のスタ
ツクが停止し、t4、t6の時点で2セツト目のスタ
ツクが起動することになるが、タイマーを設ける
ことにより、△t時間後のt3′、t5′の時点で確認
を行うまで2セツト目の停止は行われないので、
実際には、2セツト目は連続的に運転を続けるこ
とになりt3からt4、t5からt6という短時間の電力
変動による起動・停止を避けている。このタイマ
ーを設けることにより、t2の時点で電力は2セツ
ト目の起動電力のbの値に達するが、実際には△
t時間後のt2′の時点で2セツト目が起動するこ
とになる。そして、そのt2からt2′の間で、1セツ
ト目の容量500Wを超える分の負荷電力(斜線部
分)が蓄電電池により放電される。
On the other hand, in order to avoid frequent starting and stopping of the pump for a short period of time, during discharging as well as during charging,
It is necessary to provide a timer. If there was no timer, the second set of stacks would stop at t 3 and t 5 , and the second set of stacks would start at t 4 and t 6 , but by providing a timer, The second set of stops will not be performed until confirmation is made at t 3 ′ and t 5 ′ after △t time, so
In reality, the second set continues to operate continuously to avoid starting and stopping due to short-term power fluctuations from t 3 to t 4 and from t 5 to t 6 . By providing this timer, the power reaches the value b of the second set of starting power at time t 2 , but in reality, △
The second set will be activated at time t 2 ' after t hours. Then, between t 2 and t 2 ', the load power (shaded area) exceeding the capacity of the first set of 500 W is discharged by the storage battery.

即ち、本発明を適用し鉛蓄電池を設けたことに
より、タイマーによる確認時間△tの間1セツト
目の容量を超える分の負荷電力に対しても放電可
能となり、全体として安定した放電を行うことが
可能となる。本発明を適用せず鉛蓄電池等を設け
ない場合には、タイマーによる確認時間△tの間
1セツト目の容量を超える分の負荷電力は放電さ
れない、即ち、供給されないことになる。
That is, by applying the present invention and providing a lead-acid battery, it is possible to discharge even a load power exceeding the capacity of the first set during the confirmation time Δt by the timer, and stable discharge can be performed as a whole. becomes possible. If the present invention is not applied and a lead-acid battery or the like is not provided, the load power exceeding the capacity of the first set will not be discharged, that is, will not be supplied during the confirmation time Δt by the timer.

〔発明の効果〕〔Effect of the invention〕

本発明は、電解液流通型電解槽を有する流通型
電池を用いて太陽光発電、風力発電等による発電
電力を貯蔵、及び/又は変圧を行う電解液流通型
電池システムにおいて、鉛蓄電池のようなポンプ
などの可動部分を必要としない電池を、その充電
回路及び放電回路が、前記流通型電池の充電回路
及び放電回路にそれぞれ並列になるよう接続した
ことにより、太陽光などの発電電力の短時間変動
及び負荷電力の短時間変動の緩衡を行うことがで
き、また、さらに、充電電力又は放電電力が所定
の低電力よりも低い場合に、前記鉛蓄電池のよう
なポンプなどの可動部分を必要としない電池のみ
によつて充電又は放電することにより、太陽光な
どの発電電力の微弱な電力及び負荷電力の微弱な
電力の充放電に供することができ、制御の安定性
又は高効率の充放電が得られ、実用上極めて大な
る効果を奏する。
The present invention relates to an electrolyte flow type battery system that stores and/or transforms power generated by solar power generation, wind power generation, etc. using a flow type battery having an electrolyte flow type electrolyzer. By connecting a battery that does not require moving parts such as a pump so that its charging circuit and discharging circuit are parallel to the charging circuit and discharging circuit of the above-mentioned flow-through type battery, short-term power generation such as solar power can be achieved. The buffering of fluctuations and short-term fluctuations in load power can be carried out, and in addition, when the charging power or discharging power is lower than a predetermined low power, moving parts such as pumps such as lead-acid batteries are required. By charging or discharging only with a battery that does not have a battery, it can be used for charging and discharging weak generated power such as solar power and weak load power, and it has stable control and high efficiency charging and discharging. is obtained, and has an extremely large practical effect.

また、電解液流通型電池システムを電力貯蔵お
よび変圧に使用する場合に、短時間の入出力変
動、即ち充電電力および/または放電電力の変動
に対して、および低入出力時に対して電解液流通
型電池におけるポンプ等可動部分による損失の割
合が相対的に大きくなつて効率が低下することを
防ぎ、補機動力損失の軽減化がはかれ、経済的な
運転が安定して行えるものである。
In addition, when using electrolyte flow type battery systems for power storage and voltage transformation, electrolyte flow is necessary for short-term input/output fluctuations, that is, fluctuations in charging power and/or discharging power, and for low input/output. This prevents efficiency from decreasing due to a relatively large proportion of loss due to moving parts such as pumps in a type battery, reduces auxiliary power loss, and enables stable economical operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレドツクス・フロー電池を用いた電力
充放電装置の充電時の状態を示し、第2図は同じ
く放電時の状態を示し、第3図及び第4図は、太
陽光発電又は風力発電の蓄電装置として流通型電
池を使用した場合の概念を示す図であり、第3図
は本発明を適用しない場合の系統について、又、
第4図は本発明を適用した場合の系統について、
各々示し、第5図は、本発明を適用した実施例に
おける充電の場合の時間と電力の関係を示すグラ
フ、第6図は、本発明を適用した実施例におけ
る、放電の場合の時間と電力の関係を示すグラフ
である。 1……充電電源、2……負荷、3……インバー
タ、4……レドツクス・フロー電池、5a,5
b,6a,6b……タンク、7,8……ポンプ、
9……流通型電解槽、10……正極、11……負
極、12……隔膜、13……正極液、14……負
極液、15……発電装置、16……流通型電池、
17……インバータ、18……負荷、19……鉛
蓄電池。
Figure 1 shows the charging state of a power charging/discharging device using a redox flow battery, Figure 2 also shows the discharging state, and Figures 3 and 4 show the power generation by solar power or wind power. FIG. 3 is a diagram showing the concept when a flow-through type battery is used as a power storage device, and FIG. 3 shows a system in which the present invention is not applied, and
Figure 4 shows the system when the present invention is applied.
FIG. 5 is a graph showing the relationship between time and power in the case of charging in an embodiment to which the present invention is applied, and FIG. 6 is a graph showing the relationship between time and power in the case of discharging in the embodiment to which the present invention is applied. It is a graph showing the relationship between. 1... Charging power supply, 2... Load, 3... Inverter, 4... Redox flow battery, 5a, 5
b, 6a, 6b... Tank, 7, 8... Pump,
9...Flow type electrolytic cell, 10...Positive electrode, 11...Negative electrode, 12...Diaphragm, 13...Positive electrode liquid, 14...Negative electrode liquid, 15...Power generator, 16...Flow type battery,
17...Inverter, 18...Load, 19...Lead acid battery.

Claims (1)

【特許請求の範囲】 1 電解液流通型電解槽と、ポンプ等の可動部と
を有する電解液流通型電池を太陽光発電、風力発
電等の電力貯蔵及び/又は変圧に用いる場合に、
該電解液流通型電池とポンプ等の可動部分を必要
としない鉛蓄電池等とを組み合せ、太陽光などの
発電電力の短時間変動及び負荷電力の短時間変動
を緩衝するため、前記鉛蓄電池の充電回路及び放
電回路を前記電解液流通型電池の充電回路及び放
電回路にそれぞれ並列になるように接続したこと
を特徴とする電解液流通型電池システム。 2 電解液流通型電解槽と、ポンプ等の可動部と
を有する電解液流通型電池を太陽光発電、風力発
電等の電力貯蔵及び/又は変圧に用いる場合に、
該電解液流通型電池とポンプ等の可動部分を必要
としない鉛蓄電池等とを組み合せ、電解液流通型
電池において、ポンプ動力を含めた効率が著しく
低下する低入力及び低出力の場合に、前記ポンプ
の起動停止をタイマーで避けて、前記蓄電池等に
よつてのみ充放電を行うことを特徴とする電解液
流通型電池システム。
[Scope of Claims] 1. When using an electrolyte flow type battery having an electrolyte flow type electrolytic cell and a moving part such as a pump for power storage and/or voltage transformation such as solar power generation or wind power generation,
By combining the electrolyte flow type battery with a lead-acid battery that does not require moving parts such as a pump, the lead-acid battery can be charged in order to buffer short-term fluctuations in generated power such as solar power and short-term fluctuations in load power. An electrolyte flow type battery system, characterized in that a circuit and a discharge circuit are respectively connected in parallel to a charging circuit and a discharge circuit of the electrolyte flow type battery. 2. When using an electrolyte flow type electrolytic cell and an electrolyte flow type battery having a moving part such as a pump for power storage and/or voltage transformation for solar power generation, wind power generation, etc.,
By combining the electrolyte flow type battery with a lead-acid battery etc. that does not require moving parts such as a pump, in the case of low input and low output where the efficiency including the pump power is significantly reduced in the electrolyte flow type battery, the above-mentioned method can be used. An electrolyte flow type battery system characterized in that charging and discharging is performed only by the storage battery, etc., while avoiding starting and stopping of the pump using a timer.
JP60060151A 1985-03-25 1985-03-25 Electrolyte flow type battery system Granted JPS61218076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060151A JPS61218076A (en) 1985-03-25 1985-03-25 Electrolyte flow type battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060151A JPS61218076A (en) 1985-03-25 1985-03-25 Electrolyte flow type battery system

Publications (2)

Publication Number Publication Date
JPS61218076A JPS61218076A (en) 1986-09-27
JPH0582033B2 true JPH0582033B2 (en) 1993-11-17

Family

ID=13133866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060151A Granted JPS61218076A (en) 1985-03-25 1985-03-25 Electrolyte flow type battery system

Country Status (1)

Country Link
JP (1) JPS61218076A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795448B2 (en) * 1987-09-17 1995-10-11 健三 山口 Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery
JP4934248B2 (en) * 2001-05-23 2012-05-16 パナソニック株式会社 Power generation control system and fuel cell system
JP3970083B2 (en) 2002-04-23 2007-09-05 住友電気工業株式会社 Operation method of redox flow battery system
AT505169B1 (en) * 2007-07-02 2008-11-15 Cellstrom Gmbh REDOX FLOW BATTERY
JP2012164495A (en) * 2011-02-04 2012-08-30 Sumitomo Electric Ind Ltd Electrolyte circulation type battery system
CN102185327A (en) * 2011-03-28 2011-09-14 中国华能集团清洁能源技术研究院有限公司 Reversible fuel cell-based high-capacity power energy storage device
EP2929582B1 (en) * 2012-12-09 2018-08-29 United Technologies Corporation Flow battery with voltage-limiting device
WO2022269831A1 (en) * 2021-06-23 2022-12-29 株式会社EViP Electric moving vehicle system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149669A (en) * 1983-02-14 1984-08-27 Toshiba Corp Over-voltage suppressing apparatus of fuel battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149669A (en) * 1983-02-14 1984-08-27 Toshiba Corp Over-voltage suppressing apparatus of fuel battery

Also Published As

Publication number Publication date
JPS61218076A (en) 1986-09-27

Similar Documents

Publication Publication Date Title
US4797566A (en) Energy storing apparatus
EP3206276B1 (en) Energy storage system and management method thereof
US7456519B2 (en) Power conversion system
CN103825332B (en) Direct-current (DC) output system capable of effectively protecting fuel battery and reducing amount of energy storage batteries
CN106712091A (en) Novel alternating current and direct current hybrid micro-grid system and control strategy thereof
KR101319959B1 (en) Hybrid energy storage system
CN105811458A (en) Microgrid energy storage system and energy management method thereof
CN111181185A (en) Direct-current micro-grid system applying fuel cell and control method
KR20150011301A (en) Power control device for ship
WO2013026235A1 (en) Power supply system and control device thereof
Miyake et al. Vanadium redox-flow battery for a variety of applications
CN102496961A (en) Direct-current-bus-based wind-solar independent power grid system
JPH0582033B2 (en)
CN103825042B (en) For the flow battery system from net type solar power system
CN220673401U (en) Micro-grid system of solid oxide fuel cell
CN211790787U (en) Direct-current micro-grid system applying fuel cell
CN203747468U (en) DC output system for effectively protecting fuel battery and reducing quantity of energy storage battery
Saurav et al. LVRT for Solar PV System with Grid Scale Battery Energy Storage System
JPH0629029A (en) Fuel cell operating method
JP2003092831A (en) Power supply system and its operation method
JPH0654675B2 (en) Secondary battery device charging / discharging method
Tashakor et al. Power sharing strategy for multi‐source electrical auxiliary power unit with bi‐directional interaction capability
JPH0946912A (en) Distributed power unit
JPS6286667A (en) Electrolyte flowing type cell system and operating method thereof
Bourouis et al. An innovative algorithm for a hybrid FC/battery system energy management

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term