JPH0581258B2 - - Google Patents

Info

Publication number
JPH0581258B2
JPH0581258B2 JP62220353A JP22035387A JPH0581258B2 JP H0581258 B2 JPH0581258 B2 JP H0581258B2 JP 62220353 A JP62220353 A JP 62220353A JP 22035387 A JP22035387 A JP 22035387A JP H0581258 B2 JPH0581258 B2 JP H0581258B2
Authority
JP
Japan
Prior art keywords
blood vessel
pores
layer
thickness
obturator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62220353A
Other languages
Japanese (ja)
Other versions
JPS6464650A (en
Inventor
Noriaki Kaneko
Yoshimi Hirata
Masahiro Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62220353A priority Critical patent/JPS6464650A/en
Priority to US07/236,547 priority patent/US4986832A/en
Priority to EP88308063A priority patent/EP0308102B1/en
Priority to EP19910108239 priority patent/EP0446965A3/en
Priority to DE8888308063T priority patent/DE3871677T2/en
Publication of JPS6464650A publication Critical patent/JPS6464650A/en
Publication of JPH0581258B2 publication Critical patent/JPH0581258B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、縫合針等の貫通性が良く、かつ、繰
返しの穿刺に対する耐久性を有して血液が管壁か
ら透過することのない人工血管に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an artificial material that has good penetrability with suture needles, etc., has durability against repeated punctures, and prevents blood from penetrating through the tube wall. Concerning blood vessels.

[従来の技術] 人工血管においては、その用途上長期間開存性
に優れていること及び手術操作上の見地から生体
血管との吻合における縫合針の貫通性の良さが要
求される。その一方で、動・静脈間の連結に用い
る血液透析用のブラツドアクセスにおいては、穿
刺の頻度が高いので、繰返しの穿刺に耐え、か
つ、穿刺後の出血に伴う血腫やセローマ(血漿
腫)が生じないよう、管壁が血液に対して不透過
性であることも要求される。
[Prior Art] Artificial blood vessels are required to have excellent long-term patency due to their use and good penetrability of suture needles during anastomosis with biological blood vessels from the viewpoint of surgical operations. On the other hand, blood access for hemodialysis, which is used to connect arteries and veins, requires frequent punctures, so it is difficult to withstand repeated punctures and to prevent hematoma and seroma (plasmoma) from occurring due to post-puncture bleeding. It is also required that the tube wall be impermeable to blood to prevent this from occurring.

ここにおいて、血液不透過性とは、人工血管に
450mmHgの内圧をかけても血球、血漿が透過しな
いことをいう。
Here, blood impermeability refers to
This means that blood cells and plasma do not pass through even if an internal pressure of 450 mmHg is applied.

かかる要求を満たす人工血管として、特開昭57
−150954号公報に開示されているものがある。し
かし、この人工血管は高分子化合物の溶液を棒状
の型に塗布・乾燥後、これを脱溶剤して得られる
均質で、少なくとも直径が0.1μm以上の空胞を含
まない緻密な層を有している。このため、管壁が
剛直化してしまい、例えば、この層の厚さが約
5μmの場合であつても、生体血管との連結の際
に、縫合針の通過を著しく阻害し、手術操作を困
難にする。その結果、繰返しの穿刺によつて出血
が止まりにくくなり、セローマ発生の原因となつ
たり、生体血管との吻合部の内腔側に生体血管の
断端面が露出して内腔へのパヌス成長の原因とな
つたりする。また内面での乱れは、血液の乱流、
部分的停滞を引き起こして血栓生成を引き起こ
す。したがつて、管壁は、移植後内面に形成され
る初期血栓による閉塞を抑制すべく、抗血栓性の
材料であることに加え、かかる緻密層を持たない
ことが重要である。
As an artificial blood vessel that satisfies these requirements, JP-A-57
-There is one disclosed in Publication No. 150954. However, this artificial blood vessel has a homogeneous, dense layer that does not contain vacuoles with a diameter of at least 0.1 μm or more, which is obtained by applying a solution of a polymer compound to a rod-shaped mold, drying it, and then removing the solvent. ing. This causes the tube wall to become rigid, and for example, the thickness of this layer is approximately
Even in the case of 5 μm, it significantly obstructs the passage of a suture needle when connecting to a biological blood vessel, making surgical operations difficult. As a result, repeated punctures may make it difficult to stop bleeding, which may cause the formation of seroma, or the cut end surface of the living blood vessel may be exposed on the lumen side of the anastomosis with the living blood vessel, resulting in panus growth into the lumen. It may become the cause of. In addition, turbulence on the inner surface is caused by turbulent flow of blood,
causing partial stagnation and thrombus formation. Therefore, in addition to being made of an antithrombotic material, it is important that the tube wall does not have such a dense layer in order to suppress occlusion by the initial thrombus that forms on the inner surface after transplantation.

しかも、人工血管の折り曲げに伴う内腔の閉
塞、すなわちキンキングを抑制する上でもかかる
緻密層の存在は好ましくない。
Moreover, the presence of such a dense layer is also undesirable for suppressing occlusion of the lumen, that is, kinking, caused by bending of the artificial blood vessel.

[発明が解決しようとする問題点] 上記の如く、従来の人工血管においては、縫合
針の貫通性が良く、繰返しの穿刺に耐久性を有
し、しかも血液不透過性に優れた、実用に供しう
るものは存在しなかつた。
[Problems to be Solved by the Invention] As mentioned above, conventional artificial blood vessels have good suture needle penetration, are durable against repeated punctures, and have excellent blood impermeability, and are not suitable for practical use. There was nothing that could be offered.

本発明はかかる事情を背景としてなされたもの
で、上記課題を解決して長期使用が可能な人工血
管の提供を目的とする。
The present invention was made against this background, and aims to provide an artificial blood vessel that solves the above problems and can be used for a long period of time.

[問題点を解決するための手段及び作用] 本発明者は、上記目的を達成すべく、人工血管
の管壁の構造について検討を行なつた。その結
果、長期開存性を維持する上では内表面側の最内
層が内膜組織等との組織癒合力の高い開放孔構造
であること、また、管壁の剛直化を防ぎ、開放孔
構造の内部(深部)での(外表面寄り)内膜組織
の死滅を防ぎ、さらに縫合針の貫通性を向上させ
るとともに、血液不透過性を保つためには前記最
内層に隣接する中間層が相互に独立した閉鎖孔か
らなる閉鎖孔構造であることが、先に述べた従来
の人工血管の問題を解決する上で不可欠であるこ
とを見出し、本発明を完成するに到つた。
[Means and Effects for Solving the Problems] In order to achieve the above object, the present inventors have studied the structure of the wall of an artificial blood vessel. As a result, in order to maintain long-term patency, the innermost layer on the inner surface side must have an open-pore structure that has high tissue healing power with the intimal tissue, etc. In order to prevent the death of the intimal tissue (closer to the outer surface) inside (deep part), to improve the penetrability of the suture needle, and to maintain blood impermeability, the intermediate layer adjacent to the innermost layer must be mutually bonded. The present inventors have discovered that an obturator pore structure consisting of independent obturator pores is essential for solving the problems of the conventional artificial blood vessels described above, and have completed the present invention.

すなわち、本発明は、ポリウレタン及び/又は
ポリウレタンウレアの複数層からなり、管壁全体
が多孔質の人工血管において、少なくとも開放孔
構造の最内層とこの最内層に隣接する閉鎖孔構造
の中間層とを有し、該開放孔と該閉鎖孔とは連通
しておらず、(1)前記最内層は、厚さが5μm以上、
かつ、管壁の厚さの2/3以下であつて、該開放孔
構造が平均直径が5〜150μmの球状、卵状又
は/及びこれらの変形形状で、管壁内面へ5〜
150μmの平均直径をもつて開口する空孔を有し、
隣接するこれらの空孔相互間は少なくとも3μm
以上の直径を有する穴で連通しており、(2)前記中
間層は、厚さが5〜500μmであつて、閉鎖孔構
造が0.01〜100μmの直径を有する相互に独立した
閉鎖孔を有する人工血管及び上記の人工血管の管
壁の少なくとも最内層に合成樹脂製の短繊維を含
む人工血管であることを特徴とする。
That is, the present invention provides an artificial blood vessel consisting of multiple layers of polyurethane and/or polyurethane urea, the entire vessel wall of which is porous, at least an innermost layer with an open pore structure and an intermediate layer with a closed pore structure adjacent to the innermost layer. , the open pores and the closed pores are not in communication, and (1) the innermost layer has a thickness of 5 μm or more,
and the open pore structure is 2/3 or less of the thickness of the tube wall, and the open pore structure is spherical, oval, or/and a modified shape thereof with an average diameter of 5 to 150 μm, and has 5 to 100 pores on the inner surface of the tube wall.
It has pores that open with an average diameter of 150 μm,
The distance between these adjacent holes is at least 3 μm.
(2) The intermediate layer has a thickness of 5 to 500 μm, and the obturator structure has mutually independent obturator pores with a diameter of 0.01 to 100 μm. The artificial blood vessel is characterized in that at least the innermost layer of the vessel wall of the blood vessel and the artificial blood vessel described above contains short fibers made of synthetic resin.

本発明の人工血管は複数層からなる管壁全体が
多孔質構造となつている。とりわけ、最内層は、
内膜組織や肉芽組織との結合に与かつて組織癒合
力を左右する部分である。
The artificial blood vessel of the present invention has a porous structure throughout the tube wall consisting of multiple layers. In particular, the innermost layer is
It is a part that participates in bonding with intimal tissue and granulation tissue and influences tissue healing power.

この最内層は、相互に連通する開放孔からなる
開放孔構造で厚さが5μm以上、かつ、管壁の厚
さの2/3以下であることが必要である。しかし、
例えば、血液透析用の血管に用いた場合の繰返し
穿刺などの操作にも耐えるためには20μm以上で
あることが好ましい。ここにおいて、例えば内直
径4mmの人工血管で管壁全体の厚さが0.4mmのと
きには、最内層の厚さは10〜200μmの範囲が好
ましく、より好ましくは20〜100μmが最適であ
る。
This innermost layer must have an open pore structure consisting of open pores that communicate with each other, and have a thickness of 5 μm or more and 2/3 or less of the thickness of the tube wall. but,
For example, in order to withstand operations such as repeated punctures when used in blood vessels for hemodialysis, the thickness is preferably 20 μm or more. Here, for example, when an artificial blood vessel with an inner diameter of 4 mm has a total wall thickness of 0.4 mm, the thickness of the innermost layer is preferably in the range of 10 to 200 μm, more preferably 20 to 100 μm.

また、この最内層は、平均直径が5〜150μm
の球状、卵状又は/及びこれらの変形形状の空孔
が最密充填様に配置されるとともに、管壁内表面
において5〜150μmの平均直径をもつて開口し、
隣接する空孔が少なくとも3μm以上の直径を有
する穴で連通した開放孔構造となつている。
Moreover, this innermost layer has an average diameter of 5 to 150 μm.
spherical, egg-shaped or/and modified pores thereof are arranged in a close-packed manner, and open with an average diameter of 5 to 150 μm on the inner surface of the tube wall,
It has an open pore structure in which adjacent pores communicate with each other through holes having a diameter of at least 3 μm or more.

上記空孔及び開口の平均直径は、5〜150μm
の範囲であることが好ましく、これ以下では吻合
部において生体血管から成長してくる肉芽組織を
抑制することができない。
The average diameter of the pores and openings is 5 to 150 μm.
If it is less than this range, granulation tissue growing from the biological blood vessel at the anastomosis site cannot be suppressed.

一方、平均直径が150μmを越えると、管壁内
表面での凹凸が大きくなることから、移植後の初
期血栓が多量に生じ、短期閉塞の原因となる不都
合がある。しかも、初期血栓層の厚さと、長期間
を経てその上に生ずる新生内膜の厚さとは、比例
関係にあるため、短期閉塞に至らなくとも長期を
経て内直径が細くなり、ついには閉塞してしま
う。
On the other hand, if the average diameter exceeds 150 μm, the unevenness of the inner surface of the tube wall becomes large, resulting in the formation of a large amount of initial thrombus after transplantation, which is inconvenient and causes short-term occlusion. Moreover, since there is a proportional relationship between the thickness of the initial thrombus layer and the thickness of the neointima that forms over it over a long period of time, even if short-term occlusion does not occur, the inner diameter becomes thinner over a long period of time, and eventually occlusion occurs. I end up.

ここにおいて、空孔及び開口等の平均直径と
は、倍率1000倍の走査型電子顕微鏡でランダムに
写真撮影して得られる1.2mm2の視野の中で、各空
孔及び各開口等の最大直径を測定し、同様の操作
を10回行つた平均値をいう。
Here, the average diameter of holes, openings, etc. is the maximum diameter of each hole, opening, etc. within a field of view of 1.2 mm 2 obtained by randomly photographing with a scanning electron microscope with a magnification of 1000 times. The average value obtained by measuring 10 times and performing the same operation 10 times.

以上より、この最内層の開放孔構造は実質的に
等方性で、この層を任意の位置で任意の方向に切
断すると、断面は管壁内表面と同様の外観を呈す
る。
From the above, the open pore structure of this innermost layer is substantially isotropic, and when this layer is cut at any position and in any direction, the cross section has an appearance similar to the inner surface of the tube wall.

したがつて、最内層を以上のような開放孔構造
とすると、移植後における内膜組織等との癒合力
が高まり、パヌス生長や内膜組織の肥厚を抑制し
て血管の閉塞を長期に亘つて防止することが可能
となる。
Therefore, if the innermost layer has an open-pore structure as described above, the healing power with the intimal tissue after transplantation will be increased, suppressing panus growth and thickening of the intimal tissue, and preventing blood vessel occlusion for a long time. It is possible to prevent this from happening.

また、この層の空隙率(嵩比重/原料の比重)を0.90 〜0.99と極めて高くすると、内膜組織等の侵入生
長を容易にすることができる。
Furthermore, if the porosity (bulk specific gravity/specific gravity of raw material) of this layer is made extremely high at 0.90 to 0.99, it is possible to facilitate the intrusive growth of endometrial tissues and the like.

一方、前記最内層に隣接する閉鎖孔構造の中間
層は、0.01μm以上の多数の独立した閉鎖孔から
なるが、この閉鎖孔は人工血管の針の貫通性を高
めると共にその物性を整えるためのもので、その
直径は好ましくは0.1〜100μmの範囲であり、最
も好ましくは1〜3μmの範囲である。
On the other hand, the intermediate layer of the obturator pore structure adjacent to the innermost layer consists of a large number of independent obturator pores of 0.01 μm or more. The diameter thereof is preferably in the range of 0.1 to 100 μm, most preferably in the range of 1 to 3 μm.

閉鎖孔の直径が上記した値以上(100μm以上)
であると、管壁の耐圧性が低下し、移植後の経時
的なクリープによつて内径が増大したり、微小な
ピンホールが生じたりする原因となるからであ
る。一方、閉鎖孔の直径が上記した値以下
(0.01μm以下)であると、この層が緻密になつて
管壁が剛直化するからである。
The diameter of the obturator foramen is more than the above value (100 μm or more)
This is because the pressure resistance of the tube wall decreases, and creep over time after implantation causes the inner diameter to increase and minute pinholes to occur. On the other hand, if the diameter of the obturator pore is less than the above value (0.01 μm or less), this layer becomes dense and the tube wall becomes rigid.

また、層の厚さは、好ましくは5〜500μm、
特に好ましくは50〜300μmの範囲であり、厚さ
が5μm以下であると耐圧性が低下し、前述の経
時的なクリープによつて本発明が目的とする血液
不透過性が維持できなくなる。
Further, the thickness of the layer is preferably 5 to 500 μm,
Particularly preferably, the thickness is in the range of 50 to 300 μm, and if the thickness is less than 5 μm, the pressure resistance decreases, and the blood impermeability aimed at by the present invention cannot be maintained due to the above-mentioned creep over time.

少なくとも前記した最内層と中間層とを有する
本発明の人工血管の構成材料としては、血液や組
織との適合性に優れた物質、即ち急性及び慢性の
毒性、発熱性、溶血性を持たず、長期に亘つて移
植しても周囲の組織に炎症を惹起しないポリマー
が好ましい。このようなポリマーとしては、例え
ばポリハロゲン化ビニル、ポリスチレン及びその
誘導体、ポリオレフイン系重合体、ポリエステル
系縮合体、セルロース系高分子、ポリウレタン系
高分子、ポリスルホン系樹脂、ポリアミド系高分
子などが挙げられる。勿論これらを相互に含む共
重合体や混合物でもよい。力学的性質や生体内で
の安定性、更に、抗血栓性の面から見て、これら
の中で好ましいのは、ポリウレタン系のものであ
る。その具体例としては、ポリウレタン、ポリウ
レタンウレア、これらとシリコーンポリマーとの
ブレンド物又は相互侵入網目構造を有するものが
挙げられる。また、これらには、セグメント化ポ
リウレタン又はポリウレタンウレア、主鎖中にポ
リジメチルシロキサンを含むもの、ハード、ソフ
トセグメントにフツ素を含むものを包含する。生
分解を受けにくいという点で、ポリエーテル型の
ポリウレタン又はポリウレタンウレアがポリエス
テル型よりも好ましい。
The constituent material of the artificial blood vessel of the present invention, which has at least the innermost layer and the intermediate layer described above, is a substance that has excellent compatibility with blood and tissues, that is, does not have acute or chronic toxicity, pyrogenicity, or hemolysis. Preferred are polymers that do not cause inflammation in surrounding tissues even when implanted over a long period of time. Examples of such polymers include polyvinyl halide, polystyrene and its derivatives, polyolefin polymers, polyester condensates, cellulose polymers, polyurethane polymers, polysulfone resins, polyamide polymers, etc. . Of course, a copolymer or a mixture containing these materials may also be used. Among these, polyurethane-based materials are preferred from the viewpoint of mechanical properties, in-vivo stability, and antithrombotic properties. Specific examples thereof include polyurethane, polyurethane urea, blends of these with silicone polymers, and those having an interpenetrating network structure. These also include segmented polyurethanes or polyurethane ureas, those containing polydimethylsiloxane in the main chain, and those containing fluorine in the hard and soft segments. Polyether-type polyurethane or polyurethane urea is preferable to polyester-type because it is less susceptible to biodegradation.

前記ポリウレタン等のポリエーテルセグメント
を構成するポリエーテルとしてはポリテトラメチ
レンオキシドが最も好ましいが、その他のポリア
ルキレンオキシド(但しアルキレンの炭素数は2
及び/又は3)も好ましい。かかるポリアルキレ
ンオキシドの具体例としては、ポリエチレンオキ
シド、ポリプロピレンオキシド、エチレンオキシ
ド−プロピレンオキシド共重合体又はブロツク共
重合体が挙げられる。また同一主鎖中にポリテト
ラメチレンオキシドセグメントとポリアルキレン
オキシド(但しアルキレンの炭素数は2及び/又
は3)とを含む親水性と力学的特性とを兼ねそな
えたポリウレタンを用いてもよい。このポリウレ
タンは抗血栓性、生体適合性が群を抜いて優れて
いることから本発明の人工血管の構成材料として
はより好ましいものである。
The polyether constituting the polyether segment of the polyurethane is most preferably polytetramethylene oxide, but other polyalkylene oxides (however, the number of carbon atoms in alkylene is 2
and/or 3) are also preferred. Specific examples of such polyalkylene oxides include polyethylene oxide, polypropylene oxide, ethylene oxide-propylene oxide copolymers, and block copolymers. Furthermore, a polyurethane having both hydrophilicity and mechanical properties, which contains a polytetramethylene oxide segment and a polyalkylene oxide (alkylene has 2 and/or 3 carbon atoms) in the same main chain, may be used. Since this polyurethane has outstanding antithrombotic properties and biocompatibility, it is more preferable as a constituent material for the artificial blood vessel of the present invention.

これらのソフトセグメントを形成するポリエー
テルの分子量は通常400〜3000の範囲であり、好
ましくは450〜2500、更に好ましくは500〜2500の
範囲であり、中でも最も優れたポリエーテルセグ
メントは分子量800〜2500、特に分子量1300〜
2000のポリテトラメチレンオキシド鎖である。こ
のポリエーテルソフトセグメントの分子量が3000
を超えると、ポリウレタン人工血管の機械的性質
が劣悪となり、400未満では人工血管として成形
しても固すぎて使用できない。
The molecular weight of the polyether forming these soft segments is usually in the range of 400 to 3000, preferably 450 to 2500, more preferably 500 to 2500, and the best polyether segments have a molecular weight of 800 to 2500. , especially molecular weight 1300~
2000 polytetramethylene oxide chains. The molecular weight of this polyether soft segment is 3000
If it exceeds 400, the mechanical properties of the polyurethane artificial blood vessel will be poor, and if it is less than 400, it will be too hard to be used even if it is molded as an artificial blood vessel.

ポリウレタンの合成は、両末端水酸基の上述の
ポリエーテルを、4,4′−ジフエニルメタンジイ
ソシアネート、トルイジンジイソシアネート、
4,4′−ジシクロヘキシルメタンジイソシアネー
ト、ヘキサメチレンジイソシアネートなど公知の
ポリウレタン合成に用いるジイソシアネートと反
応させて末端イソシアネートのプレポリマーをつ
くり、これをエチレンジアミン、プロピレンジア
ミン、テトラメチレンジアミンなどのジアミン
や、エチレングリコール、プロピレングリコー
ル、ブタンジオールのようなジオールで鎖延長す
る常法を用いて合成してもよい。
Synthesis of polyurethane involves converting the above-mentioned polyether with hydroxyl groups at both terminals into 4,4'-diphenylmethane diisocyanate, toluidine diisocyanate,
4,4'-Dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and other known diisocyanates used in polyurethane synthesis are reacted to create a terminal isocyanate prepolymer, which is then mixed with diamines such as ethylene diamine, propylene diamine, and tetramethylene diamine, ethylene glycol, It may be synthesized using a conventional method of chain extension with a diol such as propylene glycol or butanediol.

また、特願昭60−133195に示された人工血管の
ように、抗凝固剤であるヘパリンを含むポリウレ
タンやポリウレタンウレアで人工血管の全体又は
最内層を形成しても良い。このようにすると、特
に内直径4mm以下の人工血管において初期血栓の
形成を薄くするために有効であり、従つて、長期
間経過後の新生内膜の厚さも薄くすることが可能
である。
Further, as in the artificial blood vessel shown in Japanese Patent Application No. 60-133195, the entire artificial blood vessel or the innermost layer may be formed of polyurethane or polyurethane urea containing heparin, which is an anticoagulant. This is particularly effective in reducing the formation of initial thrombi in artificial blood vessels with an inner diameter of 4 mm or less, and therefore it is possible to reduce the thickness of the neointima after a long period of time.

更に、上記した人工血管の製造に際し、構成材
料中に、例えばポリエステル、ポリプロピレン、
ポリエチレン、ナイロン及びテフロン等の合成樹
脂製の短繊維を混入してもよい。このようにする
と人工血管としての強度が向上し、特に内膜組織
等との結合に与かる最内層の強度を高める上で有
効である。
Furthermore, when manufacturing the above-mentioned artificial blood vessel, for example, polyester, polypropylene,
Short fibers made of synthetic resin such as polyethylene, nylon, and Teflon may be mixed. This improves the strength of the artificial blood vessel, and is particularly effective in increasing the strength of the innermost layer, which participates in bonding with intimal tissues and the like.

[実施例] 以下、実施例を掲げ、添付図面を用いて本発明
をさらに詳しく説明する。なお、以下において構
成材料の成分について用いる「%」は全て「重量
%」を表す。また、添付図面は管壁断面における
倍率50倍での顕微鏡写真のスケツチ図である。
[Examples] Hereinafter, the present invention will be described in more detail by presenting examples and using the accompanying drawings. In addition, all "%" used below regarding the component of a constituent material represents "weight%." The attached drawing is a sketch of a micrograph taken at 50x magnification of a cross section of the tube wall.

実施例 1 分子量1500の両末端が水酸基のポリテトラメチ
レングチコールを4,4′−ジフエニルメタンジイ
ソシアネートと反応させて両末端がイソシアネー
ト基のプレポリマーを得た。次いで、該プレポリ
マーにブタンジオールを反応させてポリウレタン
(平均分子量1.2×104)を得た。得られたポリウ
レタンは、テトラヒドロフラン−エタノール系の
混合溶剤中で計3回再沈澱をさせ、精製した。次
いで、精製したポリウレタンを、ジメチルアセト
アミド60%とテトラヒドロフラン40%の混合溶剤
に溶解させて、ポリウレタン濃度が17%の溶液を
製造した。このようにして得た溶液中に、直径6
mmのオリフイスから該オリフイスと同中心になる
ように設置された外直径4mmで、表面粗さが平均
で0.3μmのクロムメツキされたステンレススチー
ル製の棒を一定速度で押し出した。かかる操作に
より、オリフイスとステンレススチール製の棒と
の間の均一な距離の間隙から該棒の全周表面に均
一な量のポリウレタン溶液を付着させた。押し出
された棒を直ちに35℃の水中に導き、外部から急
激に凝固させた。その後、そのまま水中で保持し
て溶剤を除去したのち、水中から引き上げ、棒を
抜き出し、洗浄し、約40℃で乾燥し、内直径3.9
mm、外直径5.4mmのポリウレタンの多孔質管状物
を得た。
Example 1 Polytetramethylene gtycol having a molecular weight of 1500 and having hydroxyl groups at both ends was reacted with 4,4'-diphenylmethane diisocyanate to obtain a prepolymer having isocyanate groups at both ends. Next, the prepolymer was reacted with butanediol to obtain polyurethane (average molecular weight: 1.2×10 4 ). The obtained polyurethane was purified by reprecipitation three times in a tetrahydrofuran-ethanol mixed solvent. Next, the purified polyurethane was dissolved in a mixed solvent of 60% dimethylacetamide and 40% tetrahydrofuran to produce a solution with a polyurethane concentration of 17%. In the solution thus obtained, a diameter of 6
A chromium-plated stainless steel rod with an outer diameter of 4 mm and an average surface roughness of 0.3 μm was extruded from a 2 mm orifice at a constant speed, and was placed concentrically with the orifice. By this operation, a uniform amount of polyurethane solution was deposited on the entire circumferential surface of the orifice and the stainless steel rod through a gap of a uniform distance between the rod and the orifice. The extruded rod was immediately introduced into water at 35°C and rapidly solidified from the outside. After that, the rod was kept in water to remove the solvent, then pulled out of the water, the rod was taken out, washed, dried at about 40℃, and the inner diameter was 3.9 mm.
A polyurethane porous tube with an outer diameter of 5.4 mm was obtained.

上記管状物の内側に上記ポリウレタン溶液を均
一に塗布した。一定時間放置したのち、溶性でん
粉(粒径20〜100μmφ)と長さ0.5mm程度のポリ
エステル短繊維とを混合したものと内表面に散布
して1分間放置し、毛管現象によつてポリウレタ
ン溶液ででん粉の粉体間を充たした後、水中で凝
固脱溶剤した。しかるのち、この管状物を60℃の
温水で3時間処理してでん粉を溶解除去した後、
水洗、乾燥して開放孔構造の最内層とこれに隣接
する閉鎖孔構造の中間層とを有する人工血管を得
た。
The polyurethane solution was uniformly applied to the inside of the tubular article. After leaving it for a certain period of time, a mixture of soluble starch (particle size 20 to 100 μmφ) and short polyester fibers with a length of about 0.5 mm was sprinkled on the inner surface, left for 1 minute, and the polyurethane solution was applied by capillary action. After filling the spaces between the starch powders, the starch was coagulated in water and the solvent was removed. After that, this tube was treated with hot water at 60℃ for 3 hours to dissolve and remove the starch.
After washing with water and drying, an artificial blood vessel having an innermost layer with an open pore structure and an intermediate layer with an adjacent closed pore structure was obtained.

尚、閉鎖孔構造を有する中間層は、はじめの多
孔質管状物の内側部分が、後に塗布されたポリウ
レタン溶液で再溶解し、次いで再凝固する過程に
おいて、臨界組成付近において湿式法による高分
子膜形成と類似の機構により閉鎖孔が形成され、
さらに乾燥操作によりポリウレタン中の微量の残
存溶媒及び凝固の過程でポリウレタン中へ浸透し
た微量の水が除去されて空洞の形成が進行して中
間層が形成される。
The intermediate layer having a closed pore structure is formed by forming a polymer film using a wet method near a critical composition during the process in which the inner part of the first porous tube is redissolved in a polyurethane solution applied later and then resolidified. The obturator foramen is formed by a mechanism similar to that of
Furthermore, the drying operation removes a trace amount of residual solvent in the polyurethane and a trace amount of water that permeated into the polyurethane during the coagulation process, and the formation of cavities progresses to form an intermediate layer.

これが本発明の人工血管で、内直径4mm、外直
径5mm、管壁の厚さ0.6mmで、第1図に示す如く
管壁全体が多孔質であつた。
This was the artificial blood vessel of the present invention, which had an inner diameter of 4 mm, an outer diameter of 5 mm, and a tube wall thickness of 0.6 mm, and the entire tube wall was porous as shown in FIG.

この人工血管の内側に位置する最内層1は、厚
さが80μmで、空孔による空隙率は97%であつ
た。
The innermost layer 1 located inside this artificial blood vessel had a thickness of 80 μm and a porosity of 97% due to pores.

また、この層1は、ポリエステル短繊維がラン
ダムに分布するとともに、微小な空孔が管壁内面
へ平均直径15〜70μmで開口し、各開口は繊維状
又は薄板状のポリウレタンで仕切られていた。そ
して、断面の観察で、これらの空孔は、3μm以
上の直径を有する穴で相互に連通しており、最内
層1が開放孔構造となつていることが確認され
た。
In addition, in this layer 1, short polyester fibers were randomly distributed, and minute holes with an average diameter of 15 to 70 μm were opened on the inner surface of the tube wall, and each opening was partitioned with fibrous or thin plate-like polyurethane. . Observation of the cross section revealed that these pores communicated with each other through holes having a diameter of 3 μm or more, and it was confirmed that the innermost layer 1 had an open pore structure.

また、この層内ではすべての位置で同じ構造を
有していた。
Moreover, within this layer, all positions had the same structure.

前記層1の外側には5〜10μmの厚さの中間層
2が存在し、約1μmの直径の、相互に独立した
球状の閉鎖孔を多数含んでいた。
Outside said layer 1 there was an intermediate layer 2 with a thickness of 5-10 μm and containing a large number of mutually independent spherical obturator pores with a diameter of about 1 μm.

更に、この中間層2の外側には平均直径が200
〜300μmの巨大な空孔群からなる最外層3が存
在していた。
Furthermore, the outside of this intermediate layer 2 has an average diameter of 200 mm.
There was an outermost layer 3 consisting of a group of huge pores of ~300 μm.

ここにおいて、この最外層3は、管壁に柔軟性
を付与し、キンキングを防止し、結合組織との結
合に寄与する部分である。
Here, the outermost layer 3 is a portion that imparts flexibility to the tube wall, prevents kinking, and contributes to bonding with connective tissue.

前記空孔群は、少なくとも管壁厚さの1/5以上
の径を有すると共に、各空孔が層内の径方向全体
に及んでいることが望ましく、外表面側は空孔の
壁膜がそのまま連続して薄く形成されていること
が好ましい。
It is preferable that the pore group has a diameter of at least 1/5 or more of the tube wall thickness, and that each pore extends throughout the entire layer in the radial direction, with the pore wall film on the outer surface side. It is preferable that it is formed continuously and thinly.

以上のように、最内層を開放孔構造としたこと
により、内表面における組織癒合力が向上し、人
工血管の断端面における生体血管からのパヌス生
長あるいは人工血管内表面における内膜組織の肥
厚が抑制され、血管の開存性が著しく改善され
る。しかも、管壁全体が多孔質なので人工血管の
断端面において生体血管との接触面積が小さくな
るために異物反応刺激が少なくなり、生体血管の
治癒が促進される。
As described above, by making the innermost layer have an open-pore structure, the tissue cohesion force on the inner surface is improved, and panus growth from the biological blood vessel on the stump surface of the artificial blood vessel or thickening of the intimal tissue on the inner surface of the artificial blood vessel is achieved. is inhibited, and vascular patency is significantly improved. Moreover, since the entire tube wall is porous, the area of contact with the living blood vessel at the cut end of the artificial blood vessel is reduced, so foreign body reaction stimulation is reduced, and healing of the living blood vessel is promoted.

また、前記最内層に隣接する中間層を閉鎖孔構
造としたことにより、縫合針の貫通性が向上する
とともに、繰返しの穿刺に耐久性を有し、血液不
透過性に優れた人工血管となる。
In addition, by making the intermediate layer adjacent to the innermost layer have an obturator structure, the penetrability of the suture needle is improved, and the artificial blood vessel has durability against repeated punctures and has excellent blood impermeability. .

この血管の内腔に牛血を充填し、450mmHgの内
圧を48時間負荷させたが、血漿は全く通過せず、
管壁は不透過性であつた。この実験に使用した血
管を生理食塩水にて洗浄後、グルタールアルデヒ
ドにて固定したものを標本として、断面を金属顕
微鏡にて観察した。その結果、血液は中間層内に
存在する閉鎖孔内には入つてなく、血液不透過性
であることが確認できた。
The lumen of this blood vessel was filled with bovine blood and an internal pressure of 450 mmHg was applied for 48 hours, but no plasma passed through it.
The tube wall was impermeable. The blood vessels used in this experiment were washed with physiological saline and fixed with glutaraldehyde as specimens, and the cross section was observed with a metallurgical microscope. As a result, it was confirmed that blood did not enter the obturator pores present in the intermediate layer, and that the intermediate layer was impermeable to blood.

この人工血管の5cmを残種成犬の腸骨動脈に移
植した。縫合操作はきわめて容易で、針穴からの
出血もなかつた。
A 5 cm portion of this artificial blood vessel was transplanted into the iliac artery of a remaining adult dog. The suturing operation was extremely easy, and there was no bleeding from the needle hole.

この血管は、8ケ月を経てなお開存しており小
口径の人工血管として極めて優れていた。
This blood vessel remained patent even after 8 months and was extremely excellent as a small-diameter artificial blood vessel.

12ケ月後に、この血管を摘出したところ、吻合
部内面は滑らかに生体血管とつながつており、
0.1〜0.2mmの厚さの薄い内膜が完全に内面をおお
い、パヌスや血栓の発生もみられなかつた。
When this blood vessel was extracted 12 months later, the inner surface of the anastomosis was smoothly connected to the living blood vessel.
A thin intima with a thickness of 0.1 to 0.2 mm completely covered the inner surface, and no panus or thrombus was observed.

従つて、開存性に優れていることから、従来の
人工血管と異なり6mm以下の血管にも使用するこ
とができる。
Therefore, since it has excellent patency, unlike conventional artificial blood vessels, it can be used for blood vessels of 6 mm or less.

実施例 2 実施例1と同じ方法で内直径5mmのポリウレタ
ンの多孔質チユーブを作成した。
Example 2 A polyurethane porous tube with an inner diameter of 5 mm was prepared in the same manner as in Example 1.

得られた人工血管は内直径5mm、管壁全体の厚
さは0.8mmで、多孔質であつた。
The obtained artificial blood vessel had an inner diameter of 5 mm, a total wall thickness of 0.8 mm, and was porous.

この人工血管の最内層は、厚さが80〜120μm
で、空孔による空隙率は96〜98%であつた。ま
た、前記空孔は、壁面内表面へ平均直径30〜
100μmで開口していた。そして、断面の観察に
よれば、この層内では太さ2〜10μmの繊維状ポ
リウレタンがからみ合うとともに、ポリエステル
短繊維がランダムに分布し、隣接する空孔が相互
に連通した開放孔構造となつていた。
The innermost layer of this artificial blood vessel has a thickness of 80 to 120 μm.
The porosity due to pores was 96-98%. In addition, the pores have an average diameter of 30 to 30 mm on the inner wall surface.
The opening was 100 μm. Observation of the cross section reveals that within this layer, fibrous polyurethane with a thickness of 2 to 10 μm are intertwined, and short polyester fibers are randomly distributed, forming an open pore structure in which adjacent pores communicate with each other. was.

この層の外側には約80μmの厚さで、内部に1
〜3μmの独立した閉鎖孔を多数含む中間層が存
在し、更に該層の外側には、300〜500μmの平均
直径を有する巨大な空孔をもつ最外層が存在して
いた。
This layer has a thickness of about 80 μm on the outside and 1 layer on the inside.
There was an intermediate layer containing many independent closed pores of ˜3 μm, and outside of this layer an outermost layer with large pores with an average diameter of 300-500 μm.

この血管の8cmを雑種成犬の頚動静脈間にバイ
パス移植し、皮下に埋め込んだ。
8 cm of this blood vessel was bypass-grafted between the carotid artery and vein of an adult mongrel dog and implanted subcutaneously.

3週間経過後に外部から、18Gの針を穿刺した
ところ、スムーズに人工血管壁を貫通した。この
まま針を4時間留置したのち抜き取つたが、出血
は10秒後完全に止まり、すぐれた止血性を示し
た。
After 3 weeks, an 18G needle was punctured from the outside, and it smoothly penetrated the wall of the artificial blood vessel. The needle was left in place for 4 hours and then removed, but bleeding stopped completely after 10 seconds, demonstrating excellent hemostasis.

この後引き続き、この血管に対して毎日5回の
穿刺を1ケ月続けたが、血腫も血漿腫も起きず、
血液透析用ブラツドアクセスとして優れた性能を
示した。
After this, we continued to puncture this blood vessel five times a day for one month, but no hematoma or plasmama occurred.
It showed excellent performance as a blood access for hemodialysis.

3ケ月後にこの血管を摘出し、その状態を観察
した結果、外面の結合組織は強固に人工血管に癒
合していた。また、内面にはパヌスも血栓も存在
しなかつた。
Three months later, this blood vessel was extracted and its condition was observed. As a result, the external connective tissue was firmly fused to the artificial blood vessel. In addition, there was no panus or thrombus present on the inner surface.

尚、上記両実施例は、血管の内表面側に開放孔
構造の最内層と、この層に隣接する閉鎖孔構造の
中間層とを有する三層構造の人工血管について説
明した。しかし、第2図に示すように、前記内表
面側の構造に加えて、最外層が開放孔構造で、か
つ、この層に隣接する中間層が閉鎖孔構造である
五層構造の人工血管であつてもよいことは言うま
でもない。
In both of the above embodiments, the artificial blood vessel has a three-layer structure, which has an innermost layer with an open-pore structure on the inner surface side of the blood vessel, and an intermediate layer with an obturator structure adjacent to this innermost layer. However, as shown in Figure 2, in addition to the structure on the inner surface side, the outermost layer has an open-pore structure, and the intermediate layer adjacent to this layer has an obturator structure. Needless to say, it's fine.

[発明の効果] 本発明の人工血管は、少なくとも開放孔構造の
最内層とこの最内層に隣接する閉鎖孔構造の中間
層とを有するので、長期開存性に優れるととも
に、縫合針の貫通性が良いうえ、繰返しの穿刺に
対して血液不透過性を示し、耐久性に優れた実用
上の利点が大な人工血管である。
[Effects of the Invention] The artificial blood vessel of the present invention has at least an innermost layer with an open hole structure and an intermediate layer with an obturator structure adjacent to this innermost layer, so it has excellent long-term patency and has low suture needle penetration. This artificial blood vessel has a great practical advantage of being highly durable, exhibiting excellent blood impermeability to repeated punctures, and excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例を示す人工血管の管
壁断面における顕微鏡写真のスケツチ図で、第1
図は管壁を三層構造としたスケツチ図、第2図は
同じく五層構造としたスケツチ図である。 1……最内層、2……中間層、3……最外層。
The attached drawings are sketch diagrams of micrographs of a cross section of the wall of an artificial blood vessel showing an embodiment of the present invention.
The figure shows a sketch of the tube wall having a three-layer structure, and FIG. 2 shows a sketch of the tube wall having a five-layer structure. 1... Innermost layer, 2... Middle layer, 3... Outermost layer.

Claims (1)

【特許請求の範囲】 1 ポリウレタン及び/又はポリウレタンウレア
の複数層からなり、管壁全体が多孔質の人工血管
において、少なくとも開放孔構造の最内層とこの
最内層に隣接する閉鎖孔構造の中間層とを有し、
該開放孔と該閉鎖孔とは連通しておらず、 (1) 前記最内層は、厚さが5μm以上、かつ、管
壁の厚さの2/3以下であつて、該開放孔構造が
平均直径が5〜150μmの球状、卵状又は/及
びこれらの変形形状で、管壁内面へ5〜150μ
mの平均直径をもつて開口する空孔を有し、隣
接するこれらの空孔相互間は少なくとも3μm
以上の直径を有する穴で連通しており、 (2) 前記中間層は、厚さが5〜500μmであつて、
閉鎖孔構造が0.01〜100μmの直径を有する相互
に独立した閉鎖孔を有することを特徴とする人
工血管。 2 ポリウレタン及び/又はポリウレタンウレア
の複数層からなり、管壁全体が多孔質の人工血管
において、少なくとも開放孔構造の最内層とこの
最内層に隣接する閉鎖孔構造の中間層とを有し、
該開放孔と該閉鎖孔とは連通しておらず、 (1) 前記最内層は、厚さが5μm以上、かつ、管
壁の厚さの2/3以下であつて、該開放孔構造が
平均直径が5〜150μmの球状、卵状又は/及
びこれらの変形形状で、管壁内面へ5〜150μ
mの平均直径をもつて開口する空孔を有し、隣
接するこれらの空孔相互間は少なくとも3μm
以上の直径を有する穴で連通しており、 (2) 前記中間層は、厚さが5〜500μmであつて、
閉鎖孔構造が0.01〜100μmの直径を有する相互
に独立した閉鎖孔を有し、 (3) 管壁の少なくとも最内層に合成樹脂製の短繊
維を含むことを特徴とする人工血管。
[Scope of Claims] 1. An artificial blood vessel consisting of multiple layers of polyurethane and/or polyurethane urea, the entire vessel wall of which is porous, at least an innermost layer with an open-pore structure and an intermediate layer with a closed-pore structure adjacent to this innermost layer. and has
The open pores and the obturator pores are not in communication, and (1) the innermost layer has a thickness of 5 μm or more and 2/3 or less of the thickness of the tube wall, and the open pore structure is Spherical, oval, and/or modified shapes with an average diameter of 5 to 150 μm, and 5 to 150 μm to the inner surface of the tube wall.
It has open pores with an average diameter of m, and the distance between adjacent pores is at least 3 μm.
(2) the intermediate layer has a thickness of 5 to 500 μm,
An artificial blood vessel characterized in that the obturator pore structure has mutually independent obturator pores having a diameter of 0.01 to 100 μm. 2. An artificial blood vessel consisting of multiple layers of polyurethane and/or polyurethane urea, the entire vessel wall of which is porous, having at least an innermost layer with an open pore structure and an intermediate layer with an obturator structure adjacent to this innermost layer,
The open pores and the obturator pores are not in communication, and (1) the innermost layer has a thickness of 5 μm or more and 2/3 or less of the thickness of the tube wall, and the open pore structure is Spherical, oval, and/or modified shapes with an average diameter of 5 to 150 μm, and 5 to 150 μm to the inner surface of the tube wall.
It has open pores with an average diameter of m, and the distance between adjacent pores is at least 3 μm.
(2) the intermediate layer has a thickness of 5 to 500 μm,
An artificial blood vessel characterized in that the obturator pore structure has mutually independent obturator pores having a diameter of 0.01 to 100 μm, and (3) at least the innermost layer of the vessel wall contains short fibers made of synthetic resin.
JP62220353A 1987-09-04 1987-09-04 Artificial blood vessel Granted JPS6464650A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62220353A JPS6464650A (en) 1987-09-04 1987-09-04 Artificial blood vessel
US07/236,547 US4986832A (en) 1987-09-04 1988-08-25 Artificial blood vessel and process for preparing it
EP88308063A EP0308102B1 (en) 1987-09-04 1988-08-31 Process for preparing an artificial blood vessel
EP19910108239 EP0446965A3 (en) 1987-09-04 1988-08-31 Artificial blood vessel and process for preparing it
DE8888308063T DE3871677T2 (en) 1987-09-04 1988-08-31 METHOD FOR PRODUCING AN ARTIFICIAL BLOOD VESSEL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62220353A JPS6464650A (en) 1987-09-04 1987-09-04 Artificial blood vessel

Publications (2)

Publication Number Publication Date
JPS6464650A JPS6464650A (en) 1989-03-10
JPH0581258B2 true JPH0581258B2 (en) 1993-11-12

Family

ID=16749805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62220353A Granted JPS6464650A (en) 1987-09-04 1987-09-04 Artificial blood vessel

Country Status (1)

Country Link
JP (1) JPS6464650A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69123344T2 (en) * 1990-07-31 1997-04-24 Ube Industries ARTIFICIAL BLOOD VESSEL AND THE PRODUCTION THEREOF
US5549664A (en) * 1990-07-31 1996-08-27 Ube Industries, Ltd. Artificial blood vessel
CN115040288A (en) * 2014-02-21 2022-09-13 矽瑞奥科技公司 Vascular graft and method for maintaining patency of vascular graft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188164A (en) * 1984-03-07 1985-09-25 鐘淵化学工業株式会社 Artifical vessel
JPS61238238A (en) * 1985-04-15 1986-10-23 鐘淵化学工業株式会社 Production of artificial blood vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188164A (en) * 1984-03-07 1985-09-25 鐘淵化学工業株式会社 Artifical vessel
JPS61238238A (en) * 1985-04-15 1986-10-23 鐘淵化学工業株式会社 Production of artificial blood vessel

Also Published As

Publication number Publication date
JPS6464650A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
DE60115712T2 (en) COATED TUBE TRANSPLANTS AND USE METHOD
US20050107868A1 (en) Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
JPH0763489B2 (en) Medical tube
US6117535A (en) Biocompatible devices
US4986832A (en) Artificial blood vessel and process for preparing it
JPS63209647A (en) Artificial blood vessel
JPH0581258B2 (en)
WO1992002195A1 (en) Artificial blood vessel and production thereof
CA2484012C (en) Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
JPH0254101B2 (en)
JPH0457345B2 (en)
JPH0450013B2 (en)
JPS61185271A (en) Artificial blood vessel of which compliance and stress-strain curve are similar to live blood vessel and itsproduction
JPS60182959A (en) Artifical vessel
JPS61238238A (en) Production of artificial blood vessel
JPS602257A (en) New artificial blood vessel
JPS63270047A (en) Artificial blood vessel
JP2587066B2 (en) Artificial blood vessel
JPH0262264B2 (en)
JP2553522B2 (en) Medical tube and method of manufacturing the same
JPS63222758A (en) Medical tube
JPH0233263B2 (en)
JPS62258670A (en) Artificial blood vessel and its production
JPH0579340B2 (en)
JPH0237184B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees