JPS63270047A - Artificial blood vessel - Google Patents

Artificial blood vessel

Info

Publication number
JPS63270047A
JPS63270047A JP62104455A JP10445587A JPS63270047A JP S63270047 A JPS63270047 A JP S63270047A JP 62104455 A JP62104455 A JP 62104455A JP 10445587 A JP10445587 A JP 10445587A JP S63270047 A JPS63270047 A JP S63270047A
Authority
JP
Japan
Prior art keywords
blood vessel
artificial blood
outermost layer
thickness
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104455A
Other languages
Japanese (ja)
Inventor
Noriaki Kaneko
金子 憲明
Yoshimi Hirata
平田 吉見
Masahiro Moriwaki
森脇 政浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62104455A priority Critical patent/JPS63270047A/en
Publication of JPS63270047A publication Critical patent/JPS63270047A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels

Landscapes

  • Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To enhance the adhesion strength of an artificial blood vessel to tissue to obtain durability, by setting the outermost layer of the artificial blood vessel to a specific thickness. CONSTITUTION:In an artificial blood vessel wherein all of vessel walls 1-3 are porous and the outermost layer 1 has an open cell structure, the thickness of the outermost layer 1 is set to 10mum and adjusted to 2/3 or less the vessel walls 1-3. For example, when the thickness of all of the vessel walls 1-3 of the artificial blood vessel having an inner diameter of 4mm is 0.4mm, the thickness of the outermost layer 1 is pref. 20-200mum and the optimum thickness thereof is 30-100mum. The outermost layer 1 is formed so as to have such an open cell structure that pores having a spherical shape, an oval shape or/and a deformed shape thereof whose average diameter is 10-150mum are arranged in the closest packing state and opened to the outer surface thereof so as to provide an average diameter of 10-150mum and adjacent voids communicate with each other through pores having a diameter of at least 5mum or more. As the constitutent material of the artificial blood vessel whose outermost layer 1 has this structure, polyether type polyurethane or polyurethane urea is pref.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は組織癒合力の高い最外層を有する人工血管に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an artificial blood vessel having an outermost layer with high tissue healing power.

[従来の技術] 従来、人工血管としてはポリエチレンテレフタレートを
材料とし、これを紡糸して得られるポリエステルの高分
子繊維を編織してチューブ状とし、これに蛇腹状のひだ
をつけてキンキング現象(屈曲によって折れる現象)を
防止したものや。
[Prior art] Conventionally, artificial blood vessels have been made from polyethylene terephthalate, which is spun into a tube-like form by knitting and weaving polyester polymer fibers. This prevents the phenomenon of bending due to

ポリ四7ツ化エチレンをチューブ状に成形し、延伸加工
してフィブリル化(微細な繊維状構造化)したものが用
いられている。これらを代用血管として用いると、管壁
の構造が有孔化されているために、この隙間に細胞が浸
入生育し、生体化するという利点がある。
Polytetra7ethylene is formed into a tube shape and then stretched to form fibrils (fine fibrous structure). When these are used as blood vessel substitutes, since the structure of the tube wall is porous, there is an advantage that cells can infiltrate and grow in the gaps and become living organisms.

しかしながら、前記素材を用いた人工血管においては、
最外層及び管壁断面での組織癒合力が弱いために、生体
の血管と移植した人工血管との結合力の多くが、両者の
吻合に使われた縫合糸の張力に依存する。このため、血
管、殊に動脈では血圧のくり返し負荷の刺激を受けるこ
ともあり、生体血管断端部の治癒が緩慢で、このことが
内腔へのパヌス(肉芽組織の過剰形成)生長を促進して
閉塞の原因となる他、長期を経て吻合部に動脈瘤が生じ
る原因となる。
However, in artificial blood vessels using the above materials,
Since the tissue cohesion force in the outermost layer and the cross section of the tube wall is weak, much of the bonding force between the biological blood vessel and the transplanted artificial blood vessel depends on the tension of the suture used to anastomose the two. For this reason, blood vessels, especially arteries, may be stimulated by repeated loads of blood pressure, slowing the healing of the living vessel stump and promoting the growth of panus (excessive granulation tissue) into the lumen. In addition to causing occlusion, it can also cause an aneurysm to form at the anastomotic site over a long period of time.

[発明が解決しようとする問題点] 上記のとおり、従来の人工血管は、組織癒合力が弱いた
め、長期に亘って開存性、耐久性を維持することができ
ず、内径6膿厘以下、殊に4■以下の血管としては、実
用上使用できなかった。
[Problems to be solved by the invention] As mentioned above, conventional artificial blood vessels have weak tissue healing power, cannot maintain patency and durability over a long period of time, and have an inner diameter of 6 pus or less. However, it could not be practically used, especially as a blood vessel with a diameter of 4 cm or less.

したがって、本発明は、最外層の組織癒合力が強く、こ
れにより長期開存性や耐久性が高められる人工血管を提
供することを目的とする。
Therefore, an object of the present invention is to provide an artificial blood vessel whose outermost layer has a strong tissue cohesive force, thereby increasing long-term patency and durability.

[問題点を解決するための手段及び作用]本発明者は、
まず、人工血管において最外層の組織癒合力を高めるた
めには、最外層における周囲の結合組織の役人生長によ
るアンカーリング効果を高める必要があるという点に着
目して検討を行なった。
[Means and effects for solving the problem] The inventor
First, we focused on the point that in order to increase the tissue cohesiveness of the outermost layer of an artificial blood vessel, it is necessary to enhance the anchoring effect of the surrounding connective tissue in the outermost layer through the growth of active cells.

その結果、最外層をただ単に多孔質構造としただけでは
不十分であるということを見出した。
As a result, it was found that simply making the outermost layer a porous structure was insufficient.

すなわち、最外層の構造が多孔質構造であっても厚さが
少ないと組織結合力が弱く、血管に作用する外力で剥れ
易いこと、一方、厚さが厚過ぎると人工血管全体として
の強度が低下したり、経時的に扁平化する傾向が見られ
ることがあるからである。
In other words, even if the outermost layer has a porous structure, if the thickness is too small, the tissue binding force will be weak and it will easily peel off due to external forces acting on the blood vessel.On the other hand, if the outermost layer is too thick, the strength of the artificial blood vessel as a whole will be affected. This is because there may be a tendency for the surface area to decrease or become flattened over time.

したがって、これらの知見に基づいて検討を行った結果
、最外層をある一定範囲の厚さとすることで組織結合力
の高い人工血管とすることが可能であるということを見
出し、本発明を完成するに到った。
Therefore, as a result of studies based on these findings, it was discovered that by making the outermost layer have a thickness within a certain range, it is possible to create an artificial blood vessel with high tissue bonding strength, thereby completing the present invention. reached.

本発明は、管壁全体が多孔質で、開放孔構造の最外層を
有する人工血管において、前記最外層は、厚さが10μ
以七であって、かつ、管壁の厚さの%以下であることを
特徴とする人工血管に関する。
The present invention provides an artificial blood vessel in which the entire vessel wall is porous and has an outermost layer with an open pore structure, wherein the outermost layer has a thickness of 10 μm.
The present invention relates to an artificial blood vessel characterized in that the thickness is less than % of the thickness of the vessel wall.

本発明の人工血管は一体成形によって多孔質構造となっ
ている。とりわけ、最外層は、結合組織との結合に与か
って組織癒合力を左右する部分である。
The artificial blood vessel of the present invention has a porous structure due to integral molding. In particular, the outermost layer is a part that participates in bonding with connective tissue and influences tissue healing power.

この最外層は、厚さがlθμ以上であって、かつ、管壁
の厚さの%以下であることが必要であるが、例えば、繰
返しの穿刺などの操作にも耐えるためには20戸以上で
あることが好ましい、ここにおいて、例えば内径4i+
nの人工血管で管壁全体の厚さが0.4■のときには、
最外層の厚さは20〜200牌の範囲が好ましく、より
好ましくは30〜100JAWが最適である。
This outermost layer needs to have a thickness of lθμ or more and less than % of the thickness of the tube wall. It is preferable that the inner diameter is 4i+, for example,
When the thickness of the entire wall of an artificial blood vessel of n is 0.4■,
The thickness of the outermost layer is preferably in the range of 20 to 200 tiles, more preferably 30 to 100 JAW.

また、この最外層は、平均径が10〜150%の球状、
卵状又は/及びこれらの変形形状の空孔が最密充填様に
配置されるとともに、管壁外面においてlO〜150μ
の平均径をもって開口し、隣接する空孔が少なくとも5
−以上の径を有する穴で連通した開放孔構造となってい
る。
In addition, this outermost layer has a spherical shape with an average diameter of 10 to 150%,
Oval-shaped and/or modified-shaped pores are arranged in a close-packed manner, and the outer surface of the tube wall has a density of 10 to 150μ.
The openings have an average diameter of
- It has an open hole structure that communicates with a hole having a diameter of more than -.

上記空孔及び開口の平均径は、lO〜150μの範囲で
あることが好ましく、これ以下では細胞の侵入が少なく
十分な結合組織の癒合が認められない、特に、隣接する
空孔間を連通させる穴が5−以下の径では細胞の侵入成
長が認められなくなる。
The average diameter of the above-mentioned pores and openings is preferably in the range of 10 to 150μ; below this, there is little cell invasion and sufficient connective tissue healing is not observed, especially when adjacent pores communicate with each other. If the diameter of the hole is less than 5 mm, no invasive growth of cells will be observed.

一方、平均径が150−を越えると1周囲の結合組織と
人工血管との癒合力が急激に低下する。
On the other hand, when the average diameter exceeds 150 mm, the cohesive force between the surrounding connective tissue and the artificial blood vessel decreases rapidly.

これは、血管表面における単位面積当りの結合組織の癒
着が減ることによるアンカーリング効果が減少すること
が主因と考えられる。
The main reason for this is thought to be that the anchoring effect decreases due to a decrease in connective tissue adhesion per unit area on the blood vessel surface.

ここにおいて、空孔及び開口等の平均径とは、倍率10
00倍の走査型電子顕微鏡でランダムに写真撮影して得
られる1、2mmzの視野の中で、各空孔及び各肩口等
の最大径を測定し、同様の操作を10回行った平均値を
いう。
Here, the average diameter of holes, openings, etc. is a magnification of 10
Measure the maximum diameter of each hole, each shoulder, etc. in a field of view of 1 or 2 mm obtained by randomly taking photographs with a scanning electron microscope at 00x magnification, and calculate the average value of the same operation performed 10 times. say.

以上より、この最外層の開放孔構造は実質的に等方性で
、この層を任意の位置で任意の方向に切断すると、断面
は管壁外面と同様の外観を呈する。
As described above, the open pore structure of this outermost layer is substantially isotropic, and when this layer is cut at any position and in any direction, the cross section has an appearance similar to the outer surface of the tube wall.

従って、最外層を前記した厚さを有する開放孔構造とす
ると、移植後の人工血管外面での結合組織の癒合を確実
にし、吻合部分の縫合糸にかかる長期にわたる血圧のく
り返し応力にょる合併症を防止することが可能になる。
Therefore, if the outermost layer has an open-pore structure with the above-mentioned thickness, it will ensure the fusion of the connective tissue on the outer surface of the artificial blood vessel after implantation, and prevent complications caused by the repeated stress of long-term blood pressure on the sutures at the anastomotic part. It becomes possible to prevent

〜0.99と極めて高くすると、結合組織の侵入生長を
容易にすることができる。
A very high value of ~0.99 can facilitate invasive growth of connective tissue.

最外層がかかる構造を有する本発明の人工血管の構成材
料としては、血液や組織との適合性に優れた物質、即ち
急性及び慢性の毒性、発熱性、溶血性を持たず、長期に
亘って移植しても周囲の組織に炎症を惹起しないポリマ
ーが好ましい、このようなポリマーとしては、例えばポ
リハロゲン化ビニル、ポリスチレン及びその誘導体、ポ
リオレフィン系重合体、ポリエステル系縮合体、セルロ
ース系高分子、ポリウレタン系高分子、ポリスルホン系
樹脂、ポリアミド系高分子などが挙げられる。勿論これ
らを相互に含む共重合体や混合物でもよい、力学的性質
や生体内での安定性、更に、抗血栓性の面から見て、こ
れらの中で好ましいのは、ポリウレタン系のものである
。その具体例としては、ポリウレタン、ポリウレタンウ
レア、これらとシリコーンポリマーとのブレンド物又は
相互侵入網目構造を有するものが挙げられる。また、こ
れらには、セグメント化ポリウレタン又はポリウレタン
ウレア、主鎖中にポリジメチルシロキサンを含むもの、
ハード、ソフトセグメントにフッ素を含むものを包含す
る。生分解を受けにくいという点で、ポリエーテル型の
ポリウレタン又はポリウレタンウレアがポリエステル型
よりも好ましい。
The material for constructing the artificial blood vessel of the present invention having such a structure as the outermost layer is a substance that is highly compatible with blood and tissues, that is, it does not have acute or chronic toxicity, pyrogenicity, or hemolysis, and has long-term durability. Polymers that do not cause inflammation in surrounding tissues even when implanted are preferred; examples of such polymers include polyvinyl halides, polystyrene and its derivatives, polyolefin polymers, polyester condensates, cellulose polymers, and polyurethanes. Examples include polyamide-based polymers, polysulfone-based resins, and polyamide-based polymers. Of course, copolymers or mixtures containing these materials may also be used; polyurethane-based materials are preferred from the viewpoint of mechanical properties, in-vivo stability, and antithrombotic properties. . Specific examples thereof include polyurethane, polyurethane urea, blends of these with silicone polymers, and those having an interpenetrating network structure. These also include segmented polyurethanes or polyurethane ureas, those containing polydimethylsiloxane in the main chain,
Includes hard and soft segments that contain fluorine. Polyether-type polyurethane or polyurethane urea is preferable to polyester-type because it is less susceptible to biodegradation.

前記ポリウレタン等のポリエーテルセグメントを構成す
るポリエーテルとしてはポリテトラメチレンオキシドが
最も好ましいが、その他のポリアルキレンオキシド(但
しアルキレンの炭素数は2及び/又は3)も好ましい、
かかるポリアルキレンオキシドの具体例としては、ポリ
エチレンオキシド、ポリプロピレンオキシド、エチレン
オキシドープロピレンオ午シト共重合体又はブロック共
重合体が挙げられる。また同一主鎖中にポリテトラメチ
レンオキシドセグメントとポリアルキレンオキシド(但
しアルキレンの炭素数は2及び/又は3)とを含む親木
性と力学的特性とを兼ねそなえたポリウレタンを用いて
もよい、このポリウレタンは抗血栓性、生体適合性が群
を抜いて優れていることから本発明の人工血管の構成材
料としてはより好ましいものである。
The polyether constituting the polyether segment such as the polyurethane is most preferably polytetramethylene oxide, but other polyalkylene oxides (however, alkylene has 2 and/or 3 carbon atoms) are also preferred.
Specific examples of such polyalkylene oxides include polyethylene oxide, polypropylene oxide, ethylene oxide-propylene-silica copolymers, and block copolymers. Further, a polyurethane having both wood-philicity and mechanical properties, which contains a polytetramethylene oxide segment and a polyalkylene oxide (alkylene has 2 and/or 3 carbon atoms) in the same main chain, may be used. Since this polyurethane has outstanding antithrombotic properties and biocompatibility, it is more preferable as a constituent material of the artificial blood vessel of the present invention.

これらのソフトセグメントを形成するポリエーテルの分
子量は通常400〜3,000の範囲であり、好ましく
は450〜2.500、更に好ましくは500〜2,5
00の範囲であり、中でも最も優れたポリエーテルセグ
メントは分子量800〜2.500、特に分子量1,3
00〜2.000のポリテトラメチレンオキシド鎖であ
る。このポリエーテルソフトセグメントの分子量が3.
000を超えると、ポリウレタン人工血管の機械的性質
が劣悪となり、400未満では人工血管として成形して
も固すぎて使用できない。
The molecular weight of the polyether forming these soft segments is usually in the range of 400 to 3,000, preferably 450 to 2.500, more preferably 500 to 2.5
00, and the best polyether segments have a molecular weight of 800 to 2.500, especially 1.3.
00 to 2.000 polytetramethylene oxide chains. The molecular weight of this polyether soft segment is 3.
If it exceeds 000, the mechanical properties of the polyurethane artificial blood vessel will be poor, and if it is less than 400, it will be too hard to be used even if it is molded as an artificial blood vessel.

ポリウレタンの合成は、両末端水酸基の上述のポリエー
テルを、4,41−ジフェニルメタンジイソシアネート
、トルイジンジイソシアネート、4.4′−ジシクロヘ
キシルメタンジイソシアネート、ヘキサメチレンジイソ
シアネートな、ど公知のポリウレタン合成に用いるジイ
ソシアネートと反応させて末端イソシアネートのプレポ
リマーをつくり、これをエチレンジアミン、プロピレン
ジアミン、テトラメチレンジアミンなどのジアミンや、
エチレングリコール、プロピレングリコール、ブタンジ
オールのようなジオールで鎖延長する常法を用いて合成
してもよい。
Synthesis of polyurethane involves reacting the above-mentioned polyether with hydroxyl groups at both terminals with diisocyanates used in known polyurethane synthesis, such as 4,41-diphenylmethane diisocyanate, toluidine diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and hexamethylene diisocyanate. A prepolymer of terminal isocyanate is made by using the process, and this is mixed with diamines such as ethylene diamine, propylene diamine, tetramethylene diamine, etc.
It may be synthesized using a conventional method of chain extension with a diol such as ethylene glycol, propylene glycol, or butanediol.

[実施例] 以下、実施例を掲げ、添付図面を用いて本発明をさらに
詳しく説明する。なお、以下において構成材料の成分に
ついて用いる「%」は全て「重量%」を表す、また、添
付図面は管壁断面における倍率600倍での顕微鏡写真
のスケッチ図である。
[Examples] Hereinafter, the present invention will be described in more detail by presenting examples and using the accompanying drawings. In addition, all "%" used below regarding the components of the constituent materials represents "weight %", and the attached drawing is a sketch of a micrograph at 600 times magnification of a tube wall cross section.

実施例1 分子量1500の両末端が水酸基のポリテトラメチレン
グリコールを4.4′−ジフェニルメタンジイソシアネ
ートと反応させて両末端がインシアネート基のプレポリ
マーを得た。次いで、該プレポリマーにブタンジオール
を反応させてポリウレタン(平均分子i1.2X10’
)を得た。得られたポリウレタンは、テトラヒドロフラ
ン−エタノール系の混合溶剤中で計3回再沈澱をさせ、
精製した0次いで、精製したポリウレタンを、ジメチル
アミド60%とテトラヒドロフラン40%の混合溶剤に
溶解させて、ポリウレタン濃度が17%の溶液を製造し
た。このようにして得た溶液中に、直径6m+sのオリ
フィスから該オリフィスと同中心になるように設置され
た外径4■で、表面粗さが平均で0 、3pIのクロム
メッキされたステンレススチール製の林を一定速度で押
し出した。かかる操作により、オリフィスとステンレス
スチール製の棒との間の均一な距離の間隙から該棒の全
周表面に均一な贋のポリウレタン溶液を付着させた。押
し出された棒を直ちに35℃の水中に導き、外部から急
激に凝固させた。その後、そのまま水中で保持して溶剤
を除去したのち、水中から引き上げ、棒を抜き出し、洗
浄し、約40℃で乾燥し、ポリウレタンの管状物を得た
Example 1 Polytetramethylene glycol having a molecular weight of 1500 and having hydroxyl groups at both ends was reacted with 4,4'-diphenylmethane diisocyanate to obtain a prepolymer having incyanate groups at both ends. Next, the prepolymer was reacted with butanediol to form polyurethane (average molecular i1.2X10'
) was obtained. The obtained polyurethane was reprecipitated three times in a tetrahydrofuran-ethanol mixed solvent,
The purified polyurethane was then dissolved in a mixed solvent of 60% dimethylamide and 40% tetrahydrofuran to prepare a solution having a polyurethane concentration of 17%. A chromium-plated stainless steel plate with an outer diameter of 4 mm and an average surface roughness of 0 and 3 pI was placed in the solution obtained in this way from an orifice with a diameter of 6 m + s and placed concentrically with the orifice. The forest was pushed out at a constant speed. By this operation, a uniform amount of the fake polyurethane solution was deposited on the entire circumferential surface of the orifice and the stainless steel rod through a gap of a uniform distance between the rod and the orifice. The extruded rod was immediately introduced into water at 35° C. and rapidly solidified from the outside. Thereafter, the rod was kept in water to remove the solvent, then pulled out of the water, the rod was taken out, washed, and dried at about 40° C. to obtain a polyurethane tube.

これが本発明の人工血管で、内径4■、外径5am、管
壁の厚さ0.6mmで、図面に示す如く管壁全体が多孔
質であった。
This was the artificial blood vessel of the present invention, which had an inner diameter of 4 mm, an outer diameter of 5 am, and a tube wall thickness of 0.6 mm, and the entire tube wall was porous as shown in the drawing.

この人工血管の外側に位置する最外層lは、厚さが80
戸で、空孔による空隙率は97%であった。
The outermost layer l located on the outside of this artificial blood vessel has a thickness of 80 mm.
The porosity of the door was 97%.

また、この層lの微小な空孔は、管壁外面へ平均径15
〜70−で開口し、ta維状又は薄板状のポリウレタン
で仕切られていた。そして、断面のri1察で、これら
の空孔は、5−以トの径を有する穴で相互に連通してお
り、最外層lが開放孔構造となっていることが確認され
た。
Moreover, the minute pores in this layer l have an average diameter of 15 mm on the outer surface of the tube wall.
It was opened at ~70° and partitioned with ta fiber-like or thin plate-like polyurethane. Inspection of the cross section by RI1 confirmed that these pores communicated with each other through holes having a diameter of 5 mm or more, and that the outermost layer 1 had an open pore structure.

また、この層内ではすべての位置で同じ構造を有してい
た。
Moreover, within this layer, all positions had the same structure.

前記層1の内側には5〜toμmの厚さの中間層2が存
在し、約1μmの径の、相互に独立した球状の閉鎖孔を
多数含んでいた。
Inside the layer 1, there was an intermediate layer 2 with a thickness of 5 to .mu.m and containing a large number of mutually independent spherical obturator pores with a diameter of about 1 .mu.m.

更に、この中間層2の内側には平均径が200〜300
%の巨大な空孔群からなる最内層3が存在していた。
Furthermore, the inner side of this intermediate layer 2 has an average diameter of 200 to 300.
There was an innermost layer 3 consisting of a huge group of vacancies.

ここにおいて、この最内層3は、管壁に柔軟性を付与し
、キンキングを防止し、長期開存性に寄与する部分であ
る。
Here, the innermost layer 3 is a portion that imparts flexibility to the tube wall, prevents kinking, and contributes to long-term patency.

前記空孔群は、少なくとも管壁厚さのス以1の径を有す
ると共に、各空孔が層内の径方向全体に及んでいること
が望ましく、血液接触面側は空孔の壁膜がそのまま連続
して薄く形成されていることが好ましい。
It is preferable that the pore group has a diameter that is at least 1 greater than the thickness of the tube wall, and that each pore extends throughout the entire layer in the radial direction, with the wall membrane of the pores on the blood contacting surface side. It is preferable that it is formed continuously and thinly.

このように、巨大な空孔群の存在により、血液接触面側
の柔軟性があるために内面の吻合部が滑らかに連結され
、血栓の多量生成の原因となる部分的な血液の滞留が起
きない、このため、人工血管の材料の断端面での生体血
管からのパヌス生成が抑えられ、開存性が著しく改善さ
れる。
In this way, due to the presence of huge pore groups, the inner anastomosis is smoothly connected due to the flexibility of the blood contacting surface, causing partial blood stagnation that causes the formation of a large amount of thrombus. Therefore, the generation of panus from the biological blood vessel at the cut end surface of the material of the artificial blood vessel is suppressed, and patency is significantly improved.

また、人工血管の材料の断端面での、生体血管との接触
面積が小さくなるために異物反応刺激が少なくなり、生
体血管の治癒が促進される。
Furthermore, since the contact area with the biological blood vessel at the cut end of the material of the artificial blood vessel is reduced, foreign body reaction stimulation is reduced, and healing of the biological blood vessel is promoted.

この血管の内腔に生血を充填し、450 mmHHの内
圧を48時間負荷させたが、血漿は全く通過せず、管壁
は不透過性であった。この実験に使用した血液を生理食
塩水にて洗浄後、ゲルタールアルデヒドにて固定したも
のを標本として、断面を金属顕微鏡にて観察した。その
結果、血液は最内層3の巨大空孔内に浸入しているが、
その外側の中間層内に存在する閉鎖孔内には入っていな
いことが確認できた。
The lumen of this blood vessel was filled with fresh blood and an internal pressure of 450 mmHH was applied for 48 hours, but no plasma passed through and the vessel wall was impermeable. The blood used in this experiment was washed with physiological saline and then fixed with geltaraldehyde as a specimen, and its cross section was observed with a metallurgical microscope. As a result, blood has penetrated into the huge pores in the innermost layer 3,
It was confirmed that it did not enter the obturator foramen present in the outer intermediate layer.

この人工血管の5cmを雑種成犬の腸骨動脈に移植した
。!i合操作はきわめて容易で、針穴からの出血もなか
った。
A 5 cm piece of this artificial blood vessel was transplanted into the iliac artery of an adult mongrel dog. ! The operation was extremely easy and there was no bleeding from the needle hole.

この血管は、8ケ月を経てなお開存しており小口径の人
工血管として極めて優れていた。
This blood vessel remained patent even after 8 months and was extremely excellent as a small-diameter artificial blood vessel.

12ケ月後に、この血管を摘出したところ、外面には厚
さ約1.5mmの結合組織が被覆しており、人工血管と
の癒合が完全で剥離させることはできなかった。吻合部
内面は滑らかに生体血管と連がっており、O01〜0.
21の厚さの薄い内膜が完全に内面をおおい、パヌスや
血栓の発生もみられなかった。
When this blood vessel was extracted 12 months later, the outer surface was covered with connective tissue with a thickness of about 1.5 mm, and it was completely fused with the artificial blood vessel and could not be peeled off. The inner surface of the anastomosis part is smoothly connected to the biological blood vessel, and the inner surface of the anastomosis part is smoothly connected to the biological blood vessel, and the inner surface of the anastomosis part is smoothly connected to the biological blood vessel.
A thin intima of 21 mm completely covered the inner surface, and no panus or thrombus was observed.

従って、開存性に優れていることから、従来の人工血管
と異なり61以下の血管にも使用することができる。
Therefore, since it has excellent patency, unlike conventional artificial blood vessels, it can be used for blood vessels of 61 cm or less.

実施例2 実施例1と同じ方法で内径511I6のポリウレタンの
多孔質チューブを作成した。
Example 2 A polyurethane porous tube having an inner diameter of 511I6 was prepared in the same manner as in Example 1.

得られた人工血管は内径5mm、’′e壁全体の厚さは
0.8mmで、多孔質であった。
The obtained artificial blood vessel had an inner diameter of 5 mm, a total wall thickness of 0.8 mm, and was porous.

この人工血管の外側に位置する最外層は、厚さが80〜
120−で、空孔による空隙率は96〜98%であった
。また、前記空孔は、壁面外面へ平均径30〜100−
で開口していた。そして、断面の観察によれば、この層
内では太さ2〜10μの繊維状ポリウレタンがからみ合
い、隣接する空孔が相Wに連通した開放孔構造となって
いた。
The outermost layer located on the outside of this artificial blood vessel has a thickness of 80~
120-, the porosity due to pores was 96-98%. Further, the pores have an average diameter of 30 to 100 mm on the outer surface of the wall surface.
It was open. According to the observation of the cross section, fibrous polyurethane having a thickness of 2 to 10 μm was entangled in this layer, and an open pore structure was formed in which adjacent pores communicated with the phase W.

この層の内側には約80−の厚ぎで、内部に1〜3−の
独立した閉鎖孔を多数含む中間層が存在し、更に該層の
内側には、300〜500−の平均径を有する巨大な空
孔をもつ最内層が存在していた。
Inside this layer, there is an intermediate layer with a thickness of about 80 mm and containing a large number of 1 to 3 independent obturator pores, and further inside this layer has an average diameter of 300 to 500 mm. There was an innermost layer with huge pores.

この血管の8CIltl−雑種成犬の頚動静脈間にバイ
パス移植し、皮下に埋め込んだ。
This blood vessel was bypass-grafted between the carotid artery and vein of an 8CIltl-mongrel adult dog and implanted subcutaneously.

3週間経過後に外部から、18Gの針を穿刺したところ
、スムースに人工血管壁を貫通した。このまま針を4時
間留置したのち抜き取ったが、出血は10秒後完全に市
まり、すぐれた止血性を示した。
After 3 weeks, an 18G needle was punctured from the outside, and it smoothly penetrated the wall of the artificial blood vessel. The needle was left in place for 4 hours and then removed, but the bleeding stopped completely after 10 seconds, demonstrating excellent hemostasis.

この後引き続き、この血管に対して毎日5回の穿刺を1
ケ月続けたが、血腫も血景腫も起きず、血液透析用ブラ
ッドアクセスとして優れた性能を示した。
After this, continue to puncture this blood vessel 5 times daily.
Although it continued for several months, no hematoma or hematoma occurred, and it showed excellent performance as a blood access for hemodialysis.

3ケ月後にこの血管を摘出し、その状態を観察した結果
、外面の結合組織は強固に人工血管に癒合していた。ま
た、内面にはパヌスも血栓も存在しなかった。
Three months later, this blood vessel was extracted and its condition was observed. As a result, the external connective tissue was firmly fused to the artificial blood vessel. There was also no panus or thrombus present on the inner surface.

[発明の効果] 本発明の人工血管は、その最外層の厚さを10戸以上で
あって、かつ、管壁の厚さのb以下としたので、人工血
管の組織癒合力を高めて、長期に亘って耐久性のある人
工血管とすることができる。しかも、組織癒合力が高い
ことから吻合部における動脈瘤の発生を抑制し、内径6
1履以下の血管、殊に411I11以下の動脈用人工血
管としてすぐれた長期開存性、耐久性をもつのみならず
、血液透析用ブラッドアクセスとしても、血腫や血漿腫
もなく、穿刺後の止血性にすぐれた人工血管である。
[Effects of the Invention] The artificial blood vessel of the present invention has the outermost layer having a thickness of 10 layers or more and less than the thickness b of the tube wall, so that the tissue healing power of the artificial blood vessel is increased. The artificial blood vessel can be made durable over a long period of time. Moreover, its high tissue healing power suppresses the occurrence of aneurysm at the anastomotic site, and
It not only has excellent long-term patency and durability as an artificial blood vessel for blood vessels smaller than 1 mm, especially arteries smaller than 411I11, but also can be used as a blood access for hemodialysis without hematoma or plasmama, and can stop bleeding after puncture. This is an artificial blood vessel with excellent performance.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面ば管壁断面における顕微鏡写真のスケッチ図で
ある。
The accompanying drawing is a sketch of a micrograph of a cross section of a tube wall.

Claims (1)

【特許請求の範囲】 1、管壁全体が多孔質で、開放孔構造の最外層を有する
人工血管において、前記最外層は、厚さが10μm以上
であって、かつ、管壁の厚さの2/3以下であることを
特徴とする人工血管。 2、前記管壁がポリウレタンからなる特許請求の範囲第
1項記載の人工血管。 3、前記管壁がポリウレタンウレアからなる特許請求の
範囲第1項記載の人工血管。 4、前記最外層の開放孔構造は、平均径が10〜150
μmの球状、卵状又は/及びこれらの変形形状で、管壁
外面へ10〜150μmの平均径をもって開口する空孔
と、隣接するこれらの空孔相互間を連通する少なくとも
5μm以上の径を有する穴とで構成される特許請求の範
囲第1項乃至第3項いずれか1項に記載の人工血管。
[Scope of Claims] 1. In an artificial blood vessel in which the entire tube wall is porous and has an outermost layer with an open pore structure, the outermost layer has a thickness of 10 μm or more and is equal to the thickness of the tube wall. An artificial blood vessel characterized by being 2/3 or less. 2. The artificial blood vessel according to claim 1, wherein the tube wall is made of polyurethane. 3. The artificial blood vessel according to claim 1, wherein the tube wall is made of polyurethane urea. 4. The open pore structure of the outermost layer has an average diameter of 10 to 150
μm spherical, oval, or/and modified shapes thereof, with holes opening to the outer surface of the tube wall with an average diameter of 10 to 150 μm, and adjacent holes having a diameter of at least 5 μm communicating with each other. The artificial blood vessel according to any one of claims 1 to 3, which comprises a hole.
JP62104455A 1987-04-30 1987-04-30 Artificial blood vessel Pending JPS63270047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104455A JPS63270047A (en) 1987-04-30 1987-04-30 Artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104455A JPS63270047A (en) 1987-04-30 1987-04-30 Artificial blood vessel

Publications (1)

Publication Number Publication Date
JPS63270047A true JPS63270047A (en) 1988-11-08

Family

ID=14381088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104455A Pending JPS63270047A (en) 1987-04-30 1987-04-30 Artificial blood vessel

Country Status (1)

Country Link
JP (1) JPS63270047A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602257A (en) * 1983-06-20 1985-01-08 鐘淵化学工業株式会社 New artificial blood vessel
JPS60188164A (en) * 1984-03-07 1985-09-25 鐘淵化学工業株式会社 Artifical vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602257A (en) * 1983-06-20 1985-01-08 鐘淵化学工業株式会社 New artificial blood vessel
JPS60188164A (en) * 1984-03-07 1985-09-25 鐘淵化学工業株式会社 Artifical vessel

Similar Documents

Publication Publication Date Title
EP0157178B1 (en) Artificial vessel and process for preparing the same
US4905367A (en) Manufacture of stretchable porous sutures
JP6599850B2 (en) Vascular graft
US20050107868A1 (en) Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
JPS6317458B2 (en)
JPH04242642A (en) Hybrid artificial blood vessel and preparation thereof
Kim et al. Mechanical properties of compliant double layered poly (L-lactide-co-ɛ-caprolactone) vascular graft
Yan et al. A new polyurethane/heparin vascular graft for small-caliber vein repair
US4986832A (en) Artificial blood vessel and process for preparing it
WO2000035372A2 (en) Multiple matrices for engineered tissues
JPS63270047A (en) Artificial blood vessel
CA1298938C (en) Vascular prosthesis
Ota Towards an ideal polyurethane graft for hemodialysis
JPH0581258B2 (en)
JP3591868B2 (en) Artificial prosthesis
Eberhart et al. Cardiovascular materials
CA2484012C (en) Scaffold for tissue engineering, artificial blood vessel, cuff, and biological implant covering member
EP0495127A1 (en) Artificial blood vessel and production thereof
JPS63270048A (en) Artificial blood vessel
JPS61185271A (en) Artificial blood vessel of which compliance and stress-strain curve are similar to live blood vessel and itsproduction
CN114832162B (en) Preparation method of double-layer small-caliber artificial blood vessel based on compliance matching
JPS63305860A (en) Artificial blood vessel
JPH0262264B2 (en)
JPH0450013B2 (en)
JP2587066B2 (en) Artificial blood vessel