JPH0581611B2 - - Google Patents

Info

Publication number
JPH0581611B2
JPH0581611B2 JP60032368A JP3236885A JPH0581611B2 JP H0581611 B2 JPH0581611 B2 JP H0581611B2 JP 60032368 A JP60032368 A JP 60032368A JP 3236885 A JP3236885 A JP 3236885A JP H0581611 B2 JPH0581611 B2 JP H0581611B2
Authority
JP
Japan
Prior art keywords
resin particles
foaming
tank
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60032368A
Other languages
Japanese (ja)
Other versions
JPS61192524A (en
Inventor
Masanori Ooguri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP3236885A priority Critical patent/JPS61192524A/en
Publication of JPS61192524A publication Critical patent/JPS61192524A/en
Publication of JPH0581611B2 publication Critical patent/JPH0581611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<技術分野> この発明は発泡性熱可塑性樹脂粒子の予備発泡
法に関し、上記樹脂粒子を発泡成形等に使用する
前に、予め一定の発泡倍率まで予備発泡させて、
予備発泡粒を製造する為の方法に関している。 <従来技術> 上記予備発泡法として従来は、易揮発性発泡剤
を含有させた熱可塑性樹脂からなる樹脂粒子を、
タンク状の予備発泡槽内に投入し、撹拌棒等で樹
脂粒子を撹拌しながら、予備発泡槽内に高温の加
熱蒸気を噴出供給し、加熱蒸気を樹脂粒子に接触
させて、直接加熱する方法が採用されている。 しかし、上記従来方法は、加熱蒸気を樹脂粒子
内に浸透させて、蒸気の一部を発泡剤としても作
用させることによつて、比較的高倍率の予備発泡
粒を能率良く製造するには好適であるが、発泡倍
率3〜10倍程度の極低倍率の予備発泡粒を製造す
る場合には、樹脂粒子全体に対する加熱が均等に
行えず、加熱ムラが生じ易く、高温の加熱蒸気に
直接接触した部分の樹脂粒子は、前記蒸気による
発泡剤作用等によつて、10倍以上の高倍率にまで
発泡してしまう。逆に、一部の樹脂粒子は蒸気等
に接触しない為に、全く発泡しないまま残つたり
する場合もあり、発泡倍率のバラツキが生じ、安
定した品質の予備発泡粒が製造できない欠点があ
つた。 上記欠点を防止するため、樹脂粒子を布袋等に
収納した後、沸騰水槽に投入して加熱し、予備発
泡を行う方法も行われているが、この方法は作業
が面倒で手間と労力を要すると共に、沸騰水を使
用するために作業に危険を伴い、しかも沸騰水に
漬つた予備発泡粒は、水分を含有して湿つてしま
い、乾燥しなければ発泡成形等に使用できない欠
点があつた。 <目的> そこで、この発明の目的としては、上記従来技
術の欠点を解消し、発泡倍率3〜10倍程度の極低
倍率の予備発泡粒を、良好な品質で効率良く製造
することができる方法を開発したものである。 <構成> そして、上記目的を達成するための構成とし
て、この発明の発泡性熱可塑性樹脂粒子の予備発
泡法は、発泡性熱可塑性樹脂粒子を予備発泡槽内
で撹拌しながら、予備発泡槽の隔壁に隣接して設
けた加熱室に加熱媒体を供給し、この隔壁を介し
て、外部から間接的に樹脂粒子を加熱して、樹脂
粒子を発泡倍率3〜10倍に予備発泡させることを
特徴としている。 <実施例> 次いで、この発明の実施例について、図を参照
しながら以下に説明する。 図はこの発明の予備発泡法を実施するための、
予備発泡装置の一例を示しており、1は予備発泡
槽であり、従来の予備発泡装置と同様に、鋼板等
から形成された円筒タンク状をなしている。そし
て、予備発泡槽1の下部には、発泡性熱可塑性樹
脂粒子の供給口2、および製造された予備発泡粒
の排出口3が設けてある。 4は撹拌棒であり、予備発泡槽1の中心軸に沿
つて、上下に間隔をあけて複数本の撹拌棒4が、
水平方向へ放射状に突出形成してあり、40は撹
拌棒4の回転用モーターである。そして、予備発
泡槽1の内側壁面には、上下方向に沿つて撹拌棒
4と交互に、水平方向へ中心に向かつて突出する
邪魔棒10が形成してあり、撹拌棒4の回転によ
つて、予備発泡槽1内に供給された樹脂粒子を撹
拌混合して、後述する加熱効果を良好にし、発泡
倍率を平均化する為に有効である。 次に、予備発泡槽1の底部には、鋼板等からな
る隔壁11を介して、加熱室5が設けてあり、こ
の加熱室5には蒸気等の加熱媒体の供給口50お
よび排出口51が形成してあつて、高温の加熱蒸
気等の加熱媒体を導入可能に形成している。 さらに、6は振動機構であり、予備発泡槽1の
下端に設置してあつて、予備発泡槽1全体または
底部付近を強制的に振動させて、予備発泡中の樹
脂粒子に振動を与え得るようになつている。 以上のような、予備発泡装置を使用する、予備
発泡法について説明する。 発泡性熱可塑性樹脂粒子は、供給口2から予備
発泡槽1内に供給される。そして、撹拌棒4の回
転によつて樹脂粒子を撹拌すると同時に、振動機
構を作動させて、樹脂粒子を振動させ、予備発泡
槽1内全体の樹脂粒子を、絶えず万遍無く撹拌混
合しておく。一方、加熱室5には高温の加熱蒸気
が導入され、隔壁11を介して、予備発泡槽1内
の樹脂粒子を間接的に加熱する。そして、樹脂粒
子が加熱発泡して、予備発泡槽1内で一定の高さ
まで膨張すれば、樹脂粒子は3〜10倍の範囲にお
いて所定の発泡倍率まで予備発泡されたことにな
り、製造された予備発泡粒を排出口3から取り出
せば、予備発泡は終了する。 以上に述べた予備発泡法のうち、発泡性熱可塑
性樹脂粒子としては、ポリスチレン、ポリプロピ
レン、ポリエチレン、その他の各種熱可塑性樹脂
に易揮発性発泡剤を含有させ、ペレツト状等に成
形したものであり、従来の予備発泡に使用されて
いるものと同様のものが使用できる。 予備発泡装置としては、樹脂粒子に蒸気等の加
熱媒体が直接接触しなければ、図示した予備発泡
槽1の底面のほか、側面の下部等壁面の一部に、
隔壁11を介して適宜加熱手段を設ければ良い。
加熱手段としては、図示したように、加熱室5に
加熱蒸気、空気等の加熱ガス、あるいは加熱水、
加熱オイル等の加熱液体、その他の加熱媒体を導
入するもののほか、予備発泡槽1の隔壁11外方
に電熱ヒーター等の発熱手段を設置するもの等、
各種の既知の加熱手段を利用して、実施すること
も可能である。 次に、予備発泡槽1内で、樹脂粒子を万遍無く
撹拌する為には、撹拌棒4および邪魔棒10の設
置に加え、振動機構6によつて、予備発泡槽1を
強制的に振動させるのが有効である。即ち、予備
発泡槽1を強制的に振動させることによつて、発
泡の進行した樹脂粒子に比べて、比重の重い未発
泡粒子が、予備発泡槽1の下方に落下し易くな
り、蒸気室5に近い底部に集つて加熱されること
になる。従つて、未発泡粒子が順次効率良く加熱
発泡されるので、製造された予備発泡粒には未発
泡粒が残存する可能性はほとんど無くなり、発泡
ムラが少なく安定した品質の予備発泡粒が製造で
きるのである。なお、振動機構6の具体的構造と
しては、通常の電磁式やエアー式のバイブレータ
ーが適宜使用可能である。そして、振動機構6は
予備発泡槽1の下部等に設置して、予備発泡槽1
の下部付近の樹脂粒子に対して、有効に振動を与
えることができれば、上記未発泡粒の発生を良好
に防止することができる。 なお、図示した予備発泡装置は、樹脂粒子を一
定量毎に予備発泡させるバツチ式のものである
が、この発明方法は、樹脂粒子を連続的に供給し
て予備発泡させた後、順次排出する、連続式の予
備発泡装置に対しても、適用可能である。この連
続式の予備発泡装置の場合には、排出口3は予備
発泡槽1の上部に設置される。 <効果> 以上のごとく構成された、この発明方法によれ
ば、予備発泡槽1内で発泡性熱可塑性樹脂粒子を
加熱する際に、加熱蒸気等の加熱媒体を樹脂粒子
に直接接触させず、予備発泡槽1の隔壁11を介
して、間接的に加熱するものである。 即ち、従来の予備発泡法では、樹脂粒子の内部
に蒸気等が浸透して、発泡剤として作用し、樹脂
粒子を高発泡させてしまう問題がある。特に、蒸
気等が直接接触する樹脂粒子と、全く接触しない
樹脂粒子とでは、発泡の進行が極端に相違して、
加熱ムラが発生し易いが、この発明方法では、樹
脂粒子に対する間接的な加熱を行い、発泡剤の熱
膨張と樹脂粒子の熱による軟化のみで、比較的緩
やかに発泡させる。これにより、上記加熱ムラの
問題は全く生じず、予備発泡粒の発泡倍率を平均
化し、かつ発泡倍率3〜10倍に発泡した極低倍率
の予備発泡粒子を容器に得ることができるとい
う、効果を奏することができる。 また、蒸気等が樹脂粒子に接触しないので、樹
脂粒子に水分が付着して、湿つてしまう問題も解
消でき、製造された予備発泡粒は完全に乾燥した
状態の、良好な品質のものが得られる。 <実験例> 以上に述べた、この発明の効果を実証するため
に、具体的に樹脂粒子を用いて、予備発泡を実施
した。 まず、鉄製の予備発泡槽(容量800ml)を電気
ヒーターの上にせ、一定温度に加熱しておき、こ
の予備発泡槽内に樹脂粒子として、発泡性ポリス
チレンビーズ8gを投入、手で撹拌しながら、1
分間加熱発泡させて、発泡後の発泡倍率を測定
し、下表に示した。
<Technical Field> The present invention relates to a method for pre-foaming expandable thermoplastic resin particles, in which the resin particles are pre-foamed to a certain expansion ratio before being used for foam molding, etc.
It relates to a method for producing pre-expanded granules. <Prior art> Conventionally, in the above pre-foaming method, resin particles made of a thermoplastic resin containing an easily volatile blowing agent are
A method in which the resin particles are placed in a tank-shaped pre-foaming tank, and while stirring the resin particles with a stirring rod, high-temperature heated steam is jetted into the pre-foaming tank, and the heated steam comes into contact with the resin particles to heat them directly. has been adopted. However, the above conventional method is not suitable for efficiently producing pre-expanded particles with a relatively high magnification ratio by infiltrating heated steam into the resin particles and using a portion of the steam to also act as a blowing agent. However, when producing pre-expanded beads with an extremely low expansion ratio of about 3 to 10 times, the entire resin particle cannot be heated evenly, which tends to cause uneven heating, and direct contact with high-temperature heating steam. The resin particles in the affected area are foamed to a high magnification of 10 times or more due to the action of the foaming agent caused by the steam. On the other hand, because some resin particles do not come into contact with steam, etc., they may remain unfoamed at all, resulting in variations in the expansion ratio and the drawback that pre-expanded particles of stable quality cannot be produced. . In order to prevent the above drawbacks, a method has been used in which resin particles are stored in a cloth bag or the like and then heated in a boiling water tank to perform pre-foaming, but this method is cumbersome and requires time and effort. In addition, the use of boiling water is dangerous, and pre-expanded grains immersed in boiling water contain water and become damp, so they cannot be used for foam molding unless they are dried. <Purpose> Therefore, the purpose of this invention is to provide a method that eliminates the drawbacks of the above-mentioned conventional techniques and can efficiently produce pre-expanded granules with a very low expansion ratio of about 3 to 10 times with good quality. was developed. <Structure> As a structure for achieving the above object, the method for pre-foaming expandable thermoplastic resin particles of the present invention includes stirring the expandable thermoplastic resin particles in the pre-foaming tank while stirring the expandable thermoplastic resin particles in the pre-foaming tank. A heating medium is supplied to a heating chamber provided adjacent to the partition wall, and the resin particles are indirectly heated from the outside through the partition wall to pre-foam the resin particles to an expansion ratio of 3 to 10 times. It is said that <Example> Next, an example of the present invention will be described below with reference to the drawings. The diagram shows steps for carrying out the pre-foaming method of this invention.
An example of a pre-foaming device is shown, and reference numeral 1 is a pre-foaming tank, which, like the conventional pre-foaming device, is shaped like a cylindrical tank made of a steel plate or the like. In the lower part of the pre-foaming tank 1, a supply port 2 for expandable thermoplastic resin particles and a discharge port 3 for the produced pre-foamed particles are provided. 4 is a stirring rod, and along the central axis of the pre-foaming tank 1, a plurality of stirring rods 4 are arranged vertically at intervals,
It is formed to protrude radially in the horizontal direction, and 40 is a motor for rotating the stirring rod 4. Further, on the inner wall surface of the pre-foaming tank 1, baffle bars 10 are formed which protrude horizontally toward the center, alternating with the stirring bar 4 along the vertical direction. This is effective for stirring and mixing the resin particles supplied into the pre-foaming tank 1 to improve the heating effect described later and to average the expansion ratio. Next, a heating chamber 5 is provided at the bottom of the pre-foaming tank 1 via a partition wall 11 made of a steel plate or the like, and this heating chamber 5 has a supply port 50 and a discharge port 51 for a heating medium such as steam. It is formed so that a heating medium such as high-temperature heating steam can be introduced thereinto. Further, reference numeral 6 denotes a vibration mechanism, which is installed at the lower end of the pre-foaming tank 1 and forcibly vibrates the entire pre-foaming tank 1 or the vicinity of the bottom to give vibration to the resin particles during pre-foaming. It's getting old. A pre-foaming method using the above-mentioned pre-foaming device will be explained. The expandable thermoplastic resin particles are supplied into the pre-foaming tank 1 from the supply port 2 . Then, at the same time as the resin particles are stirred by the rotation of the stirring rod 4, the vibration mechanism is activated to vibrate the resin particles, so that the entire resin particles in the pre-foaming tank 1 are constantly and evenly mixed. . On the other hand, high-temperature heated steam is introduced into the heating chamber 5 and indirectly heats the resin particles in the pre-foaming tank 1 via the partition wall 11 . If the resin particles are heated and foamed and expanded to a certain height in the pre-foaming tank 1, the resin particles have been pre-foamed to a predetermined expansion ratio in the range of 3 to 10 times, and the manufactured When the pre-foamed grains are taken out from the discharge port 3, the pre-foaming is completed. Among the pre-foaming methods described above, the expandable thermoplastic resin particles include polystyrene, polypropylene, polyethylene, and other various thermoplastic resins containing an easily volatile foaming agent and molded into pellets or the like. , similar to those used for conventional prefoaming can be used. As a pre-foaming device, if the heating medium such as steam does not directly contact the resin particles, in addition to the bottom surface of the pre-foaming tank 1 shown in the figure, a part of the wall surface such as the lower part of the side surface, etc.
A suitable heating means may be provided via the partition wall 11.
As the heating means, as shown in the figure, the heating chamber 5 is heated with heated steam, heated gas such as air, heated water,
In addition to those that introduce a heating liquid such as heating oil or other heating medium, there are those that install heat generating means such as an electric heater on the outside of the partition wall 11 of the pre-foaming tank 1.
It is also possible to implement using various known heating means. Next, in order to evenly stir the resin particles in the pre-foaming tank 1, in addition to installing the stirring rod 4 and the baffle bar 10, the pre-foaming tank 1 is forcibly vibrated by the vibration mechanism 6. It is effective to do so. That is, by forcibly vibrating the pre-foaming tank 1, the unfoamed particles, which have a higher specific gravity than the foamed resin particles, tend to fall down the pre-foaming tank 1, and the steam chamber 5 It will gather at the bottom near the bottom and be heated. Therefore, since the unexpanded particles are heated and foamed sequentially and efficiently, there is almost no possibility that unexpanded particles remain in the produced pre-expanded granules, and pre-expanded granules with stable quality and less uneven foaming can be produced. It is. Note that as a specific structure of the vibration mechanism 6, a normal electromagnetic type or air type vibrator can be used as appropriate. The vibration mechanism 6 is installed at the bottom of the pre-foaming tank 1, and
If vibration can be effectively applied to the resin particles near the lower part of the resin particles, the generation of the unfoamed particles can be effectively prevented. Note that the illustrated pre-foaming device is of a batch type that pre-foams resin particles in fixed amounts, but in the method of this invention, resin particles are continuously supplied, pre-foamed, and then sequentially discharged. , it is also applicable to a continuous pre-foaming device. In the case of this continuous pre-foaming device, the outlet 3 is installed at the top of the pre-foam tank 1. <Effects> According to the method of the present invention configured as described above, when heating the expandable thermoplastic resin particles in the pre-foaming tank 1, the heating medium such as heated steam is not brought into direct contact with the resin particles. Heating is performed indirectly via the partition wall 11 of the pre-foaming tank 1. That is, in the conventional pre-foaming method, there is a problem in that steam or the like permeates inside the resin particles and acts as a foaming agent, causing the resin particles to become highly foamed. In particular, the progress of foaming is extremely different between resin particles that come into direct contact with steam, etc. and resin particles that do not come into contact at all.
Although heating unevenness is likely to occur, in the method of the present invention, the resin particles are heated indirectly, and foaming is performed relatively gently only by thermal expansion of the foaming agent and softening of the resin particles by heat. As a result, the problem of uneven heating described above does not occur at all, and the expansion ratio of the pre-expanded particles can be averaged, and the pre-expanded particles with an extremely low expansion ratio of 3 to 10 times can be obtained in the container. can be played. In addition, since steam does not come into contact with the resin particles, the problem of moisture adhering to the resin particles and making them wet can be solved, and the pre-expanded granules produced are completely dry and of good quality. It will be done. <Experimental Example> In order to demonstrate the effects of the present invention described above, pre-foaming was carried out specifically using resin particles. First, place an iron pre-foaming tank (capacity 800ml) on top of an electric heater and heat it to a constant temperature, then add 8g of expandable polystyrene beads as resin particles into the pre-foaming tank and stir by hand. 1
The foaming ratio was measured by heating and foaming for a minute and is shown in the table below.

【表】 上記実験により、この発明の予備発泡法による
間接的な加熱であつても、充分に予備発泡させる
ことが可能であることが実証できた。 次に、上記装置に、発泡ポリスチレンビーズ
50gを投入し、120℃に加熱しながら、振動を与
え、加熱時間の経過と共に、発泡粒の発泡倍率を
測定し、下表に示した。
[Table] The above experiment demonstrated that sufficient pre-foaming can be achieved even with indirect heating using the pre-foaming method of the present invention. Next, add expanded polystyrene beads to the above device.
50g of foamed beads were added, and vibration was applied while heating to 120°C. As the heating time progressed, the expansion ratio of the foamed beads was measured, and the results are shown in the table below.

【表】 なお表中、精度は下式で与えられ、発泡粒の発
泡倍率のバラツキを示す。 精度=σo-1/x×100% ここで、σo-1:発泡倍率測定値の標準偏差 :発泡倍率測定値の平均値 上記結果から、振動を与えることによつて、発
泡の進行が早くなると共に、発泡倍率のバラツキ
も少なくなることが実証できた。
[Table] In the table, the accuracy is given by the formula below, which indicates the variation in the expansion ratio of the foam particles. Accuracy = σ o-1 / x × 100% Where, σ o-1 : Standard deviation of the measured values of the foaming ratio : Average value of the measured values of the foaming ratio From the above results, it is clear that by applying vibration, the progress of foaming can be improved. We were able to demonstrate that it was faster and that the variation in foaming ratio was reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施例を示す、予備発泡装置の
断面図である。 1……予備発泡槽、11……隔壁、4……撹拌
棒、5……加熱室、6……振動機構。
The figure is a sectional view of a pre-foaming device showing an embodiment of the present invention. 1... Pre-foaming tank, 11... Partition wall, 4... Stirring bar, 5... Heating chamber, 6... Vibration mechanism.

Claims (1)

【特許請求の範囲】 1 発泡性熱可塑性樹脂粒子を予備発泡槽内で撹
拌しながら、予備発泡槽の隔壁に隣接して設けた
加熱室に加熱媒体を供給し、この隔壁を介して、
外部から間接的に樹脂粒子を加熱して、樹脂粒子
を発泡倍率3〜10倍に予備発泡させることを特徴
とする発泡性熱可塑性樹脂粒子の予備発泡法。 2 予備発泡槽内で、樹脂粒子を振動させながら
加熱する上記特許請求の範囲第1項記載の発泡性
熱可塑性樹脂粒子の予備発泡法。
[Claims] 1. While stirring the expandable thermoplastic resin particles in a pre-foaming tank, a heating medium is supplied to a heating chamber provided adjacent to a partition wall of the pre-foaming tank, and via this partition wall,
A method for pre-expanding expandable thermoplastic resin particles, which comprises heating the resin particles indirectly from the outside to pre-expand the resin particles to an expansion ratio of 3 to 10 times. 2. The method for pre-foaming expandable thermoplastic resin particles according to claim 1, wherein the resin particles are heated while being vibrated in a pre-foam tank.
JP3236885A 1985-02-20 1985-02-20 Prefoaming of expandable thermoplastic resin particle Granted JPS61192524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3236885A JPS61192524A (en) 1985-02-20 1985-02-20 Prefoaming of expandable thermoplastic resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236885A JPS61192524A (en) 1985-02-20 1985-02-20 Prefoaming of expandable thermoplastic resin particle

Publications (2)

Publication Number Publication Date
JPS61192524A JPS61192524A (en) 1986-08-27
JPH0581611B2 true JPH0581611B2 (en) 1993-11-15

Family

ID=12357001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236885A Granted JPS61192524A (en) 1985-02-20 1985-02-20 Prefoaming of expandable thermoplastic resin particle

Country Status (1)

Country Link
JP (1) JPS61192524A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109203345B (en) * 2018-10-08 2020-07-28 东营海瑞宝新材料有限公司 Polyurethane foaming improvement process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS58197028A (en) * 1982-05-13 1983-11-16 Kanegafuchi Chem Ind Co Ltd Pre-foaming of thermoplastic resin granule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561344A (en) * 1979-06-18 1981-01-09 Nishimu Denshi Kogyo Kk Controlling method for optimum wet-quantity in wet-type insulator stain measurement
JPS58197028A (en) * 1982-05-13 1983-11-16 Kanegafuchi Chem Ind Co Ltd Pre-foaming of thermoplastic resin granule

Also Published As

Publication number Publication date
JPS61192524A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
AU620879B2 (en) A process and a device for preparation of expanded thermoplastic microspheres
JPH0249331B2 (en)
US3147321A (en) Method for pre-expanding elongated segments of strands of expandable styrene polymercompositions
US3759641A (en) Process and apparatus for pre-expanding polymer particles
CA1162000A (en) Particulate styrene polymers containing blowing agent
JPH07188447A (en) Stirrer blade of preexpander
US3651182A (en) Method of making multicellular thermoset foamed plastic beads
US3973884A (en) Manufacture of high-density foamed polymer
JPH0581611B2 (en)
US3639551A (en) Cyclic method for producing low-density polystyrene foam beads
JPH07188448A (en) Preexpander
JPS634909A (en) Prefoaming of thermoplastic resin particle
FI63048B (en) EXPANDERBAR ICKE-IHOPKLUMPANDE STYRENPOLYMER
JPH06859B2 (en) Expandable styrene resin particles and method for producing the same
US4226942A (en) Foamable resins process
JPH0234641A (en) Expandable styrene resin particle and its production
JPS6028857B2 (en) Method for producing self-extinguishing polystyrene resin foam molding
JPS593870Y2 (en) Pre-expanding device for expandable thermoplastic resin particles
US3494988A (en) Method for partially expanding plastic beads in a rotating pan
GB1591801A (en) Production of vermiculite foam
JPH0725090B2 (en) Method and apparatus for pre-expanding expandable polystyrene resin particles
JPH0621175B2 (en) Foaming resin pre-foaming equipment
US3424826A (en) Method for selective absorption of foaming agent in foaming plastic articles
JPH03221543A (en) Additive coating method for pre-expanded beads
KR970010471B1 (en) Novel particulate expandable styrene polymers having sheet minimum molding times and method for preparing the same