JPH0581553B2 - - Google Patents

Info

Publication number
JPH0581553B2
JPH0581553B2 JP1287708A JP28770889A JPH0581553B2 JP H0581553 B2 JPH0581553 B2 JP H0581553B2 JP 1287708 A JP1287708 A JP 1287708A JP 28770889 A JP28770889 A JP 28770889A JP H0581553 B2 JPH0581553 B2 JP H0581553B2
Authority
JP
Japan
Prior art keywords
organic binder
parts
meth
acrylic resin
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1287708A
Other languages
Japanese (ja)
Other versions
JPH03150257A (en
Inventor
Takamasa Ootani
Kazuyuki Hagino
Hiromitsu Kinoshita
Akira Yanai
Norimasa Uesugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP1287708A priority Critical patent/JPH03150257A/en
Priority to US07/677,928 priority patent/US5278250A/en
Priority to US07/693,471 priority patent/US5286802A/en
Priority to US07/693,467 priority patent/US5278251A/en
Priority to EP91107050A priority patent/EP0511429B1/en
Priority claimed from EP91107050A external-priority patent/EP0511429B1/en
Priority to TW80103477A priority patent/TW201726B/zh
Publication of JPH03150257A publication Critical patent/JPH03150257A/en
Publication of JPH0581553B2 publication Critical patent/JPH0581553B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無機粉末と特定の有機バインダーと
からなる射出成形用組成物およびそれからの焼結
体に関する。さらに詳しくは、射出成形性、脱バ
インダー性に優れ、かつソリ、クラツクなどの欠
陥のない焼結体を歩留まりよく提供しうる射出成
形用組成物およびそれからの焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an injection molding composition comprising an inorganic powder and a specific organic binder, and a sintered body made from the composition. More specifically, the present invention relates to an injection molding composition that has excellent injection moldability and binder removal properties, and can provide a sintered body with a high yield without defects such as warpage and cracks, and a sintered body made from the same.

〔従来の技術・発明が解決しようとする課題〕[Problems to be solved by conventional technology/invention]

近年、セラミツクス粉末に有機バインダーを混
合し、可塑性を付与し、射出成形することにより
グリーン成形体をえ、引き続き脱バインダーし、
焼成することにより、セラミツクス製品としたも
のが自動車のエンジン部品などに採用されはじめ
ている。その特徴は、複雑形状の部品が工業的に
量産性よく、製造できる点にある。
In recent years, green molded products have been obtained by mixing organic binders with ceramic powder to give it plasticity and injection molding, followed by removing the binder.
Ceramic products made by firing are beginning to be used in automobile engine parts. Its feature is that parts with complex shapes can be mass-produced industrially.

ここで使用される有機バインダーは、セラミツ
クス粉末の均一な分散性、混合性の流動特性、グ
リーン成形体の強度、グリーン成形体からのバイ
ンダーの除去の容易さ(脱バインダー性)などに
かかわるものであり、有機バインダー成分の選択
や使用量を誤まると、良好な焼結体がえられな
い。たとえばセラミツクス粉末が有機バインダー
中に充分均一に分散していないと、成形体または
焼結体にソリ、クラツクなどの欠陥が生じやす
く、成形体の強度も低くなる。また、有機バイン
ダー成分の熱安定性がわるいばあいには、射出成
形体にシリンダー内で劣化が生じ、流動性が安定
せず、射出成形不良が発生したり、ときにはセラ
ミツクス粉末と有機バインダーとが分離してしま
うことさえある。さらに、有機バインダーの使用
量が多すぎるばあい、脱バインダー工程中、成形
体内部から発生する多量のガスのため、フクレ、
クラツクなどの発生を押さえることができない。
The organic binder used here is related to the uniform dispersibility of the ceramic powder, the flow characteristics of the mixability, the strength of the green compact, and the ease of removing the binder from the green compact (debinding properties). However, if the selection or amount of the organic binder component is incorrect, a good sintered body cannot be obtained. For example, if the ceramic powder is not sufficiently uniformly dispersed in the organic binder, defects such as warpage and cracks are likely to occur in the molded or sintered body, and the strength of the molded body will also be reduced. In addition, if the thermal stability of the organic binder component is poor, the injection molded product will deteriorate in the cylinder, the fluidity will not be stable, injection molding defects will occur, and sometimes the ceramic powder and organic binder may be mixed. They may even separate. Furthermore, if too much organic binder is used, a large amount of gas will be generated from inside the molded product during the binder removal process, resulting in blistering,
Unable to prevent cracks from occurring.

前記セラミツクス粉末の成形に使用する有機バ
インダーとしては、たとえばエチレン−酢酸ビニ
ル共重合体(EVA)、エチレン−エチルアクリレ
ート共重合体(EEA)、ポリスチレン、アタクチ
ツクポリプロピレン(APP)、ポリエチレン、
(メタ)アクリル系樹脂、ワツクス類などが提案
されているが、成形性(流動特性、成形安定性、
離型性など)、グリーン成形体強度、脱バインダ
ー性、焼結後の残留カーボン量など、諸特性の面
から見ると、各バインダーには一長一短がある。
Examples of the organic binder used for molding the ceramic powder include ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), polystyrene, atactic polypropylene (APP), polyethylene,
(Meth)acrylic resins, waxes, etc. have been proposed, but moldability (flow characteristics, molding stability,
Each binder has advantages and disadvantages in terms of various properties such as mold releasability, green molded body strength, binder removal properties, and amount of carbon remaining after sintering.

たとえばEVAは、セラミツクス粉末と混合し
たばあい、流動性を損うことなく、高い強度と適
度な弾性を有するグリーン成形体を提供しうる
が、加熱時、200℃付近から発生する酢酸ガスの
影響で成形体にフクレ、クラツクなどが発生しや
すい。
For example, when EVA is mixed with ceramic powder, it can provide a green molded product with high strength and appropriate elasticity without impairing fluidity. This tends to cause blisters and cracks on the molded product.

EEAもEVAと同様に、セラミツクス粉末や金
属粉末などと混合したばあい、混合物の流動性を
損なうことなく、成形体に高い強度、適度な弾性
を付与しうるが、使用量が多すぎると、加熱分解
によつて脱バインダーさせるばあい、成形体にフ
クレ、クラツクなどが著しく発生し、成形体を損
うことなく、脱バインダーすることが困難であ
る。
Like EVA, when mixed with ceramic powder or metal powder, EEA can impart high strength and appropriate elasticity to the molded product without impairing the fluidity of the mixture, but if too much is used, When the binder is removed by thermal decomposition, blisters and cracks occur in the molded product, making it difficult to remove the binder without damaging the molded product.

また、ポリスチレンや(メタ)アクリル系樹脂
(たとえばポリイソブチルメタクリレート)は、
セラミツクス粉末や金属粉末などに対して優れた
バインダー効果を示し、グリーン成形体に高い強
度を付与し、とくに肉薄部の破損防止などに有効
であり、グリーン成形体に優れた保形性を付与す
る他、加熱分解性に優れ、脱バインダーを容易に
するが、使用量が多すぎると、セラミツクス粉末
や金属粉末などとの混合物の流動性が充分でな
く、充填不足、ウエルドラインなどの射出成形不
良を招きやすい。
In addition, polystyrene and (meth)acrylic resins (e.g. polyisobutyl methacrylate)
It exhibits an excellent binder effect on ceramic powders and metal powders, imparts high strength to green molded objects, is particularly effective in preventing damage to thin parts, and provides excellent shape retention to green molded objects. In addition, it has excellent thermal decomposition properties and makes debinding easy, but if too much is used, the fluidity of the mixture with ceramic powder, metal powder, etc. will be insufficient, resulting in injection molding defects such as insufficient filling and weld lines. easy to invite.

さらに、アタクチツクポリプロピレンは、セラ
ミツクス粉末と混合したばあい、良好な流動性を
示し、射出成形が容易で、ハンドリングに必要な
充分な強度を有するグリーン成形体を製造できる
ことが示されているが(特公昭51−29170号公
報)、脱バインダー性に劣るという欠点を有して
いる。
Furthermore, it has been shown that when mixed with ceramic powder, atactic polypropylene exhibits good fluidity, is easy to injection mold, and can produce green molded bodies with sufficient strength for handling ( (Japanese Patent Publication No. 51-29170), it has the disadvantage of poor binder removal properties.

また、パラフインなどのワツクス類は、一般の
高分子化合物に比べて脱バインダー性には優れる
ものの、高圧力下で流動性が安定しないため射出
成形性に劣り、また比較的低分子量体であること
からグリーン成形体の強度も小さい。
In addition, although waxes such as paraffin have superior binder removal properties compared to general polymer compounds, they have poor injection moldability because their fluidity is unstable under high pressure, and they also have a relatively low molecular weight. Therefore, the strength of the green molded body is also low.

したがつて、それぞれ性能の異なるものをバラ
ンスよく組合わせて使用することが必要である
が、各樹脂は、形態軟化点異なる他、相溶姓が充
分でないため均一混合が非常に難しく、長時間の
混合を要するばあいが多い。一般的に、充分な混
合ができていないばあいには流動性が安定せず、
成形条件の割り出しに多くの時間を必要とし、成
形体の均質性が損われて成形体の寸法安定性に影
響する他、焼結体のクラツクなどの発生の原因と
なる。
Therefore, it is necessary to use a well-balanced combination of resins with different performance, but each resin has a different softening point in form and is not sufficiently compatible, so it is very difficult to mix them uniformly, and it is difficult to mix them uniformly for a long time. In many cases, it is necessary to mix Generally, if sufficient mixing is not achieved, the fluidity will not be stable.
It takes a lot of time to determine the molding conditions, which impairs the homogeneity of the molded body, which affects the dimensional stability of the molded body, and also causes cracks in the sintered body.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記のような実状に鑑み、射出成形法
によりセラミツクス粉末や金属粉末などの焼結体
を製造する際に、射出成形性、グリーン成形体の
強度、脱バインダー性などの必要な諸特性を有す
るバランスのとれた射出成形用組成物をえ、それ
からソリ、クラツクなどの欠陥のない良好な焼結
体を高い歩留りでうるためになされたものであ
り、 無機粉末と有機バインダーとからなる射出成形
用組成物であつて、有機バインダーが (a) エチレン−酢酸ビニル共重合体またはエチレ
ン−エチルアクリレート共重合体、 (b) (メタ)アクリル酸エステル単量体単独また
は(メタ)アクリル酸エステル単量体およびス
チレン系単量体の混合物および (c) 重合開始剤 からなる溶液を、分散剤を含む水系媒体中に分散
させて懸濁重合させた複合アクリル系樹脂45〜80
%(重量%、以下同様)と、融点100℃以下の前
記複合アクリル系樹脂と相溶性を有するワツクス
10〜50%との少なくとも2成分を含むバインダー
からなり、無機粉末/有機バインダーの割合が体
積比で0.65/0.35〜0.25/0.75となるように調製
した射出成形用組成物および前記射出成形用組成
物を成形したものを焼結してえられた焼結体 に関する。
In view of the above-mentioned circumstances, the present invention has been developed to provide various necessary properties such as injection moldability, strength of green molded products, and binder removal properties when producing sintered bodies such as ceramic powders and metal powders by injection molding. This was done in order to obtain a well-balanced injection molding composition with a high yield of good sintered bodies free from defects such as warpage and cracks. A molding composition, wherein the organic binder is (a) an ethylene-vinyl acetate copolymer or an ethylene-ethyl acrylate copolymer, (b) a (meth)acrylic ester monomer alone or a (meth)acrylic ester. Composite acrylic resin 45-80 obtained by suspending and polymerizing a solution consisting of a monomer, a mixture of styrenic monomers, and (c) a polymerization initiator in an aqueous medium containing a dispersant.
% (weight %, the same shall apply hereinafter) and is compatible with the composite acrylic resin having a melting point of 100°C or less.
An injection molding composition comprising a binder containing at least two components of 10 to 50% and prepared such that the ratio of inorganic powder/organic binder is 0.65/0.35 to 0.25/0.75 by volume, and the injection molding composition It relates to a sintered body obtained by sintering a molded object.

〔実施例〕〔Example〕

本発明の射出成形用組成物は、無機粉末と有機
バインダーとから調製されている。
The injection molding composition of the present invention is prepared from an inorganic powder and an organic binder.

前記無機粉末は、従来から有機バインダーとと
もに成形体が成形され、焼結体とされる用途に使
用されている無機粉末であるかぎりとくに限定は
ないが、粉末粒子形状が球形に近く、かつ平均粒
径0.1〜50μm程度のものであるのが無機粉末の充
填密度、射出成形時の流動性などの点から好まし
く、0.1〜20μm程度のものであるのがさらに好ま
しい。
The above-mentioned inorganic powder is not particularly limited as long as it is an inorganic powder that has conventionally been used to form a compact with an organic binder and be used as a sintered compact, but the powder particle shape is close to spherical and the average particle size is It is preferable to have a diameter of about 0.1 to 50 μm from the viewpoint of packing density of the inorganic powder and fluidity during injection molding, and more preferably about 0.1 to 20 μm.

前記無機粉末の例としては、前記のごとき平均
粒径の金属粉末やセラミツクス粉末などがあげら
れ、その具体例としては、たとえば純鉄、鉄−ニ
ツケル、鉄−コバルト、ステンレススチールなど
の鉄合金、タングステン、アルミニウム合金、銅
合金などの金属粉末、アルミナ、ジルコニア、ム
ライト、チタン酸塩、フエライトなどの酸化物系
セラミツクス粉末、チツ化ケイ素、チツ化アルミ
ニウム、チツ化ホウ素などのチツ化物系セラミツ
クス粉末、炭化ケイ素、炭化チタン、炭化タング
ステンなどの炭化物系セラミツクス粉末などのほ
か、チタンアルミニウム合金などの金属間化合物
粉末、アパタイトなどのリン酸塩類の粉末など、
さらに1〜50体積%の範囲で金属または金属以外
の無機質の繊維、ウイスカなどを含有する粉末な
どもあげられる。
Examples of the inorganic powder include metal powders and ceramic powders having the above-mentioned average particle diameter, and specific examples thereof include pure iron, iron alloys such as iron-nickel, iron-cobalt, and stainless steel; Metal powders such as tungsten, aluminum alloys, and copper alloys; oxide ceramic powders such as alumina, zirconia, mullite, titanate, and ferrite; titudide ceramic powders such as silicon nitride, aluminum nitride, and boron nitride; In addition to carbide ceramic powders such as silicon carbide, titanium carbide, and tungsten carbide, intermetallic compound powders such as titanium aluminum alloys, phosphate powders such as apatite, etc.
Further examples include powders containing metal or non-metallic inorganic fibers, whiskers, etc. in a range of 1 to 50% by volume.

前記金属の繊維やウイスカの例としては、たと
えば鋼、ステンレス、アルミニウム、マグネシウ
ム、ニツケル、チタン、ベリリウム、タングステ
ン、モリブデン、ボロンなどからの繊維やウイス
カが、また前記金属以外の無機質の繊維やウイス
カの例としては、たとえばアルミナ、ジルコニ
ア、炭化ケイ素、炭化ホウ素、チツ化ケイ素、チ
ツ化ホウ素、チツ化アルミニウムなどからの繊維
やウイスカがあげられる。
Examples of the metal fibers and whiskers include fibers and whiskers made of steel, stainless steel, aluminum, magnesium, nickel, titanium, beryllium, tungsten, molybdenum, boron, etc., and inorganic fibers and whiskers other than the metals mentioned above. Examples include fibers and whiskers from, for example, alumina, zirconia, silicon carbide, boron carbide, silicon nitride, boron nitride, aluminum nitride, and the like.

本発明に用いる前記有機バインダーは、(a)成分
であるエチレン−酢酸ビニル共重合体(EVA)
またはエチレン−エチルアクリレート共重合体
(EEA)、(b)成分である(メタ)アクリル酸エス
テル単量体単独または(メタ)アクリル酸エステ
ル単量体およびスチレン系単量体の混合物および
(c)成分である重合開始剤からなる溶液を、分散剤
を含む水系媒体中に分散させて懸濁重合させた複
合アクリル系樹脂45〜80%、融点100℃以下の前
記複合アクリル系樹脂と相溶性を有するワツクス
10〜50%、好ましくは15〜40%とを含み、要すれ
ばフタル酸エステル類などの可塑剤、高級脂肪酸
などの滑剤や離型剤成分のほか、無機粉末表面の
ヌレ性を改善するため界面活性剤、表面処理剤
(カツプリング剤)などを0〜40%、好ましくは
0〜25%を含むものである。
The organic binder used in the present invention is an ethylene-vinyl acetate copolymer (EVA), which is component (a).
or ethylene-ethyl acrylate copolymer (EEA), (b) component (meth)acrylic ester monomer alone or a mixture of (meth)acrylic ester monomer and styrene monomer;
(c) A composite acrylic resin of 45 to 80% obtained by dispersing a solution consisting of a polymerization initiator in an aqueous medium containing a dispersant and carrying out suspension polymerization, and the aforementioned composite acrylic resin having a melting point of 100°C or less. Waxes with compatibility
Contains 10 to 50%, preferably 15 to 40%, if necessary, in addition to plasticizers such as phthalate esters, lubricants such as higher fatty acids, and mold release agent components, to improve the wettability of the inorganic powder surface. It contains 0 to 40%, preferably 0 to 25%, of a surfactant, a surface treatment agent (coupling agent), etc.

前記複合アクリル系樹脂は、無機粉末と混合し
たばあい、混合物に充分な流動性を付与し、無機
粉末に対して優れたバインダー効果を示し、粒子
同士を強く結合させ、グリーン成形体に充分な強
度、弾性を与えるための成分であり、脱バインダ
ー特性にも優れるものである。
When the composite acrylic resin is mixed with inorganic powder, it imparts sufficient fluidity to the mixture, exhibits an excellent binder effect on the inorganic powder, and strongly binds the particles to each other, making it possible to form a green molded body with sufficient fluidity. It is a component that provides strength and elasticity, and also has excellent binder removal properties.

複合アクリル系樹脂がEVAまたはEEAをあら
かじめ(メタ)アクリル酸エステル単量体単独ま
たは(メタ)アクリル酸エステル単量体およびス
チレン系単量体に溶解させ、これを水系媒体に分
散させ懸濁重合させてえられるため、複合アクリ
ル系樹脂はミクロ的にみて非常に均一に混合した
(第1図および第3図参照)一種のポリマーアロ
イのようなものとなり、単に重合体同士をブレン
ドしたもの(第2図および第4図参照)に比べて
無機粉末との混合物の成形条件の割り出しが容易
になり、流動性が安定し、バラツキの少ない歩留
りの高い良好な焼結体をうることができる。
Composite acrylic resin is produced by dissolving EVA or EEA in a (meth)acrylic ester monomer alone or in a (meth)acrylic ester monomer and a styrene monomer, and dispersing this in an aqueous medium for suspension polymerization. As a result, composite acrylic resin is a kind of polymer alloy that is microscopically mixed very uniformly (see Figures 1 and 3), and is simply a blend of polymers (see Figures 1 and 3). 2 and 4), it is easier to determine the molding conditions for the mixture with inorganic powder, and a good sintered body with stable fluidity and a high yield with little variation can be obtained.

前記エチレン−酢酸ビニル共重合体(EVA)
にはとくに限定はなく、一般にエチレン−酢酸ビ
ニル共重合体とよばれているものであれば使用し
うるが、エチレン/酢酸ビニルが重量比で85/15
〜50/50の共重合体であるのが好ましく、さらに
80/20〜60/40であるのが好ましい。該比率が
85/15をこえるとエチレン−酢酸ビニル共重合体
を(メタ)アクリル酸エステル単量体または(メ
タ)アクリル酸エステル単量体およびスチレン系
単量体の混合物に溶解させるのが難しくなり、
50/50未満になるとエチレン−酢酸ビニル共重合
体を入手するのが難しく、またグリーン成形体強
度も低下する傾向にある。
The ethylene-vinyl acetate copolymer (EVA)
There are no particular limitations on the copolymer, and any copolymer generally called ethylene-vinyl acetate copolymer may be used; however, if the weight ratio of ethylene/vinyl acetate is 85/15,
~50/50 copolymer is preferred, and
Preferably, the ratio is 80/20 to 60/40. The ratio is
When it exceeds 85/15, it becomes difficult to dissolve the ethylene-vinyl acetate copolymer in the (meth)acrylic ester monomer or the mixture of the (meth)acrylic ester monomer and styrene monomer,
When the ratio is less than 50/50, it is difficult to obtain an ethylene-vinyl acetate copolymer, and the strength of the green molded product also tends to decrease.

また、該エチレン−酢酸ビニル共重合体のメル
トインデツクス(MI値)としては、10〜500程度
のものが、とくに溶解させて用いるばあいの粘性
などの点から好ましく、また成形時の流動性、グ
リーン成形体の強度などの点から20〜400程度の
ものがさらに好ましい。
In addition, the melt index (MI value) of the ethylene-vinyl acetate copolymer is preferably about 10 to 500, especially from the viewpoint of viscosity when used after being dissolved, and also from the viewpoint of fluidity during molding. From the viewpoint of the strength of the green molded product, it is more preferable that the number is about 20 to 400.

前記エチレン−エチルアクリレート共重合体
(EEA)にもとくに限定はなく、一般にエチレン
−エチルアクリレート共重合体とよばれているも
のであれば使用しうるが、エチレン−エチルアク
リレートが重量比で85/15〜50/50の共重合体で
あるのが好ましく、80/20〜60/40の共重合体で
あるのがさらに好ましい。該比率が85/15をこえ
るとエチレン−エチルアクリレート共重合体を
(メタ)アクリル酸エステル単量体または(メタ)
アクリル酸エステル単量体およびスチレン系単量
体の混合物に溶解させるのが難しくなり、50/50
未満になるとエチレン−エチルアクリレート共重
合体を入手するのが難しく、またグリーン成形体
強度も傾向にある。
The above-mentioned ethylene-ethyl acrylate copolymer (EEA) is not particularly limited, and any commonly called ethylene-ethyl acrylate copolymer can be used, but if the weight ratio of ethylene-ethyl acrylate is 85/ It is preferably a 15-50/50 copolymer, more preferably an 80/20-60/40 copolymer. When the ratio exceeds 85/15, the ethylene-ethyl acrylate copolymer is converted into a (meth)acrylate monomer or a (meth)acrylate monomer.
Difficult to dissolve in mixtures of acrylate monomers and styrenic monomers, resulting in 50/50
If it is less than that, it is difficult to obtain the ethylene-ethyl acrylate copolymer, and the strength of the green molded product tends to be low.

また、該エチレン−エチルアクリレート共重合
体のメルトインデツクス(MI値)としては、10
〜2000程度のものが、とくに溶解させて用いるば
あいの粘性などの点から好ましく、また成形時の
流動性、グリーン成形体の強度などの点から100
〜1500程度のものがさらに好ましい。
In addition, the melt index (MI value) of the ethylene-ethyl acrylate copolymer is 10
~2000 is preferable from the viewpoint of viscosity, especially when used after being dissolved, and 100 from the viewpoint of fluidity during molding, strength of green molded product, etc.
A value of about 1,500 to 1,500 is more preferable.

前記(メタ)アクリル酸エステル単量体にもと
くに限定はないが、成形時の流動性、グリーン成
形体の強度、脱バインダー性などの点から炭素数
が1〜8のアルコールと(メタ)アクリル酸とか
らエステルであるのが好ましい。このような(メ
タ)アクリル酸エステル単量体の具体例として
は、たとえばアルキル基の炭素数が1〜8のn−
アルキル(メタ)アクリレート、イソプロピル
(メタ)アクリレート、イソブチル(メタ)アク
リレート、t−ブチル(メタ)アクリレート、2
−エチルヘキシル(メタ)アクリレート、2−メ
トキシエチル(メタ)アクリレート、2−エトキ
シエチル(メタ)アクリレートなどがあげられ
る。これらのうちではとくにn−ブチル(メタ)
アクリレートのようなアルキル基の炭素数が1〜
4のn−アルキル(メタ)アクリレート、イソプ
ロピル(メタ)アクリレート、イソブチル(メ
タ)アクリレート、t−ブチル(メタ)アクリレ
ートが好ましい。これらは単独で用いてもよく、
2種以上併用してもよい。
The (meth)acrylic acid ester monomer is not particularly limited, but from the viewpoints of fluidity during molding, strength of green molded products, binder removal properties, etc., alcohols having 1 to 8 carbon atoms and (meth)acrylic are preferred. Preferably, it is an ester from an acid. Specific examples of such (meth)acrylic acid ester monomers include n-
Alkyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, 2
-Ethylhexyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, and the like. Among these, n-butyl (meth)
The number of carbon atoms in the alkyl group such as acrylate is 1 or more
Preferred are n-alkyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, and t-butyl (meth)acrylate. These may be used alone,
Two or more types may be used in combination.

前記スチレン系単量体の具体例としては、たと
えばスチレン、α−メチルスチレン、p−メチル
スチレン、ビニルスチレンなどがあげられる。
Specific examples of the styrene monomer include styrene, α-methylstyrene, p-methylstyrene, vinylstyrene, and the like.

前記(メタ)アクリル酸スチレン単量体とスチ
レン系単量体とを混合して用いるばあいには、混
合物中にしめるスチレン系単量体の割合が80%以
下であるのが好ましい。混合物中にしめるスチレ
ン系単量体の割合が高くなるにしたがつてえられ
る有機バインダーの流動性がわるくなり、成形が
困難になる傾向がある。
When the styrene monomer (meth)acrylate and the styrene monomer are used as a mixture, the proportion of the styrene monomer in the mixture is preferably 80% or less. As the proportion of the styrene monomer in the mixture increases, the fluidity of the resulting organic binder tends to deteriorate and molding becomes difficult.

また、本発明に用いる複合アクリル系樹脂の本
質をそこなわない限りにおいては、他のモノマ
ー、たとえば(メタ)アクリル酸、酢酸ビニル、
塩化ビニルなどのモノマーを少量併用してもよ
い。
In addition, other monomers such as (meth)acrylic acid, vinyl acetate,
A small amount of a monomer such as vinyl chloride may also be used in combination.

(a)成分と(b)成分との使用割合としては、(a)成
分/(b)成分が重量割合で5/95〜80/20程度であ
るのが好ましく、20/80〜70/30程度であるのが
さらに好ましい。前記割合が5/95未満のばあい
には、えられる有機バインダーを用いて調製した
無機粉末との混合物の流動性が充分でなくなりや
すく、成形不良をおこしやすくなる。また80/20
をこえるばあいには、加熱分解で脱バインダーす
るときに生じる成形体のフクレ現象が顕著になり
やすく、成形体強度の低下がおこりやすく、また
脱バインダーや取扱いが困難になりやすくなる。
The ratio of component (a) to component (b) is preferably about 5/95 to 80/20 (component (a)/component (b) by weight, and 20/80 to 70/30). It is more preferable that it be about a certain degree. When the ratio is less than 5/95, the fluidity of the mixture with the inorganic powder prepared using the organic binder obtained tends to be insufficient, and molding defects are likely to occur. 80/20 again
If the temperature exceeds 100%, the blistering phenomenon of the molded product that occurs when removing the binder by thermal decomposition tends to become noticeable, the strength of the molded product tends to decrease, and it becomes difficult to remove the binder and handle it.

前記重合開始剤の好ましい具体例としては、た
とえばベンゾイルパーオキサイド、ラウロイルパ
ーオキサイド、t−ブチルパーオキシ−2−エチ
ルヘキサネートなどの有機過酸化物、アゾビスイ
ソブチロニトリル、アゾビスジメチルバレロニト
リルなどのアゾ化合物などの油溶性の重合開始剤
などがあげられる。これらは単独で用いてもよ
く、2種以上併用してもよい。
Preferred specific examples of the polymerization initiator include organic peroxides such as benzoyl peroxide, lauroyl peroxide, and t-butylperoxy-2-ethylhexanate, azobisisobutyronitrile, and azobisdimethylvaleronitrile. Examples include oil-soluble polymerization initiators such as azo compounds such as. These may be used alone or in combination of two or more.

重合開始剤の使用量としては、(b)成分100部
(重量部、以下同様)に対して反応速度や分子量
の調節などの点から0.05〜1.5部であるのが好ま
しく、0.1〜0.6部であるのがさらに好ましい。
The amount of the polymerization initiator to be used is preferably 0.05 to 1.5 parts, and 0.1 to 0.6 parts, based on 100 parts (by weight, the same applies hereinafter) of component (b), from the viewpoint of controlling the reaction rate and molecular weight. It is even more preferable to have one.

前記重合に際し、要すれば分子量の調節などの
ために連鎖移動剤を使用してもよく、このような
連鎖移動剤の好ましい具体例としては、たとえば
n−ドデシルメルカプタン、t−オクチルメルカ
プタンのようなメルカプト化合物や、α−メチル
スチレン二重体などがあげられる。これらは単独
で用いてもよく、2種以上併用してもよい。
During the polymerization, a chain transfer agent may be used to adjust the molecular weight, if necessary. Preferred specific examples of such chain transfer agents include n-dodecylmercaptan and t-octylmercaptan. Examples include mercapto compounds and α-methylstyrene duplexes. These may be used alone or in combination of two or more.

連鎖移動剤を使用するばあいの使用量として
は、(b)成分100部に対して分子量の調節などの点
から0.01〜1.0部であるのが好ましく、0.03〜0.5
部であるのがさらに好ましい。
When using a chain transfer agent, the amount used is preferably 0.01 to 1.0 parts, and 0.03 to 0.5 parts, based on 100 parts of component (b), from the viewpoint of controlling the molecular weight.
It is more preferable that it is part.

本発明においては混合系有機バインダーの特性
がそれぞれの有機バインダーの特性の単なるよせ
集めとして発現し、混合系有機バインダーとして
1つになつた特性が発現しないことを改善するた
めのものであるから、(a)成分の溶解が充分おこつ
た状態で(b)成分が重合し、基体となる(a)成分と均
一な重合体が生成するのが好ましい。それゆえ、
(b)成分が(a)成分と均一になるのみならず、均一に
なつた状態で全体が均一に重合するように油溶性
重合開始剤を使用するのが好ましい。
In the present invention, the characteristics of the mixed organic binder are expressed as a mere collection of the characteristics of each organic binder, and the purpose of the present invention is to improve the fact that the characteristics of the mixed organic binder are not expressed as one. It is preferable that component (b) is polymerized in a state where component (a) is sufficiently dissolved to form a polymer that is homogeneous with component (a) as a base. therefore,
It is preferable to use an oil-soluble polymerization initiator so that component (b) is not only uniform with component (a), but also uniformly polymerized as a whole.

(a)成分、(b)成分、(c)成分および要すれば使用さ
れる連鎖移動剤などから溶液を調製する方法など
にはとくに限定はなく、(c)成分が分解しないよう
な温度であればどのような方法で調製してもよ
い。
There are no particular limitations on the method of preparing a solution from component (a), component (b), component (c) and, if necessary, a chain transfer agent. It may be prepared by any method.

調製された溶液は、分散剤を含む水系媒体中に
分散せしめられ、懸濁重合せしめられる。
The prepared solution is dispersed in an aqueous medium containing a dispersant and subjected to suspension polymerization.

前記分散剤の具体例としては、たとえばポリビ
ニルアルコール、ヒドロキシエチルセルロース、
ポリビニルピロリドンなどの水溶性有機高分子化
合物や、ヒドロキシアパタイト、ピロリン酸マグ
ネシウムなどの水難溶性の微粒子を、アニオン界
面活性剤と併用したものなどがあげられる。これ
ら分散剤の使用量は、使用する水100部に対して
0.1〜1部であるのが好ましく、0.2〜0.5部である
のがさらに好ましい。
Specific examples of the dispersant include polyvinyl alcohol, hydroxyethyl cellulose,
Examples include those using a water-soluble organic polymer compound such as polyvinylpyrrolidone, or poorly water-soluble fine particles such as hydroxyapatite or magnesium pyrophosphate in combination with an anionic surfactant. The amount of these dispersants used is based on 100 parts of water used.
The amount is preferably 0.1 to 1 part, more preferably 0.2 to 0.5 part.

前記分散剤を含む水系媒体に対する前記(a)〜(c)
成分ならびに要すれば使用される連鎖移動剤など
からなる溶液の割合としては、水系媒体100部に
対して該溶液30〜120部が分散懸濁液の安定性お
よび生産性などの点から好ましく、50〜100部が
さらに好ましい。
(a) to (c) above for the aqueous medium containing the dispersant
The ratio of the solution consisting of the components and, if necessary, a chain transfer agent used, is preferably 30 to 120 parts of the solution to 100 parts of the aqueous medium from the viewpoint of stability and productivity of the dispersion suspension. More preferably 50 to 100 parts.

懸濁重合を行なう際の条件などにはとくに限定
はなく、通常行なわれている方法によればよい。
たとえば重合反応温度は、使用する重合開始剤の
分解温度によつて適切な温度が決められるが、通
常50〜130℃の範囲である。
There are no particular limitations on the conditions for carrying out suspension polymerization, and any commonly used method may be used.
For example, the appropriate polymerization reaction temperature is determined depending on the decomposition temperature of the polymerization initiator used, but is usually in the range of 50 to 130°C.

このようにしてたとえば第1図に示すように(a)
成分に(b)成分が均一にミクロ分散した有機バイン
ダーに用いる複合アクリル系樹脂がえられる。こ
の複合アクリル系樹脂は無機粉末を成形して焼結
体をうるのに好適に使用されうる。
In this way, for example, as shown in Figure 1, (a)
A composite acrylic resin used for an organic binder in which component (b) is uniformly microdispersed can be obtained. This composite acrylic resin can be suitably used for molding inorganic powder to obtain a sintered body.

なお、第1図は、本発明の組成物に用いる複合
アクリル系樹脂を溶媒でエツチングしたのちの状
態を走査電子顕微鏡(5000倍)で観察し、複合ア
クリル系樹脂の粒子の内部構造をあらわすように
した電子顕微鏡写真である。
In addition, Figure 1 shows the internal structure of the composite acrylic resin particles, which was obtained by observing the state of the composite acrylic resin used in the composition of the present invention after etching with a solvent using a scanning electron microscope (5000x magnification). This is an electron micrograph.

また前記ワツクスは、無機粉末と複合アクリル
系樹脂との混練を容易にし、無機粉末を複合アク
リル系樹脂中に均一に分散させ、混合物に可塑性
を付与し、流動性を向上させるための成分であ
り、前記複合アクリル系樹脂と併用することによ
り有機バインダーの使用量を減少させることが可
能となる。
The wax is a component that facilitates kneading of the inorganic powder and composite acrylic resin, uniformly disperses the inorganic powder in the composite acrylic resin, imparts plasticity to the mixture, and improves fluidity. By using it in combination with the composite acrylic resin, it is possible to reduce the amount of organic binder used.

前記ワツクスの融点が100℃をこえると、有機
バインダーの混融点が高く、流動性が不充分と有
機バインダーの使用量を減少させることが難しく
なる。一方、常温以下の融点を有するオイルでは
成形体強度、離型性の面で成形不良を起こしやす
く、また複合アクリル系樹脂と相溶性を有さない
ワツクスのばあいには無機粉末を有機バインダー
中に均一に分散させるのが困難となり、いずれも
前記効果がえられなくなる。
If the melting point of the wax exceeds 100°C, the melting point of the organic binder will be high, and fluidity will be insufficient, making it difficult to reduce the amount of organic binder used. On the other hand, oils with a melting point below room temperature tend to cause molding defects in terms of molded product strength and mold releasability, and in the case of waxes that are not compatible with composite acrylic resins, inorganic powders are mixed with organic binders. It becomes difficult to uniformly disperse the particles, and the above-mentioned effects cannot be obtained in either case.

前記ワツクスの有機バインダー中に占める割合
は前記のように10〜50%、好ましくは15〜35%で
あるが、ワツクスの使用量が10%未満のばあいに
は、前記の効果が充分でなく、50%をこえて使用
したばあいには、ワツクスの大きな欠点である強
度不足が顕著にあらわれ、金型からの離型時、グ
リーン成形体にクラツク、割れなどが生じ、実質
上、通常のハンドリングに耐えられるような強度
を有するグリーン成形体がえられなくなる。
The proportion of the wax in the organic binder is 10 to 50%, preferably 15 to 35%, as described above, but if the amount of wax used is less than 10%, the above effect may not be sufficient. If it is used in excess of 50%, the lack of strength, which is a major drawback of wax, will become noticeable, and the green molded product will crack or break when released from the mold, making it virtually the same as normal wax. It is no longer possible to obtain a green molded product that has enough strength to withstand handling.

前記ワツクスは合成系、天然系ワツクスのいず
れも使用でき、その具体例としては、たとえばパ
ラフインワツクス、マイクロクリスタリンワツク
ス、ポリエチレンワツクス、ミツロウ、カルナウ
バワツクス、モンタンワツクスなどがあげられ
る。
Both synthetic and natural waxes can be used, and specific examples include paraffin wax, microcrystalline wax, polyethylene wax, beeswax, carnauba wax, and montan wax.

本発明の射出成形用組成物は、前記無機粉末
と、複合アクリル系樹脂およびワツクスを必須成
分とする前記有機バインダーとの割合が、体積比
で0.65/0.35〜0.25/0.75となるように調製した
組成物である。なお、本明細書にいう体積比と
は、Wpを無機粉末の重量、dpを無機粉末の真比
重、WBを有機バインダーの重量、dBを有機バイ
ンダーの真比重としたばあい、次式により表わさ
れるものをいう。
The injection molding composition of the present invention is prepared such that the ratio of the inorganic powder to the organic binder whose essential components are a composite acrylic resin and wax is 0.65/0.35 to 0.25/0.75 by volume. It is a composition. In addition, the volume ratio referred to in this specification is when W p is the weight of the inorganic powder, d p is the true specific gravity of the inorganic powder, W B is the weight of the organic binder, and d B is the true specific gravity of the organic binder. It is expressed by the following formula.

体積比=Wp/dp/Wp/dp+WB/dB/WB/dB/Wp
dp+WB/dB 前記割合が、0.65/0.35をこえるばあいには、
射出成形用材料としての混合物の流動性が不足
し、所望の形状に成形することが困難となり、一
方、0.25/0.75未満のばあい、成形品の密度が上
がらず、焼成時における収縮が大きくなり、寸法
精度をおとすばかりか加熱分解により脱バインダ
ーを行なうばあい、多量のガスの発生のため、成
形体にクラツク、フクレなどの欠陥の生じ方が著
しくなる。
Volume ratio = W p /d p /W p /d p +W B /d B /W B /d B /W p /
d p + W B / d B If the above ratio exceeds 0.65/0.35,
The fluidity of the mixture as an injection molding material is insufficient, making it difficult to mold into the desired shape.On the other hand, if it is less than 0.25/0.75, the density of the molded product will not increase and shrinkage during firing will increase. Not only does the dimensional accuracy deteriorate, but when the binder is removed by thermal decomposition, a large amount of gas is generated, which significantly increases the occurrence of defects such as cracks and blisters in the molded product.

本発明にかかわる射出成形用組成物を用いたセ
ラミツクスや金属などの焼結部材の製造は、通
常、以下のようにして行なわれるが、このような
方法に限定されるものではない。
The production of sintered parts such as ceramics and metals using the injection molding composition according to the present invention is usually carried out as follows, but the method is not limited to this method.

まず、セラミツクス粉末や金属粉末などの無機
粉末と有機バインダーとを加圧ニーダーのような
混練機で充分加熱混練し、有機バインダー中に無
機粉末を均一に分散させたのち、適当な形状、た
とえば粗粉砕物またはペレツト状にし、射出成形
用材料とする。
First, an inorganic powder such as ceramic powder or metal powder and an organic binder are sufficiently heated and kneaded using a kneader such as a pressure kneader to uniformly disperse the inorganic powder in the organic binder. Grind or pelletize and use as injection molding material.

つぎにこの材料を通常プラスチツク成形で使用
されている公知の装置および方法により、射出成
形用し、所望の形状の成形体とする。
This material is then injection molded into a molded article of the desired shape using known equipment and methods commonly used in plastic molding.

そののち、成形体より加熱分解などの方法で有
機バインダーを除去し、適宜最適の温度および雰
囲気で焼成することにより、所望の形状の無機焼
結体がえられる。
Thereafter, the organic binder is removed from the molded body by a method such as thermal decomposition, and the molded body is fired at an appropriate temperature and atmosphere to obtain an inorganic sintered body in a desired shape.

つぎに本発明を実施例に基づき説明する。 Next, the present invention will be explained based on examples.

製造例 1 5の反応器にn−ブチルメタクリレート
(BMA)600gおよびn−ドデシルメルカプタン
0.3gを加えて攪拌しながら75℃に昇温したのち、
EVA(ウルトラセン722、東ソ−(株)製)900gと重
合開始剤であるベンゾイルパーオキサイド2.4g
とを加えて溶解させた。これに予め別に調合して
おいたイオン交換水1840mlとポリビニルアルコー
ル(PVA)の3%水溶液160mlとからなる分解剤
水溶液を加えて攪拌し、EVA−BMA溶液を懸濁
させた。ついでチツ素置換したのち、80℃で3時
間、100℃で2時間反応させて重合させたのち、
冷却して取り出し、洗浄し、乾燥させた。
Production Example 1 600 g of n-butyl methacrylate (BMA) and n-dodecyl mercaptan were placed in the 5 reactor.
After adding 0.3g and raising the temperature to 75℃ while stirring,
900g of EVA (Ultracene 722, manufactured by Tosoh Corporation) and 2.4g of benzoyl peroxide as a polymerization initiator
was added and dissolved. To this was added an aqueous decomposing agent solution prepared separately in advance, consisting of 1840 ml of ion-exchanged water and 160 ml of a 3% aqueous solution of polyvinyl alcohol (PVA), and the mixture was stirred to suspend the EVA-BMA solution. Then, after nitrogen substitution, polymerization was carried out by reacting at 80℃ for 3 hours and at 100℃ for 2 hours,
It was cooled, taken out, washed and dried.

えられたポリマーは粒径0.3〜1mmの範囲にあ
る球状粒子で、トルエン溶液、30℃での固有粘度
[η]は0.85であつた。えられたポリマーを複合
アクリル系樹脂Aという。
The obtained polymer was spherical particles with a particle size in the range of 0.3 to 1 mm, and the intrinsic viscosity [η] in a toluene solution at 30°C was 0.85. The obtained polymer is called composite acrylic resin A.

製造例 2 5の反応器にBMA700g、スチレン500gお
よびn−ドデシルメルカプタン0.35gを加えて溶
解させたのち、攪拌しながらEVA(ウルトラセン
722、東ソ−(株)製)300gを加えて75℃に昇温して
溶解させ、さらにベンゾイルパーオキサイド4.8
g、t−ブチルパーオキシベンゾエート0.25gを
加えて溶解させた。これに予め別に調合しておい
たイオン交換水1840mlとPVAの3%水溶液160ml
とからなる80℃の分散剤水溶液を加えて攪拌し、
懸濁せしめた。ついで空間をチツ素置換したの
ち、80℃で5時間、110℃で2時間反応させて重
合を完結させた。そののち冷却し、水洗し、乾燥
させて、粒径0.3〜1.0mmの範囲にある白色球状粒
子をえた。この重合体粒子のトルエン溶液、30℃
での固有粘度[η]は0.70であつた。えられたポ
リマーを複合アクリル系樹脂Bという。
Production Example 2 After adding and dissolving 700 g of BMA, 500 g of styrene, and 0.35 g of n-dodecyl mercaptan in the reactor of 5, EVA (Ultracene) was added while stirring.
722 (manufactured by Tosoh Co., Ltd.) was added, the temperature was raised to 75°C to dissolve, and then 4.8 g of benzoyl peroxide was added.
g, and 0.25 g of t-butyl peroxybenzoate were added and dissolved. Add to this 1,840 ml of ion-exchanged water and 160 ml of 3% PVA aqueous solution, which were prepared separately in advance.
Add and stir an 80℃ dispersant aqueous solution consisting of
Suspended. After the space was replaced with nitrogen, the reaction was carried out at 80°C for 5 hours and at 110°C for 2 hours to complete the polymerization. Thereafter, it was cooled, washed with water, and dried to obtain white spherical particles with a particle size in the range of 0.3 to 1.0 mm. A toluene solution of this polymer particle at 30℃
The intrinsic viscosity [η] was 0.70. The obtained polymer is called composite acrylic resin B.

比較製造例 1 製造例1で用いたEVA(ウルトラセン722、東
ソ−(株)製)、ポリブチルメタクリレート(分子量
30万)をほぼ同じ組成、固有粘度[η]を有する
ようにロールを用いて140℃で30分間よく混練し、
混合物(混合アクリル系樹脂A)をえた。
Comparative Production Example 1 The EVA (Ultracene 722, manufactured by Tosoh Corporation) used in Production Example 1, polybutyl methacrylate (molecular weight
300,000) were well kneaded for 30 minutes at 140℃ using a roll so that they had almost the same composition and intrinsic viscosity [η],
A mixture (mixed acrylic resin A) was obtained.

比較製造例 2 製造例2で用いたEVA(ウルトラセン722、東
ソ−(株)製)、ポリブチルメタクリレート(分子量
30万)およびポリスチレンをほぼ同じ組成、固有
粘度[η]を有するようにロールを用いて150℃
で30分間よく混練し、混合物(混合アクリル系樹
脂B)をえた。
Comparative Production Example 2 The EVA (Ultracene 722, manufactured by Tosoh Corporation) used in Production Example 2, polybutyl methacrylate (molecular weight
300,000) and polystyrene with approximately the same composition and intrinsic viscosity [η] at 150℃ using a roll.
The mixture was thoroughly kneaded for 30 minutes to obtain a mixture (mixed acrylic resin B).

参考例 1 製造例1および2でえられた懸濁重合体と比較
製造例1および2でえられた単純混合品とについ
て溶媒エツチング法(ヘキサンに2分間浸漬)に
より処理したものを走査型電子顕微鏡(5000倍)
により観察し、エツチングされたものの状態を観
察することにより内部構造を観察した。その結果
をそれぞれの観察写真である第1図および第3図
ならびに第2図および第4図に示す。
Reference Example 1 The suspension polymers obtained in Production Examples 1 and 2 and the simple mixture products obtained in Comparative Production Examples 1 and 2 were processed by a solvent etching method (immersion in hexane for 2 minutes) and then scanned using a scanning electron microscope. Microscope (5000x)
The internal structure was observed by observing the state of the etched material. The results are shown in FIGS. 1 and 3, and FIGS. 2 and 4, which are observation photographs, respectively.

第1図と第2図との比較からわかるように、
EVA−BMA懸濁重合体(製造例1)では微細粒
子が均一に分散しており、単純混合品(比較製造
例1)における分散状態とは顕著な差が認められ
る。
As can be seen from the comparison between Figures 1 and 2,
In the EVA-BMA suspension polymer (Production Example 1), fine particles are uniformly dispersed, which is significantly different from the dispersion state in the simple mixture product (Comparative Production Example 1).

また、第3図と第4図との比較から、EVA−
BMA−スチレン懸濁重合体(製造例2)と単純
混合品(比較例2)とについても同様の差異の認
められることがわかる。
Also, from the comparison between Figures 3 and 4, EVA-
It can be seen that similar differences are observed between the BMA-styrene suspension polymer (Production Example 2) and the simple mixture product (Comparative Example 2).

実施例 1 アルミナ粉末(AES−11、住友化学工業(株)製)
100部に複合アクリル系樹脂A12.35部、マイクロ
クリスタリンワツクス(融点84℃)4.75部、ステ
アリン酸1.90部を加え、加圧式ニーダーで140℃
で60分間、充分に混練し、2〜4mmのペレツト状
にカツトしてアルミナ粉末/有機バインダーが体
積比で0.59/0.41の射出成形用セラミツクス組成
物を調製した。これを用いて成形温度120〜160
℃、射出圧力500〜1300Kg/cm2の条件で高さ50mm、
最大肉厚5mmのJISB−1176に定められたボルト
を成形し、20〜140℃を昇温速度30℃/h、140〜
350℃を昇温速度4℃/h、350〜450℃を昇温速
度10℃/h、450〜600℃を昇温速度30℃/hの条
件でアルミナ粉末中に埋め込んで加熱することに
より脱バインダーし、ついで焼成炉にいれ1620℃
に達してから1時間保持して焼結させることによ
り、何ら欠陥のない良好な焼結体がえられた。
Example 1 Alumina powder (AES-11, manufactured by Sumitomo Chemical Co., Ltd.)
Add 12.35 parts of composite acrylic resin A, 4.75 parts of microcrystalline wax (melting point 84°C), and 1.90 parts of stearic acid to 100 parts, and heat at 140°C in a pressure kneader.
The mixture was thoroughly kneaded for 60 minutes and cut into pellets of 2 to 4 mm to prepare a ceramic composition for injection molding with a volume ratio of alumina powder/organic binder of 0.59/0.41. Using this, the molding temperature is 120 to 160.
℃, injection pressure 500-1300Kg/ cm2 , height 50mm,
Bolts specified in JISB-1176 with a maximum wall thickness of 5 mm are formed and heated from 20 to 140°C at a heating rate of 30°C/h, from 140 to 140°C.
Desorption was achieved by embedding it in alumina powder and heating it under the following conditions: 350°C at a heating rate of 4°C/h, 350-450°C at a heating rate of 10°C/h, and 450-600°C at a heating rate of 30°C/h. Binder and then put in a firing furnace at 1620℃
A good sintered body without any defects was obtained by holding it for 1 hour after reaching the temperature and sintering it.

実施例 2 部分安定化ジルコニア(HSY−3.0、第一稀元
素工業(株)製、比表面積6m2/g)100部に複合ア
クリル系樹脂A10.4部、パラフインワツクス(融
点58℃)4.0部、ステアリン酸1.6部を加え、140
℃で60分間、充分混練し、2〜4mmのペレツト状
にカツトして部分安定化ジルコニア/有機バイン
ダーが体積比で0.51/0.49の射出成形用セラミツ
クス組成物を調製した。これを用いて実施例1と
同様にしてボルトを成形し、脱バインダーしたの
ち焼成炉にいれ1500℃に達してから2時間保持し
て焼結させたところ、ソリ、クラツクなどの欠陥
のない良好な焼結体がえられた。
Example 2 100 parts of partially stabilized zirconia (HSY-3.0, manufactured by Daiichi Kigenso Kogyo Co., Ltd., specific surface area 6 m 2 /g), 10.4 parts of composite acrylic resin A, and paraffin wax (melting point 58°C) 4.0 parts, add 1.6 parts of stearic acid, 140 parts
The mixture was thoroughly kneaded for 60 minutes at a temperature of 2.0 to 4.0 mm and cut into pellets of 2 to 4 mm to prepare a ceramic composition for injection molding having a volume ratio of partially stabilized zirconia/organic binder of 0.51/0.49. Using this, a bolt was formed in the same manner as in Example 1, and after removing the binder, it was placed in a firing furnace and held for 2 hours after reaching 1500°C to sinter it. A sintered body was obtained.

実施例 3 実施例2と同じ部分安定化ジルコニア100部に
複合アクリル系樹脂B9.5部、パラフインワツク
ス(融点58℃)5.0部、ジブチルフタレート1.3部
を加え、150℃で60分間、充分混練し、2〜4mm
のペレツト状にカツトして部分安定化ジルコニ
ア/有機バインダーが体積比で0.51/0.49の射出
成形用セラミツクス組成物を調製した。これを用
いて実施例1と同様にしてボルトを成形し、脱バ
インダーしたのち、1500℃で2時間保持して焼結
させたところ、ソリ、クラツクなどのない良好な
焼結体がえられた。
Example 3 9.5 parts of composite acrylic resin B, 5.0 parts of paraffin wax (melting point 58°C), and 1.3 parts of dibutyl phthalate were added to 100 parts of the same partially stabilized zirconia as in Example 2, and thoroughly kneaded at 150°C for 60 minutes. 2~4mm
A ceramic composition for injection molding with a volume ratio of partially stabilized zirconia/organic binder of 0.51/0.49 was prepared by cutting the mixture into pellets. Using this, a bolt was formed in the same manner as in Example 1, and after removing the binder, it was held at 1500°C for 2 hours and sintered, and a good sintered body with no warping or cracks was obtained. .

実施例 4 平均粒系8.9μmを有するステンレス粉末、
(SUS304L、三菱製鋼(株)製)100部に、複合アク
リル系樹脂B6.6部、パラフインワツクス(融点
69℃)1.8部、ジブチルフタレート2.6部を加えて
150℃で60分間、充分混練し、ステンレス粉末/
有機バインダーが体積比で0.53/0.47の射出成形
用金属組成物を調製した。これを用いて実施例1
と同様にしてボルトを成形した。えられた成形物
をアルミナ粉体中に埋没させN2雰囲気中、昇温
速度を室温から120℃までを3℃/hで昇温し、
120℃以降は6℃/hで450℃まで昇温し、同温度
で2時間保持して有機バインダーを除去したの
ち、真空焼結炉にいれ1350℃に達してから1時間
保持して焼結したところ、クラツクなどのない焼
結密度98%を有する良好な焼結体がえられた。
Example 4 Stainless steel powder with an average particle size of 8.9 μm,
(SUS304L, manufactured by Mitsubishi Steel Corporation) 100 parts, composite acrylic resin B 6.6 parts, paraffin wax (melting point
Add 1.8 parts of dibutyl phthalate (69℃) and 2.6 parts of dibutyl phthalate.
Thoroughly knead at 150°C for 60 minutes to form stainless steel powder/
A metal composition for injection molding with an organic binder in a volume ratio of 0.53/0.47 was prepared. Example 1 using this
A bolt was formed in the same manner. The obtained molded product was buried in alumina powder, and the temperature was raised from room temperature to 120°C at a rate of 3°C/h in a N2 atmosphere.
After 120℃, the temperature was raised to 450℃ at a rate of 6℃/h, held at the same temperature for 2 hours to remove the organic binder, and then placed in a vacuum sintering furnace and held for 1 hour after reaching 1350℃ for sintering. As a result, a good sintered body with a sintered density of 98% and no cracks was obtained.

実施例 5および6 あらかじめ複合アクリル系樹脂A70部、パラフ
インワツクス(融点47℃)20部およびステアリン
酸10部を均一に混合した有機バインダーを調製し
た。
Examples 5 and 6 An organic binder was prepared by uniformly mixing in advance 70 parts of composite acrylic resin A, 20 parts of paraffin wax (melting point 47°C), and 10 parts of stearic acid.

Y2O5およびAl2O3をそれぞれ5%、合計10%含
むチツ化ケイ素(SN−ESP、宇部興産(株)製、粒
子径0.1〜0.6μm)100部に対して前記有機バイン
ダー18部、Mn−Zn系ソフトフエライト(戸田工
業(株)製、平均粒径約1.5μm)100部に対して前記
有機バインダー12部をそれぞれ加え、実施例1と
同様にして混練、成形、脱バインダーを行なつ
た。なお、チツ化ケイ素/有機バインダー、Mn
−Zn系ソフトフエライト/有機バインダーの体
積比は、それぞれ0.63/0.37、0.62/0.38であつ
た。
18 parts of the organic binder per 100 parts of silicon titanide (SN-ESP, manufactured by Ube Industries, Ltd., particle size 0.1 to 0.6 μm) containing 5% each of Y 2 O 5 and Al 2 O 3 , 10% in total. , 12 parts of the above organic binder were added to 100 parts of Mn-Zn soft ferrite (manufactured by Toda Kogyo Co., Ltd., average particle size of about 1.5 μm), and kneaded, molded, and removed the binder in the same manner as in Example 1. I did it. In addition, silicon titanide/organic binder, Mn
- The volume ratios of Zn-based soft ferrite/organic binder were 0.63/0.37 and 0.62/0.38, respectively.

ついで従来の焼結技術でそれぞれ焼結して、ソ
リ、クラツクなどのない良好な焼結体をえた。
Then, they were each sintered using conventional sintering techniques to obtain good sintered bodies with no warpage or cracks.

実施例 7および8 あらかじめ複合アクリル系樹脂B45部、パラフ
インワツクス(融点69℃)40部およびジオクチル
フタレート15部を均一に混合した有機バインダー
を調製した。
Examples 7 and 8 An organic binder was prepared by uniformly mixing in advance 45 parts of composite acrylic resin B, 40 parts of paraffin wax (melting point 69°C), and 15 parts of dioctyl phthalate.

タングステンカーバイド(平均粒系1.0μm)
100部に対して前記有機バインダー7部、カルボ
ニル鉄粉(粒子径2〜5μm)100部に対して前記
有機バインダー9部をそれぞれ加え、実施例4と
同様にして混練、成形、脱バインダーを行なつ
た。なお、タングステンカーバイド/有機バイン
ダー、カルボニル鉄粉/有機バインダーの体積比
はそれぞれ0.50/0.50、0.58/0.42であつた。
Tungsten carbide (average grain size 1.0μm)
Add 7 parts of the organic binder to 100 parts and 9 parts of the organic binder to 100 parts of carbonyl iron powder (particle size 2 to 5 μm), and knead, mold, and remove the binder in the same manner as in Example 4. Summer. The volume ratios of tungsten carbide/organic binder and carbonyl iron powder/organic binder were 0.50/0.50 and 0.58/0.42, respectively.

ついで従来の焼結技術でそれぞれ焼結して、何
ら欠陥のない焼結密度98%を有する良好な焼結体
をえた。
They were then sintered using conventional sintering techniques to obtain good sintered bodies with no defects and a sintered density of 98%.

比較例 1 混合アクリル系樹脂Aを複合アクリル系樹脂A
の代わりに使用した以外は実施例1と同様な方法
でボルトを成形し、脱バインダー、焼結を行なつ
たが、射出成形の段階でスプルーが折れるなどの
成形不良が発生し、実施例1に比べて歩留りが約
12%低下した。
Comparative Example 1 Mixed acrylic resin A was mixed with composite acrylic resin A
A bolt was molded, binder removed, and sintered in the same manner as in Example 1, except that the bolt was used in place of Example 1, but molding defects such as sprue breaking occurred during the injection molding stage, and The yield is about
It fell by 12%.

比較例 2 混合アクリル系樹脂Bを複合アクリル系樹脂B
の代わりに使用した以外は実施例3と同様な方法
でボルトを成形し、脱バインダー、焼結を行なつ
たが、射出成形時にクラツクなどの成形不良が発
生した。また、外観の良好な成形体を脱バインダ
ーした際にもクラツクなどが発生した。最終的な
製品の歩留りとしては実施例3に比べて約22%低
下した。
Comparative Example 2 Mixed acrylic resin B was mixed with composite acrylic resin B
A bolt was molded in the same manner as in Example 3, and the binder was removed and sintered, except that the bolt was used in place of .However, molding defects such as cracks occurred during injection molding. Cracks also occurred when the binder was removed from a molded product with a good appearance. The final product yield was about 22% lower than in Example 3.

比較例 3 実施例1と同じアルミナ粉末100部に対し、パ
ラフインワツクス(融点58℃)14部、EVA2部お
よびジブチルフタレート1部を使用した以外は実
施例1と同様にして射出成形したところ、成形体
強度が著しく低いため、離型の際に破損し、良好
な成形体はえられなかつた。
Comparative Example 3 Injection molding was performed in the same manner as in Example 1, except that 14 parts of paraffin wax (melting point 58°C), 2 parts of EVA, and 1 part of dibutyl phthalate were used for 100 parts of the same alumina powder as in Example 1. Since the strength of the molded product was extremely low, it was damaged during demolding, and a good molded product could not be obtained.

比較例 4 実施例1で使用したアルミナ粉末に対し、複合
アクリル系樹脂Aのみを実施例1で使用した有機
バインダー量と同じ体積比(0.59/0.41)になる
ように配合した以外は実施例1と同様にして混練
し、射出成形したが、流動性不足のため、満足な
グリーン成形体はえられなかつた。
Comparative Example 4 Example 1 except that only composite acrylic resin A was blended with the alumina powder used in Example 1 at the same volume ratio (0.59/0.41) as the amount of organic binder used in Example 1. Although the mixture was kneaded and injection molded in the same manner as above, a satisfactory green molded product could not be obtained due to insufficient fluidity.

[発明の効果] 本発明の射出成形用組成物を使用すれば、従来
と異なり射出成形法によつて所望の形状を有する
ソリ、クラツクなどのない良好な焼結体を歩留り
よく製造することができる。
[Effects of the Invention] By using the injection molding composition of the present invention, it is possible to produce a good sintered body having a desired shape and without warping or cracking with a high yield by injection molding, unlike conventional methods. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はそれぞれ製造例1、比較製造
例1、製造例2、比較製造例2でえられたアクリ
ル系樹脂を溶媒でエツチングしたのちの状態を走
査型電子顕微鏡(5000倍)で観察し、アクリル系
樹脂の粒子の内部構造をあらわすようにした電子
顕微鏡写真である。
Figures 1 to 4 show the states of the acrylic resins obtained in Production Example 1, Comparative Production Example 1, Production Example 2, and Comparative Production Example 2 after being etched with a solvent using a scanning electron microscope (5000x magnification). This is an electron micrograph taken to show the internal structure of acrylic resin particles.

Claims (1)

【特許請求の範囲】 1 無機粉末と有機バインダーとからなる射出成
形用組成物であつて、有機バインダーが (a) エチレン−酢酸ビニル共重合体またはエチレ
ン−エチルアクリレート共重合体、 (b) (メタ)アクリル酸エステル単量体単独また
は(メタ)アクリル酸エステル単量体およびス
チレン系単量体の混合物および (c) 重合開始剤 からなる溶液を、分散剤を含む水系媒体中に分散
させて懸濁重合させた複合アクリル系樹脂45〜80
重量%と、融点100℃以下の前記複合アクリル系
樹脂と相溶性を有するワツクス10〜50重量%との
少なくとも2成分を含むバインダーからなり、無
機粉末/有機バインダーの割合が体積比で0.65/
0.35〜0.25/0.75となるように調製した射出成形
用組成物。 2 請求項1記載の射出成形用組成物を成形した
ものを焼結してえられた焼結体。
[Scope of Claims] 1. An injection molding composition comprising an inorganic powder and an organic binder, wherein the organic binder is (a) an ethylene-vinyl acetate copolymer or an ethylene-ethyl acrylate copolymer, (b) ( A solution consisting of a meth)acrylic ester monomer alone or a mixture of a (meth)acrylic ester monomer and a styrene monomer, and (c) a polymerization initiator is dispersed in an aqueous medium containing a dispersant. Suspension polymerized composite acrylic resin 45-80
% by weight and 10 to 50% by weight of wax that is compatible with the composite acrylic resin having a melting point of 100°C or lower, and the ratio of inorganic powder/organic binder is 0.65/by volume.
An injection molding composition prepared to have a ratio of 0.35 to 0.25/0.75. 2. A sintered body obtained by sintering a molded product of the injection molding composition according to claim 1.
JP1287708A 1989-11-04 1989-11-04 Composition for injection molding and sintered material obtained therefrom Granted JPH03150257A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1287708A JPH03150257A (en) 1989-11-04 1989-11-04 Composition for injection molding and sintered material obtained therefrom
US07/677,928 US5278250A (en) 1989-11-04 1991-04-01 Process for preparing organic binder
US07/693,471 US5286802A (en) 1989-11-04 1991-04-30 Injection compacting composition for preparing sintered body of metal powder and sintered body prepared therefrom
US07/693,467 US5278251A (en) 1989-11-04 1991-04-30 Injection compacting composition for preparing sintered bodies
EP91107050A EP0511429B1 (en) 1989-11-04 1991-05-01 Injection compacting composition for preparing sintered bodies
TW80103477A TW201726B (en) 1989-11-04 1991-05-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1287708A JPH03150257A (en) 1989-11-04 1989-11-04 Composition for injection molding and sintered material obtained therefrom
EP91107050A EP0511429B1 (en) 1989-11-04 1991-05-01 Injection compacting composition for preparing sintered bodies

Publications (2)

Publication Number Publication Date
JPH03150257A JPH03150257A (en) 1991-06-26
JPH0581553B2 true JPH0581553B2 (en) 1993-11-15

Family

ID=26128832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287708A Granted JPH03150257A (en) 1989-11-04 1989-11-04 Composition for injection molding and sintered material obtained therefrom

Country Status (1)

Country Link
JP (1) JPH03150257A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4233518C1 (en) * 1992-10-06 1994-08-25 Hoechst Ag Aqueous casting compound for the production of green ceramic films and ceramic molded parts made therefrom
CN118507243B (en) * 2024-07-15 2024-10-11 株洲宏达磁电科技有限公司 Method for preparing inductor by adopting composite magnetic fluid integrated injection molding and prepared inductor

Also Published As

Publication number Publication date
JPH03150257A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
US5278251A (en) Injection compacting composition for preparing sintered bodies
US4902459A (en) Method of making ceramic articles
US4978643A (en) Forming whisker reinforced sintered ceramics with polymerizable binder precursors
JP3924671B2 (en) Metal powder injection molding composition
JPH0581553B2 (en)
EP0511428B1 (en) Injection compacting composition for preparing sintered body of metal powder and sintered body prepared therefrom
JPH0459651A (en) Composition for injection molding and sintered compact thereof
JP2005205805A (en) Powder injection-molding composition and its sintered body
JPH0764645B2 (en) Organic binder manufacturing method
JP2001233678A (en) Binder for forming ceramics
JPH0637323B2 (en) Manufacturing method of organic binder
JPH01261265A (en) Binder for ceramic injection molding
DE69105197T2 (en) Injection molding composition for the preparation of sintered bodies.
JP6939579B2 (en) Microcapsules, composite ceramic granules and ceramic manufacturing methods using them
JP3560330B2 (en) Ceramic granules for molding, ceramic molded body for sintering using the same, and ceramic sintered body obtained using the same
JPH0647682B2 (en) Manufacturing method of sintered metal
JPS61122152A (en) Ceramic composition for injection molding
JPS6252164A (en) Ceramic composition for injection molding
JP3205033B2 (en) Raw material composition for sintering
TW201726B (en)
JPS6335459A (en) Method of dewaxing formed body of sinterable substance-containing mixture
JPH0617485B2 (en) Metal powder composition for injection molding
JPS63166768A (en) Method of sintering formed body of sinterable substance-containing mixture
JPH0248460A (en) Binder for injection molding ceramics
JPH01119605A (en) Composition for injection molding of metal powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees