JPH058122A - Wire electric discharge machining apparatus - Google Patents
Wire electric discharge machining apparatusInfo
- Publication number
- JPH058122A JPH058122A JP3160332A JP16033291A JPH058122A JP H058122 A JPH058122 A JP H058122A JP 3160332 A JP3160332 A JP 3160332A JP 16033291 A JP16033291 A JP 16033291A JP H058122 A JPH058122 A JP H058122A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- current
- average
- voltage
- machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/04—Apparatus for supplying current to working gap; Electric circuits specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はワイヤ放電加工装置の高
精度化に関するものである。特に電極と被加工物間に発
生する放電反発力と静電吸引力とを相殺するように制御
することにより、ワイヤ放電加工に特有な被加工物の加
工形状が太鼓形状になる現象の発生を防止するワイヤ放
電加工装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly accurate wire electric discharge machine. In particular, by controlling so as to cancel the electrostatic repulsion force and the electrostatic repulsion force generated between the electrode and the work piece, the phenomenon that the work shape of the work piece that is peculiar to wire electric discharge machining becomes a drum shape occurs. The present invention relates to a wire electric discharge machine for preventing the wire discharge.
【0002】[0002]
【従来の技術】従来のワイヤ放電加工装置では、特に仕
上加工において被加工物の加工形状が太鼓状となる現象
が発生し、加工精度の劣化を招いていた。これは、ワイ
ヤ放電加工に特有の現象であり、特にプレス金型加工に
おいてはきわめて大きな問題であった。太鼓形状には図
9(a)に示すような凹形状と、図9(b)に示すよう
な凸形状があり、加工条件、加工板厚などにより、太鼓
形状および湾曲量は様々に変化することが経験的に知ら
れている。2. Description of the Related Art In a conventional wire electric discharge machining apparatus, a phenomenon occurs in which a machined shape of a work piece becomes a drum shape, especially in finishing, which deteriorates machining accuracy. This is a phenomenon peculiar to wire electric discharge machining, and was a very serious problem particularly in press die machining. The drum shape has a concave shape as shown in FIG. 9A and a convex shape as shown in FIG. 9B. The drum shape and the amount of curvature are variously changed depending on the processing conditions, the processed plate thickness and the like. It is empirically known.
【0003】以下、従来のワイヤ放電加工装置の構成及
び動作を図に基づいて説明する。図8は従来のワイヤ放
電加工装置の構成を示す図である。図において、1は放
電加工の電極を構成するためのワイヤ電極、2は放電加
工が行われる被加工物、3はワイヤ電極を供給するため
のワイヤボビン、4a、4bはそれぞれ上部・下部から
放電間隙部分に加工液を供給する加工液ノズル、5はワ
イヤ電極1に給電を行う給電子、6はワイヤ電極1に張
力を与えるテンションローラー、7は加工済みワイヤ電
極回収箱、8はワイヤ電極と被工作物との間の放電電極
間に流れる加工電流を供給する加工電源、9は放電電極
間の平均電圧を検出する電圧検出回路、10は電圧検出
回路の結果から加工送り速度を計算し加工送り制御を行
う制御装置、11は駆動モータを駆動するためのサーボ
アンプ、12は図示されないXYクロステーブルに固定
された被加工物2をXY方向に移動させる駆動モータで
ある。The structure and operation of a conventional wire electric discharge machine will be described below with reference to the drawings. FIG. 8 is a diagram showing a configuration of a conventional wire electric discharge machine. In the figure, 1 is a wire electrode for forming an electrode for electric discharge machining, 2 is a workpiece to be electric discharge machined, 3 is a wire bobbin for supplying a wire electrode, 4a and 4b are discharge gaps from the upper and lower portions, respectively. A machining liquid nozzle for supplying a machining liquid to a portion, 5 is an electric power feeder for supplying electric power to the wire electrode 1, 6 is a tension roller for applying a tension to the wire electrode 1, 7 is a processed wire electrode collection box, 8 is a wire electrode and a cover. A machining power supply that supplies a machining current that flows between the discharge electrodes and the workpiece, 9 is a voltage detection circuit that detects the average voltage between the discharge electrodes, and 10 is a machining feed speed calculated from the result of the voltage detection circuit. A control device for controlling, 11 is a servo amplifier for driving the drive motor, 12 is a drive motor for moving the workpiece 2 fixed on an XY cross table (not shown) in the XY directions. A.
【0004】次に、動作について説明する。図8におい
てワイヤ電極1はテンションローラ6により張力を付加
された状態で走行し、給電子5を通じて加工電源8より
ワイヤ電極1に加工電流が供給される。被加工物2とワ
イヤ電極1との間は放電間隙を形成する。この放電間隙
には、上下方向より加工液ノズル4a、4bを通じて加
工液である純水が供給され、放電間隙に放電を発生さ
せ、被加工物の加工が行われる。加工送りの制御におい
ては、放電電極に接続された電圧検出回路9により加工
中の平均電圧Vが検出され、この検出値が予め設定され
た設定電圧と等しくなるよう制御される。Next, the operation will be described. In FIG. 8, the wire electrode 1 runs in a state where tension is applied by the tension roller 6, and a machining current is supplied to the wire electrode 1 from the machining power source 8 through the power supply 5. A discharge gap is formed between the workpiece 2 and the wire electrode 1. Pure water, which is a working liquid, is supplied to the discharge gap from above and below through the working liquid nozzles 4a and 4b, and an electric discharge is generated in the discharge gap to process the workpiece. In the control of the machining feed, the average voltage V during machining is detected by the voltage detection circuit 9 connected to the discharge electrode, and the detected value is controlled to be equal to a preset voltage.
【0005】すなわち、放電間隙における平均電圧が設
定電圧値よりも高い場合には放電間隙が大きくなった状
態であるため、制御装置10は駆動モータ12が加工送
り速度を増大させるようにサーボアンプ11に指令を出
す。この指令により制御装置10は駆動モータ12の加
工送り速度を増大させ、放電間隙を狭くするように制御
する。逆に、放電間隙における平均電圧が設定電圧値よ
りも低い場合には、放電間隙が小さくなった状態である
ため、制御装置10は駆動モータ12が加工送り速度を
低下させるようにサーボアンプ11に指令を出す。この
指令により制御装置10は駆動モータ12の加工送り速
度を減少させ、放電間隙を広くするように制御する。す
なわち、制御装置10は常に放電間隙が設定値になるよ
うに制御する。図11は放電電圧と放電電流との関係を
示す図である。図に示すように、放電が開始される前の
時間t1(無負荷時間)の間高電圧が印加され、その後
放電間隙の絶縁が破壊すると、時間t2の間放電電流が
流れ、その後時間t3(オフタイム)の間放電は休止す
る。放電電圧の周期TはT=t1+t2+t3の関係にあ
る。なお、時間(t1+t2)は放電電圧が印加されてい
る時間(オンタイム)である。この図において、平均電
圧Vは電圧波形を時間的に平均した値である。That is, when the average voltage in the discharge gap is higher than the set voltage value, the discharge gap is in a large state. Therefore, the control device 10 causes the drive motor 12 to increase the machining feed speed. Issue a command to. In response to this command, the controller 10 increases the machining feed speed of the drive motor 12 and controls the discharge gap to be narrowed. On the contrary, when the average voltage in the discharge gap is lower than the set voltage value, the discharge gap is in a small state, and therefore the control device 10 controls the servo amplifier 11 so that the drive motor 12 reduces the machining feed speed. Issue a command. In response to this command, the control device 10 reduces the machining feed rate of the drive motor 12 to control the discharge gap to be wide. That is, the control device 10 always controls the discharge gap to be the set value. FIG. 11 is a diagram showing the relationship between the discharge voltage and the discharge current. As shown in the figure, when a high voltage is applied for a time t 1 (no load time) before the discharge is started, and then the insulation in the discharge gap is broken, a discharge current flows for a time t 2 and then The discharge is stopped for t 3 (off time). The cycle T of the discharge voltage has a relationship of T = t 1 + t 2 + t 3 . The time (t 1 + t 2 ) is the time (on-time) during which the discharge voltage is applied. In this figure, the average voltage V is a value obtained by averaging the voltage waveform over time.
【0006】一般に、荒加工(ファーストカット)を行
った後に、高精度の仕上加工(セカンドカット)が行わ
れる。その際、前述のように仕上加工後の被加工物には
ワイヤ放電加工特有な太鼓形状の誤差が発生する。図1
0は仕上加工における典型的な太鼓形状の実測結果を示
す。図の直線は誤差がない場合の予測値、折線は実測値
である。このように、被加工物の中央部において加工誤
差が大きくなることが分かる。太鼓形状の原因について
は、従来、ワイヤ電極の振動(1次モード)によるとい
う考え方と、通常の加工では被加工物表面の上下から加
工液を噴出しているので放電間隙の中央部分が放電によ
りイオン化して比抵抗が低下し、その結果太鼓形状が発
生するという考え方があったが、太鼓形状の発生を抑制
する有効な方法はなかった。一方、荒加工中に放電反発
力によってワイヤ電極がたわみ、加工精度が劣化する問
題に対しては、特公平3−29531に示されているよ
うに、ワイヤ電極と工作物間に静電吸引力または電磁吸
引力を意図的に発生させ、放電反発力を相殺する方法が
提案されているが、加工用電力供給回路とは別に補償信
号回路を設ける必要があった。[0006] Generally, after roughing (first cutting), highly precise finishing (second cutting) is performed. At that time, as described above, a drum-shaped error peculiar to wire electric discharge machining occurs in the workpiece after finishing. Figure 1
0 shows the measurement result of a typical drum shape in the finishing process. The straight line in the figure is the predicted value when there is no error, and the broken line is the measured value. As described above, it can be seen that the machining error increases in the central portion of the workpiece. Regarding the cause of the drum shape, the conventional idea is that it is due to the vibration of the wire electrode (first-order mode), and the machining liquid is jetted from above and below the surface of the workpiece in normal machining, so the central part of the discharge gap is Although there was an idea that the specific resistance was lowered by ionization and the drum shape was generated as a result, there was no effective method for suppressing the generation of the drum shape. On the other hand, as to the problem that the wire electrode is bent by the electric discharge repulsive force during the rough machining and the machining accuracy is deteriorated, as shown in JP-B-3-29531, the electrostatic attraction force is generated between the wire electrode and the workpiece. Alternatively, a method of intentionally generating an electromagnetic attraction force to cancel the discharge repulsion force has been proposed, but it was necessary to provide a compensation signal circuit separately from the machining power supply circuit.
【0007】[0007]
【発明が解決しようとする課題】従来のワイヤ放電加工
装置では、特に仕上加工において加工後の被加工物の切
断面が太鼓形状となり、加工精度の劣化を招いていた
が、この太鼓形状の発生を防止する有効な方法がなかっ
た。さらに、前述のように、太鼓形状は加工条件、加工
板厚などにより、形状および湾曲量が様々に変化する。
したがって、加工中に被加工物の板厚が変化するような
場合には、加工条件が変化するために太鼓形状が発生し
やすく、真直精度を維持することはきわめて困難であっ
た。また、特公平3−29513のように、補償信号を
電極の上下間、または電極と被加工物間に加えることに
より、荒加工におけるワイヤ電極のたわみを軽減するこ
とはできたが、静電力、電磁力などの吸引力を増大させ
る方向に制御することはできても、減少する方向に制御
することができないため、仕上加工において発生する凹
状の太鼓形状を軽減することは不可能であった。In the conventional wire electric discharge machining apparatus, the cutting surface of the workpiece after machining has a drum shape especially in finishing, which deteriorates the machining accuracy. However, this drum shape is generated. There was no effective way to prevent. Further, as described above, the drum shape has various shapes and bending amounts depending on the processing conditions, the processed plate thickness, and the like.
Therefore, when the plate thickness of the work piece changes during processing, the drum shape is likely to occur due to the change in processing conditions, and it has been extremely difficult to maintain straightness accuracy. In addition, as in Japanese Patent Publication No. 3-29513, by adding a compensation signal between the upper and lower sides of the electrode or between the electrode and the workpiece, the deflection of the wire electrode during rough machining could be reduced, but the electrostatic force, Although the suction force such as electromagnetic force can be controlled in the direction of increasing it, but it cannot be controlled in the direction of decreasing it, it is impossible to reduce the concave drum shape generated in the finishing process.
【0008】本発明はこうした従来の問題点を解決する
ためになされたもので、ワイヤ電極・被加工物間で放電
により発生する反発力と静電力による吸引力とが相殺す
るように制御することにより、ワイヤ放電加工に特有な
太鼓形状の発生を防止するワイヤ放電加工装置を提供す
ることを目的とする。The present invention has been made in order to solve such a conventional problem, and controls so that the repulsive force generated by electric discharge between the wire electrode and the workpiece and the attractive force due to the electrostatic force cancel each other out. Therefore, it is an object of the present invention to provide a wire electric discharge machine that prevents the occurrence of a drum shape that is peculiar to wire electric discharge machining.
【0009】[0009]
【課題を解決するための手段】本発明は、ワイヤ電極と
被加工物とで形成される放電間隙で放電を行うことによ
り、被加工物を加工するワイヤ放電加工装置において、
放電電流を供給する加工電源と、放電電極間の平均電圧
を検出する電圧検出回路と、放電電流の平均電流を検出
する電流検出回路と、放電電流または放電電圧を制御す
る制御装置とを備え、この制御装置は、電圧検出回路に
よって検出された平均電圧値が一定となるように加工送
り速度を制御する場合は、加工送り速度の増大に従って
電流検出回路の平均電流を低下させ、加工送り速度の減
少に従って電流検出回路の平均電流を増大させ、電流検
出回路によって検出された平均電流値が一定となるよう
に加工送り速度を制御する場合は、加工送り速度の増大
に伴って電圧検出回路の平均電圧を増加させ、加工送り
速度の減少に伴って電圧検出回路の平均電圧を低下させ
るように構成される。DISCLOSURE OF THE INVENTION The present invention provides a wire electric discharge machine for processing a workpiece by discharging in a discharge gap formed by a wire electrode and the workpiece.
A processing power supply that supplies a discharge current, a voltage detection circuit that detects an average voltage between discharge electrodes, a current detection circuit that detects an average current of the discharge current, and a control device that controls the discharge current or the discharge voltage, When controlling the machining feed speed so that the average voltage value detected by the voltage detection circuit becomes constant, this control device decreases the average current of the current detection circuit as the machining feed speed increases, and the machining feed speed When the machining feed speed is controlled so that the average current of the current detection circuit increases according to the decrease and the average current value detected by the current detection circuit becomes constant, the average of the voltage detection circuit increases as the machining feed speed increases. The voltage is increased and the average voltage of the voltage detection circuit is decreased as the machining feed rate is decreased.
【0010】[0010]
【作用】本発明に係るワイヤ放電加工装置は、電圧検出
回路によって検出された平均電圧値が一定となるように
加工送り速度を制御する場合は、加工送り速度の増大に
従って電流検出回路の平均電流を低下させ、加工送り速
度の減少に従って電流検出回路の平均電流を増大させる
ように制御装置を制御し、電流検出回路によって検出さ
れた平均電流値が一定となるように加工送り速度を制御
する場合は、加工送り速度の増大に伴って電圧検出回路
の平均電圧を増加させ、加工送り速度の減少に伴って電
圧検出回路の平均電圧を低下させるように制御装置を制
御することにより、放電により発生する放電反発力と電
極・被加工物間の静電吸引力とを相殺させて加工中のワ
イヤ電極を真直状態に保ち、太鼓形状の発生を抑制す
る。In the wire electric discharge machining apparatus according to the present invention, when the machining feed speed is controlled so that the average voltage value detected by the voltage detection circuit becomes constant, the average current of the current detection circuit increases as the machining feed speed increases. To control the control device so as to increase the average current of the current detection circuit as the machining feed speed decreases, and control the machining feed speed so that the average current value detected by the current detection circuit becomes constant. Is generated by discharge by controlling the control device so that the average voltage of the voltage detection circuit increases as the machining feed speed increases, and the average voltage of the voltage detection circuit decreases as the machining feed speed decreases. The discharge repulsive force generated and the electrostatic attraction force between the electrode and the work piece are canceled to keep the wire electrode in a straight state during processing and suppress the generation of drum shape.
【0011】[0011]
【実施例】実施例の説明に先立ち、太鼓形状の発生原因
について考察してみる。前述のように、従来、太鼓形状
の発生原因は、ワイヤ電極の振動(1次モード)による
という考え方と、放電間隙の中央部分の比抵抗低下によ
るという考え方があった。以下、従来の説の疑問点を列
挙してみると、
(1)ワイヤの振動説の場合
(a)実測した結果、放電間隙が広い低速加工において
はワイヤ電極の低次モードの振動が観測されるが、安定
した仕上加工においてはワイヤの振動はランダムとな
り、振幅もかなり少ない。
(b)比較的高速の仕上加工において発生する凸状の逆
太鼓形状の発生プロセスを説明しにくい。
(2)比抵抗説の場合
(a)比抵抗の低下を無視できる灯油を加工液としても
太鼓形状は発生する。
(b)電解作用の発生しない高周波交流電源での加工に
おいても太鼓形状は発生する。したがって、太鼓形状の
発生原因として従来の考え方では説明が付かないような
状況が生じている。 なお、 最近の研究 (ドイツ技術学会
誌VDI−Zeitschrift、1976年、11
8巻、頁13−17)では、放電加工中の電極に作用す
る力について、電解、電磁界、火花放電、誘電
体気泡、が存在すると指摘しており、さらに最近の筆者
の研究では、ワイヤ電極と被加工物間に発生する静電力
が、太鼓形状の発生に大きく寄与しているという結果が
得られている。以下、その点について説明する。EXAMPLES Prior to the description of the examples, the cause of the drum shape will be considered. As described above, conventionally, there is an idea that the cause of the drum shape is vibration of the wire electrode (first mode) and a decrease in the specific resistance of the central portion of the discharge gap. The following is a list of questions in the conventional theory. (1) In the case of the wire vibration theory (a) As a result of measurement, vibration of the wire electrode in the lower order mode was observed in low-speed machining with a wide discharge gap. However, in stable finishing, the wire vibration is random and the amplitude is quite small. (B) It is difficult to explain the generation process of the convex inverted drum shape that occurs in finishing processing at a relatively high speed. (2) In the case of the specific resistance theory (a) Even if kerosene is used as the working fluid, the drum shape can be ignored. (B) The drum shape is generated even in processing with a high-frequency AC power supply in which electrolysis is not generated. Therefore, as a cause of the drum shape, there is a situation that cannot be explained by the conventional way of thinking. Recent research (VDI-Zeitschrift, German Institute of Technology, 1976, 11
Vol. 8, pp. 13-17) point out that there are electrolysis, electromagnetic field, spark discharge, and dielectric bubbles in the force acting on the electrode during electric discharge machining. It has been obtained that the electrostatic force generated between the electrode and the workpiece largely contributes to the drum shape. Hereinafter, that point will be described.
【0012】図2は、平均電圧と太鼓形状の最大湾曲量
との関係を図示したものである。図より平均電圧と太鼓
形状の湾曲量との間にほぼ線形関係が存在しているのが
わかる。特に、平均電流Iの小さい加工(A)において
は平均電圧Vが大きくなると凹型誤差が大きくなってい
る。この太鼓状の湾曲はワイヤ電極と被加工物間に作用
する静電吸引力によるものと考えられる。まず、この静
電吸引力について考察する。図3は静電吸引力を計算す
るためのモデル図である。図3において放電間隙での単
位長さ当たり静電吸引力f1は電気映像法により、
f1=(1/2)πε0V2 / 2(r+e)・{log〔2(r+e)/r〕}
・・・(1)
ただし、ε0:誘電率、V:放電電極間電圧、r:ワイ
ヤ電極半径、e:放電間隙FIG. 2 is a graph showing the relationship between the average voltage and the maximum bending amount of the drum shape. From the figure, it can be seen that there is a substantially linear relationship between the average voltage and the amount of drum-shaped curvature. Particularly, in the processing (A) in which the average current I is small, the concave error increases as the average voltage V increases. This drum-shaped curve is considered to be due to the electrostatic attraction force acting between the wire electrode and the workpiece. First, the electrostatic attraction force will be considered. FIG. 3 is a model diagram for calculating the electrostatic attraction force. Per unit length electrostatic attraction f 1 in the discharge gap by an electrical imaging in FIG. 3, f 1 = (1/2) πε 0 V 2/2 (r + e) · {log [2 (r + e) / r ] (1) where ε 0 : dielectric constant, V: voltage between discharge electrodes, r: radius of wire electrode, e: discharge gap
【0013】図4はワイヤに外力が働くときのワイヤの
たわみδを計算するためのモデル図である。一般に、図
4のように外力f(単位長さ当りの力)が働くときのワ
イヤのたわみδは、
δ= f・h2/8T ・・・(2)
ただし、h:被加工物の板厚、T:ワイヤ張力FIG. 4 is a model diagram for calculating the deflection δ of the wire when an external force acts on the wire. Generally, as shown in FIG. 4, when the external force f (force per unit length) acts, the wire deflection δ is δ = f · h 2 / 8T (2) where h: plate of workpiece Thickness, T: Wire tension
【0014】(1)式のf1を(2)式のfに代入して
計算した静電吸引力f1によるワイヤ電極のたわみ量δ1
を図2に点線で示す。図より、白丸、黒丸、白四角及び
これらを実線で結んだものは平均電流を変化させたとき
の太鼓量の実測値を示す。平均電流Iの小さい加工にお
ける太鼓量(A)は計算値のワイヤたわみ量δ1(点
線)にほぼ一致していることがわかる。また、平均電流
Iが大きくなるにつれ(A→B→C)、直線はマイナス
方向(凹型の窪みが減少する方向)にシフトする。しか
し、直線の傾きは一定であり、計算による静電吸引力
(点線)の傾きに等しい。これは、ワイヤ電極に静電吸
引力f1と逆方向の放電反発力f2が作用しており、平均
電流Iが大きくなるにつれ放電反発力f2が大きくなっ
て静電吸引力f1を打ち消すことによるものと考えられ
る。The deflection amount δ 1 of the wire electrode due to the electrostatic attraction force f 1 calculated by substituting f 1 in the equation (1) into f in the equation (2)
Is shown by the dotted line in FIG. From the figure, the white circles, black circles, white squares, and the solid line connecting these indicate the measured values of the drum volume when the average current was changed. It can be seen that the drum amount (A) in the processing with a small average current I substantially matches the calculated wire deflection amount δ 1 (dotted line). Further, as the average current I increases (A → B → C), the straight line shifts in the negative direction (the direction in which the concave depression decreases). However, the slope of the straight line is constant and equal to the slope of the electrostatic attraction force (dotted line) calculated. This is an electrostatic attraction force f 1 to the wire electrode and acts opposite direction of the discharge repulsive force f 2, the electrostatic attraction force f 1 increases the discharge repulsive force f 2 as the average current I increases It is thought to be due to the cancellation.
【0015】上記放電反発力f2は平均電流Iを大きく
すれば(A→B→C)、放電反発力f2は大きくなり静
電吸引力f1を打ち消すように働く。このことから、放
電反発力f2は平均電流Iにほぼ比例していると考える
ことができる。すなわち放電反発力f2は次のように表
すことができる。
f2=kI ・・・(3)
ここでkは比例定数である。すなわち、仕上加工におい
てワイヤ電極には、放電反発力f2と、静電誘導による
吸引力f1という逆方向の力が作用し、この2つの力の
合成によりワイヤ電極がたわみ、太鼓形状が決定されて
いることが推測される。[0015] the discharge repulsive force f 2 is by increasing the average current I (A → B → C) , the discharge repulsive force f 2 acts made to cancel the electrostatic attraction force f 1 increases. From this, it can be considered that the discharge repulsion force f 2 is almost proportional to the average current I. That is, the discharge repulsion force f 2 can be expressed as follows. f 2 = kI (3) Here, k is a proportional constant. That is, in the finishing process, the wire electrode is subjected to the opposite force of the discharge repulsion force f 2 and the electrostatic attraction force f 1, and the wire electrode is deflected by the combination of these two forces to determine the drum shape. It is speculated that it has been done.
【0016】以上の推測をもとに様々な条件にて実験を
重ねた結果、上述したように、加工中のワイヤ電極に
は、ほぼ平均電圧に比例した静電吸引力f1と、平均電
流にほぼ比例した放電反発力f2が働き、これらの2つ
の力の合成力によりワイヤ電極がたわみ、太鼓形状が形
成されることが明らかになった。このことから、何らか
の方法で静電吸引力f1と放電反発力f2とを相殺するよ
う制御することにより、ワイヤ電極の変形を防止し、太
鼓形状の発生を抑制することが可能であることが判明し
た。As a result of repeated experiments under various conditions based on the above assumptions, as described above, the wire electrode being processed has an electrostatic attraction force f 1 proportional to the average voltage and an average current. It has been revealed that the discharge repulsive force f 2 that is almost proportional to the force acts, and the wire electrode is deflected by the combined force of these two forces to form a drum shape. From this, it is possible to prevent the deformation of the wire electrode and suppress the generation of the drum shape by controlling the electrostatic attraction force f 1 and the discharge repulsion force f 2 by some method. There was found.
【0017】以下、本発明の一実施例を図に基づき説明
する。図1は本発明における一実施例を示したものであ
り、1はワイヤ電極、2は被加工物、3はワイヤボビ
ン、4a、4bはそれぞれ上部・下部の加工液ノズル、
5はワイヤ電極1に給電を行う給電子、6はワイヤ電極
1に張力を与えるテンションローラー、7は加工済みワ
イヤ電極回収箱、8は放電間隙に放電電流を供給する加
工電源、9は放電電極間の平均電圧を検出する電圧検出
回路、13は放電電流を検出するするための電流プロー
ブ、14は放電電極間の平均電流を検出する電流検出回
路、10は電圧検出回路の結果から加工送り速度を計算
し加工送り制御を行うとともに、加工送り速度に反比例
して平均加工電流が変化するよう加工パルスのオフタイ
ム,パルス周期等を制御する制御装置、11サーボアン
プ、12は図示されないXYクロステーブルに固定され
た被加工物2をXY方向に移動させる駆動モータであ
る。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which 1 is a wire electrode, 2 is a workpiece, 3 is a wire bobbin, 4a and 4b are upper and lower working fluid nozzles, respectively.
Reference numeral 5 is a power supply for supplying power to the wire electrode 1, 6 is a tension roller for applying tension to the wire electrode 1, 7 is a processed wire electrode collection box, 8 is a processing power supply for supplying a discharge current to the discharge gap, and 9 is a discharge electrode. Voltage detection circuit for detecting the average voltage between the electrodes, 13 a current probe for detecting the discharge current, 14 a current detection circuit for detecting the average current between the discharge electrodes, 10 a machining feed rate from the result of the voltage detection circuit To control the machining feed rate and control the off time of the machining pulse, the pulse cycle, etc. so that the average machining current changes in inverse proportion to the machining feed rate, 11 servo amplifiers, 12 are not shown XY cross table It is a drive motor that moves the workpiece 2 fixed to the XY direction.
【0018】次に、動作について説明する。従来例と同
様に、ワイヤ電極1はテンションローラ6により張力を
付加された状態で走行され、給電子5を通じて加工電源
8よりワイヤ電極1に放電電流が供給される。被加工物
2とワイヤ電極1により形成される放電間隙には、上下
方向より加工液ノズル4a、4bを通じて加工液である
純水が供給され、放電間隙に放電を発生させることによ
り被加工物の加工が行われる。Next, the operation will be described. Similar to the conventional example, the wire electrode 1 travels in a state where tension is applied by the tension roller 6, and a discharge current is supplied to the wire electrode 1 from the machining power source 8 through the power supply 5. Pure water, which is a working liquid, is supplied to the discharge gap formed by the work piece 2 and the wire electrode 1 from above and below through the working liquid nozzles 4a and 4b, and an electric discharge is generated in the discharge gap to generate the work piece. Processing is performed.
【0019】(1)平均電圧が一定に制御されている場
合
加工送りの制御は、放電電極間に接続された電圧検出回
路9により加工中の平均電圧が検出され、この検出値が
予め設定された設定電圧と等しくなるよう制御される。
すなわち、放電電極間における平均電圧が設定電圧値よ
りも高い場合には放電間隙が大きくなった状態を示すた
め、制御装置10はサーボアンプ11に指令を出し、駆
動モータ12が加工送り速度を増大させる。逆に、放電
電極間における平均電圧が設定電圧値よりも低い場合に
は、放電間隙が小さくなった状態を示すため、制御装置
10はサーボアンプ11に指令を出し、駆動モータ12
が加工送り速度を低下させる。図12は平均電圧が一定
に制御されている場合の放電電圧波形と放電電流波形と
の関係を示す図である。図に示すように、放電が開始さ
れる前の時間t1(無負荷時間)の間高電圧が印加さ
れ、その後放電間隙の絶縁が破壊すると、時間t2の間
放電電流が流れ、その後時間t3(オフタイム)の間放
電は休止する。放電電圧の周期TはT=t1+t2+t3
の関係にある。なお、時間(t1+t2)は放電電圧が印
加されている時間(オンタイム)である。この図におい
て、平均電圧Vは電圧波形を時間的に平均した値であ
る。放電電圧の平均値を求める方法は公知の技術であ
り、パルスのオンタイムとオフタイムの比率を変化させ
る方法、パルス周期を変化させる方法、パルスの振幅を
変化させる方法等がある。図においては、パルスの周期
及びオンタイムとオフタイムの比率を変化させることに
よって平均電圧が一定になるように制御している。放電
電圧波形の周期を短くすることによって平均電流が大き
くなっていることが理解できるであろう。本発明におい
ては電圧検出回路9は放電電圧の平均値を検出するのみ
でなく、放電電圧の積分値を検出し、この積分値を予め
設定された設定値と等しくなるよう制御するようにする
こともできる。(1) When the average voltage is controlled to be constant In controlling the machining feed, the average voltage during machining is detected by the voltage detection circuit 9 connected between the discharge electrodes, and this detected value is set in advance. Is controlled to be equal to the set voltage.
That is, when the average voltage between the discharge electrodes is higher than the set voltage value, the discharge gap becomes large. Therefore, the control device 10 issues a command to the servo amplifier 11, and the drive motor 12 increases the machining feed speed. Let On the contrary, when the average voltage between the discharge electrodes is lower than the set voltage value, the discharge gap becomes small, so the control device 10 issues a command to the servo amplifier 11 to drive the drive motor 12.
Reduces the machining feed rate. FIG. 12 is a diagram showing the relationship between the discharge voltage waveform and the discharge current waveform when the average voltage is controlled to be constant. As shown in the figure, when a high voltage is applied for a time t 1 (no load time) before the discharge is started, and then the insulation in the discharge gap is broken, a discharge current flows for a time t 2 and then The discharge is stopped for t 3 (off time). The cycle T of the discharge voltage is T = t 1 + t 2 + t 3
Have a relationship. The time (t 1 + t 2 ) is the time (on-time) during which the discharge voltage is applied. In this figure, the average voltage V is a value obtained by averaging the voltage waveform over time. The method for obtaining the average value of the discharge voltage is a known technique, and there are a method of changing the ratio of the on time and the off time of the pulse, a method of changing the pulse period, a method of changing the pulse amplitude, and the like. In the figure, the average voltage is controlled to be constant by changing the pulse period and the ratio of on-time and off-time. It can be understood that the average current is increased by shortening the cycle of the discharge voltage waveform. In the present invention, the voltage detection circuit 9 not only detects the average value of the discharge voltage, but also detects the integrated value of the discharge voltage and controls the integrated value to be equal to a preset value. You can also
【0020】(2)平均電流が一定に制御されている場
合
加工送りの制御は、放電電極間に接続された電流検出回
路14により加工中の平均電流が検出され、この検出値
が予め設定された設定電流と等しくなるよう制御され
る。すなわち、放電電極間における平均電流が設定電流
値よりも低い場合には放電間隙が大きくなって放電発生
頻度(放電周波数)が低下した状態を示すため、制御装
置10はサーボアンプ11に指令を出し、駆動モータ1
2が加工送り速度を増大させる。逆に、放電電極間にお
ける平均電流が設定電流値よりも高い場合には、放電間
隙が小さくなって放電発生頻度が増加した状態を示すた
め、制御装置10はサーボアンプ11に指令を出し、駆
動モータ12が加工送り速度を低下させる。図13は平
均電流が一定に制御されている場合の放電電流波形と放
電電圧波形との関係を示す図である。図に示すように、
パルス周期を一定にすることによって放電電流の平均値
を一定にすることができる。この場合に、放電電圧の平
均値を変化させるためには無負荷時間t1の時間を長く
することによって達成できる。図において、無負荷時間
t1をt1’と長くし、オフタイムt3をt3’と短くする
ことによって平均電圧を上昇できることが容易に理解で
きるであろう。本発明においては電流検出回路14は放
電電流の平均値を検出するのみでなく、放電電流の積分
値を検出し、この積分値を予め設定された設定値と等し
くなるよう制御するようにすることもできる。(2) When the average current is controlled to be constant In controlling the machining feed, the average current during machining is detected by the current detection circuit 14 connected between the discharge electrodes, and this detected value is preset. The current is controlled to be equal to the set current. That is, when the average current between the discharge electrodes is lower than the set current value, the discharge gap becomes large and the discharge occurrence frequency (discharge frequency) is lowered. Therefore, the controller 10 issues a command to the servo amplifier 11. , Drive motor 1
2 increases the machining feed rate. On the contrary, when the average current between the discharge electrodes is higher than the set current value, the discharge gap becomes small and the frequency of discharge occurrence increases, so the controller 10 issues a command to the servo amplifier 11 to drive the servo amplifier 11. The motor 12 reduces the machining feed rate. FIG. 13 is a diagram showing the relationship between the discharge current waveform and the discharge voltage waveform when the average current is controlled to be constant. As shown in the figure,
By making the pulse period constant, the average value of the discharge current can be made constant. In this case, in order to change the average value of the discharge voltage, it can be achieved by lengthening the no-load time t 1 . In the figure, it can be easily understood that the average voltage can be increased by increasing the no-load time t 1 to t 1 ′ and shortening the off time t 3 to t 3 ′. In the present invention, the current detection circuit 14 not only detects the average value of the discharge current, but also detects the integrated value of the discharge current and controls the integrated value to be equal to a preset set value. You can also
【0021】通常、加工開始条件は太鼓形状が発生しな
い加工条件が選択されているが、加工中に被加工物の板
厚が変化した場合、静電吸引力f1と放電反発力f2のバ
ランスがくずれ、ワイヤ電極のたわみが発生する。たと
えば、加工中に被加工物の板厚が2倍となると、単位長
さ当り静電吸引力f1は変化しないが、(2)式より、
静電吸引力によるたわみ量δ1は板厚の2乗に比例する
ので、
δ1= 〔f1・(2h)2 〕/8T= 4・f1・h2/8T=4δ・・・(3)
と4倍となる。一方、平均電流一定の場合に板厚が2倍
になると単位長さ当りの放電反発力f2は1/2となる
ため、放電反発力f2によるたわみ量δ2は、同様に
(2)式より、
δ2= (1/2)f2・(2h)2/8T= 2f2・h2/8T=2δ ・・・ (4)
よって、
δ1=2δ2
となって、静電吸引力によるたわみδ1は放電反発力に
よるたわみδ2を大きく上回る。その結果、ワイヤ電極
が被加工物の加工面側に吸引されてたわみが発生し、加
工後の被加工物には凹状の太鼓形状が発生する。逆に、
加工中に被加工物の板厚が小さくなると静電吸引力によ
るたわみδ1は減少する。放電反発力が静電吸引力より
も大きくなると加工後の被加工物の形状には凸状の太鼓
形状となる。本実施例は、平均電流または平均電圧を可
変させることにより、放電反発力f2または電吸引力f1
を制御し、静電吸引力と放電反発力のバランスを維持す
るものである。Normally, the processing start condition is selected such that the drum shape does not occur, but when the plate thickness of the workpiece changes during processing, electrostatic attraction force f 1 and discharge repulsion force f 2 The balance is lost and the wire electrode is bent. For example, if the plate thickness of the work piece is doubled during processing, the electrostatic attraction force f 1 per unit length does not change, but from equation (2),
Since the amount of deflection δ 1 due to the electrostatic attraction force is proportional to the square of the plate thickness, δ 1 = [f 1 (2h) 2 ] / 8T = 4 · f 1 · h 2 / 8T = 4δ ... ( 3) and 4 times. Meanwhile, since the thickness in the case of the average current constant discharge repulsive force f 2 per unit length becomes twice is 1/2, the amount of deflection [delta] 2 by the discharge repulsive force f 2 is similarly (2) From the equation, δ 2 = (1/2) f 2 · (2h) 2 / 8T = 2f 2 · h 2 / 8T = 2δ ··· (4) Therefore, δ 1 = 2δ 2 and electrostatic attraction The deflection δ 1 due to the force is much larger than the deflection δ 2 due to the discharge repulsion force. As a result, the wire electrode is attracted to the processed surface side of the work piece to be bent, and the processed work piece has a concave drum shape. vice versa,
When the plate thickness of the work piece becomes smaller during processing, the deflection δ 1 due to the electrostatic attraction force decreases. When the electric discharge repulsive force becomes larger than the electrostatic attraction force, the shape of the processed workpiece becomes a convex drum shape. In this embodiment, by varying the average current or the average voltage, the discharge repulsion force f 2 or the electric attraction force f 1
Is controlled to maintain the balance between the electrostatic attraction force and the discharge repulsion force.
【0022】(1)平均電圧が一定に制御されている場
合
平均電圧が一定に制御されている場合、加工中の被加工
物の板厚の変化は加工送り速度の変化として現れる。す
なわち、例えば先の例のように被加工物の板厚が2倍に
なった場合、平均電圧一定制御では加工速度は1/2倍
となる。制御装置10はこの加工速度の変化から被加工
物の板厚の変化を認識し、平均加工電流が加工送り速度
に反比例するよう、すなわち平均電流が2倍となるま
で、加工パルスのオフタイムを小さくするよう加工電源
8を制御する。ワイヤ電極に対するトータルの放電反発
力は平均電流に比例するため、平均電流が2倍となるこ
とによりトータルの放電反発力も2倍となる。一方、被
加工物の板厚が2倍となっているので単位長さ当りの放
電反発力は変化しないが、たわみ量δ2’は(2)式よ
り、
δ2’= f2・(2h)2/8T = 4・f2・h2/8T =4δ ・・・(5)
よって、 δ1=δ2’となって静電吸引力と放電反発力
によるたわみ量は等しくなり、両者のバランスは維持さ
れることになる。なお、放電電極間に流れる平均電流は
電流プローブ13により電流検出回路14で検出され、
その値は放電電流(加工電流)のオフタイム又はパルス
周期等によって制御される。(1) When the average voltage is controlled to be constant When the average voltage is controlled to be constant, a change in the plate thickness of the workpiece during machining appears as a change in the machining feed rate. That is, for example, when the plate thickness of the work piece is doubled as in the previous example, the processing speed is halved with the constant average voltage control. The control device 10 recognizes the change in the plate thickness of the workpiece from the change in the machining speed, and controls the off time of the machining pulse so that the average machining current is inversely proportional to the machining feed speed, that is, until the average current doubles. The processing power supply 8 is controlled so as to reduce the size. Since the total discharge repulsive force on the wire electrode is proportional to the average current, doubling the average current also doubles the total discharge repulsive force. On the other hand, since the plate thickness of the work piece is doubled, the discharge repulsion force per unit length does not change, but the amount of deflection δ 2 'can be calculated from equation (2) as δ 2 ' = f 2 · (2h ) 2 / 8T = 4 · f 2 · h 2 / 8T = 4δ (5) Therefore, δ 1 = δ 2 'becomes equal to the amount of deflection due to the electrostatic attraction force and the discharge repulsion force. The balance will be maintained. The average current flowing between the discharge electrodes is detected by the current probe 13 by the current detection circuit 14,
The value is controlled by the off time of the discharge current (machining current), the pulse cycle, or the like.
【0023】図5に、平均電圧が一定に制御されている
場合に加工中に板厚が変化した際のワイヤ放電加工装置
各部の動作状態を示す。図5の横軸は時間の経過を示
す。図5において、
(a)は被加工物の板厚の時間的変化を示す。
(b)平均電圧Vが一定になるように制御されている様
子を示す。
(c)は加工送り速度の時間的変化を示す。被加工物の
板厚に反比例するように制御される様子を示す。
(d)は平均電流Iの時間的変化を示す。被加工物の板
厚に比例するように制御される様子を示す。
(e)は静電吸引力によるワイヤのたわみ量δ1の時間
的変化を示す。被加工物の板厚に比例して変化する様子
を示す。
(f)は放電反発力によるワイヤのたわみ量δ2の時間
的変化を示す。被加工物の板厚に比例して変化する様子
を示す。
(g)静電吸引力によるワイヤのたわみ量と放電反発力
によるワイヤのたわみ量とが相殺されワイヤのたわみ量
Δが0となる様子を示す。FIG. 5 shows the operating state of each part of the wire electric discharge machine when the plate thickness changes during machining when the average voltage is controlled to be constant. The horizontal axis of FIG. 5 shows the passage of time. In FIG. 5, (a) shows the temporal change of the plate thickness of the workpiece. (B) A state in which the average voltage V is controlled to be constant is shown. (C) shows the time change of the machining feed rate. It shows how the control is performed so as to be inversely proportional to the plate thickness of the workpiece. (D) shows the time change of the average current I. It shows how control is performed so as to be proportional to the plate thickness of the workpiece. (E) shows the change over time in the amount of wire deflection δ 1 due to the electrostatic attraction force. It shows how it changes in proportion to the plate thickness of the workpiece. (F) shows the time variation of the wire deflection amount δ 2 due to the discharge repulsion force. It shows how it changes in proportion to the plate thickness of the workpiece. (G) A state in which the amount of bending of the wire due to the electrostatic attraction force and the amount of bending of the wire due to the repulsive force of the discharge are canceled out and the amount of bending Δ of the wire becomes 0 is shown.
【0024】(2)平均電流が一定に制御されている場
合
平均電流が一定に制御されている場合、加工中の被加工
物板厚の変化は加工送り速度の変化として現れる。すな
わち、例えば先の例のように加工中に被加工物板厚が2
倍になった場合、平均電流一定制御では加工速度は1/
2倍となる。制御装置10はこの加工速度の変化から被
加工物板厚の変化を認識し、平均電圧が加工送り速度に
比例するよう、すなわち平均電圧が1/2倍となるま
で、加工パルスのオフタイムを大きくするよう加工電源
8を制御する。単位長さ当りの静電吸引力は平均電圧に
ほぼ比例するため(図2の点線)、平均電圧が1/2倍
となることにより単位長さあたりの静電吸引力f1も1
/2倍となるが、被加工物の板厚が2倍となっているの
でたわみ量δ1’は、(2)式より、
δ1’=1/2・f1・(2h)2 /8T=2・f1・h2/8T=2δ・・・(5)
よって、 δ1’=δ2 となって静電吸引力と放電反発
力は等しくなり、両者のバランスは維持されることにな
る。なお、放電電極間の平均電圧は電圧検出回路9によ
り検出され、その値は放電電圧のオフタイム又はパルス
周期等によって制御される。(2) When the average current is controlled to be constant When the average current is controlled to be constant, a change in the work sheet thickness during processing appears as a change in the processing feed rate. That is, for example, as in the previous example, when the workpiece plate thickness is 2
If it doubles, the machining speed will be 1 /
Doubled. The control device 10 recognizes the change in the work sheet thickness from the change in the machining speed, and sets the off time of the machining pulse so that the average voltage is proportional to the machining feed speed, that is, until the average voltage becomes 1/2 times. The processing power source 8 is controlled so as to increase. Since the electrostatic attraction force per unit length is almost proportional to the average voltage (dotted line in FIG. 2), the average voltage becomes 1/2 times, and the electrostatic attraction force f 1 per unit length is also 1.
/ 2 times, but since the plate thickness of the work piece is doubled, the amount of deflection δ 1 'can be calculated from equation (2) as follows: δ 1 ' = 1/2 · f 1 · (2h) 2 / 8T = 2 · f 1 · h 2 / 8T = 2δ (5) Therefore, δ 1 '= δ 2 and electrostatic attraction force and discharge repulsion force become equal, and the balance between both is maintained. become. The average voltage between the discharge electrodes is detected by the voltage detection circuit 9, and its value is controlled by the off time of the discharge voltage or the pulse period.
【0025】図6に、平均電流が一定に制御されている
場合に加工中に板厚が変化した際の動作状態を示す。図
6の横軸は時間の経過を示す。図6において、
(a)は被加工物の板厚の時間的変化を示す。
(b)平均電流Iが一定になるように制御されている様
子を示す。
(c)は加工送り速度の時間的変化を示す。被加工物の
板厚に反比例するように制御される様子を示す。
(d)は平均電圧Vの時間的変化を示す。被加工物の板
厚に比例するように制御される様子を示す。
(e)は静電吸引力によるワイヤのたわみ量δ1の時間
的変化を示す。被加工物の板厚に比例して変化する様子
を示す。
(f)は放電反発力によるワイヤのたわみ量のδ2の時
間的変化を示す。被加工物の板厚に比例して変化する様
子を示す。
(g)静電吸引力によるワイヤのたわみ量δ1と放電反
発力によるワイヤのたわみ量δ2とが相殺されワイヤの
たわみ量Δが0となる様子を示す。
以上説明したような制御を加工中に行うことにより、加
工中に板厚が変化した際の静電吸引力および放電反発力
が相殺されるため、静電吸引力と放電反発力のバランス
が維持され、常に被加工物の加工面が直線状となり高い
真直精度を得ることができる。FIG. 6 shows an operating state when the plate thickness changes during processing when the average current is controlled to be constant. The horizontal axis of FIG. 6 shows the passage of time. In FIG. 6, (a) shows the temporal change of the plate thickness of the workpiece. (B) A state in which the average current I is controlled to be constant is shown. (C) shows the time change of the machining feed rate. It shows how the control is performed so as to be inversely proportional to the plate thickness of the workpiece. (D) shows the time change of the average voltage V. It shows how control is performed so as to be proportional to the plate thickness of the workpiece. (E) shows the change over time in the amount of wire deflection δ 1 due to the electrostatic attraction force. It shows how it changes in proportion to the plate thickness of the workpiece. (F) shows the time variation of δ 2 of the amount of wire deflection caused by the discharge repulsive force. It shows how it changes in proportion to the plate thickness of the workpiece. (G) A state in which the amount of wire deflection δ 1 due to the electrostatic attraction force and the amount of wire deflection δ 2 due to the discharge repulsion force are canceled out and the amount of wire deflection Δ becomes zero. By performing the control described above during machining, the electrostatic attraction force and discharge repulsion force when the plate thickness changes during machining are canceled, so the balance between electrostatic attraction force and discharge repulsion force is maintained. Therefore, the machined surface of the workpiece is always linear, and high straightness accuracy can be obtained.
【0026】さらに、平均電圧が一定に制御されている
場合の実施例においては、コーナー部における形状精度
も大幅に改善される。以下、コーナー仕上加工における
動作について説明する。まず、図7(a)に示すような
アウトコーナー部での加工においては、加工面積が小さ
くなるため、加工速度が増大する。本実施例によれば、
その際、加工電流を減少し、オフタイムを長くするよう
に制御がされるため、アウトコーナーでのコーナーだれ
が低減する。また、図7(b)に示すようなインコーナ
ー部では逆に加工面積が大きくなるため、加工速度が低
下する。本実施例によれば、その際、加工電流を増大
し、オフタイムを短くするように制御がされるため、イ
ンコーナーでのアンダーカット(取り残し)が低減す
る。Further, in the embodiment in which the average voltage is controlled to be constant, the shape accuracy in the corner portion is greatly improved. The operation in corner finishing will be described below. First, in the processing at the out-corner portion as shown in FIG. 7A, the processing area is small, so that the processing speed is increased. According to this embodiment,
At that time, the machining current is reduced and the off-time is controlled to be long, so that the corner sag at the out-corner is reduced. On the contrary, in the in-corner portion as shown in FIG. 7B, the processing area becomes large, and the processing speed decreases. According to the present embodiment, at that time, control is performed so as to increase the machining current and shorten the off-time, so that the undercut (leftover) at the in-corner is reduced.
【0027】なお、上記実施例においては加工送り速度
に比例するよう平均電圧値を制御する例、及び加工送り
速度に反比例するよう平均電流値を制御する例を示した
が、必ずしも前者では加工送り速度に比例する平均電圧
値制御、加工送り速度に反比例する平均電流値制御でな
くても良く、適当な比率で平均電圧及び平均電流を制御
しても良い。また、電流プローブの代わりにシャント、
抵抗など他の電流検出手段を設ける構成としても良い。In the above embodiment, an example of controlling the average voltage value so as to be proportional to the machining feed speed and an example of controlling the average current value so as to be inversely proportional to the machining feed speed have been shown. The average voltage value control that is proportional to the speed and the average current value control that is inversely proportional to the machining feed speed may not be used, and the average voltage and the average current may be controlled at an appropriate ratio. Also, instead of a current probe, a shunt,
Other current detection means such as a resistor may be provided.
【0028】[0028]
【発明の効果】以上述べたように本発明によれば、平均
電圧が一定に制御されている場合は平均電流を制御し、
平均電流が一定に制御されている場合は平均電圧を制御
するようにしたため、静電吸引力と放電反発力とが常に
相殺するように制御され、ワイヤ放電加工に特有の太鼓
形状の発生を防止し、真直方向の加工精度が向上する。
また加工中に被加工物の板厚が変化するような場合で
も、太鼓形状の発生を防止できる。As described above, according to the present invention, when the average voltage is controlled to be constant, the average current is controlled,
When the average current is controlled to be constant, the average voltage is controlled, so the electrostatic attraction force and the discharge repulsion force are controlled to always cancel each other, and the drum shape that is characteristic of wire electrical discharge machining is prevented. However, the processing accuracy in the straight direction is improved.
Further, even when the plate thickness of the workpiece changes during processing, the drum shape can be prevented from occurring.
【0029】さらに、コーナー部分などの仕上加工にお
いても、面積変化による加工速度の変化に伴って平均電
流が制御されるため、コーナーだれ及びコーナー取り残
しなどがなくなり、コーナー部形状誤差が大幅に低減
し、コーナー部での加工精度を大幅に改善できる。Further, even in finishing such as a corner portion, since the average current is controlled according to the change of the machining speed due to the change of the area, the corner dripping and the corner left-out are eliminated, and the corner shape error is greatly reduced. The machining accuracy at the corner can be greatly improved.
【図1】本発明の一実施例であるワイヤ放電加工装置構
成のブロックを示す図である。FIG. 1 is a diagram showing a block of a configuration of a wire electric discharge machine which is an embodiment of the present invention.
【図2】平均電圧と太鼓形状の最大湾曲量(太鼓量)と
の関係を図示したものである。FIG. 2 is a graph showing the relationship between the average voltage and the maximum amount of drum-shaped curve (drum amount).
【図3】ワイヤ電極と被加工物間に作用する静電吸引力
の説明するためのモデル図である。FIG. 3 is a model diagram for explaining an electrostatic attraction force acting between a wire electrode and a workpiece.
【図4】ワイヤのたわみを説明するための図である。FIG. 4 is a diagram for explaining the deflection of the wire.
【図5】平均電圧が一定に制御されている場合、加工中
に板厚が変化した際のワイヤ放電加工装置各部の動作特
性を示す図である。FIG. 5 is a diagram showing operating characteristics of each part of the wire electric discharge machining apparatus when the plate thickness changes during machining when the average voltage is controlled to be constant.
【図6】平均電流が一定に制御されている場合加工中に
板厚が変化した際のワイヤ放電加工装置各部の動作特性
を示す図である。FIG. 6 is a diagram showing operating characteristics of each part of the wire electric discharge machining apparatus when the plate thickness changes during machining when the average current is controlled to be constant.
【図7】コーナー仕上加工における説明図である。FIG. 7 is an explanatory diagram of a corner finishing process.
【図8】従来のワイヤ放電加工装置の構成を示す図であ
る。FIG. 8 is a diagram showing a configuration of a conventional wire electric discharge machine.
【図9】太鼓形状の説明図である。FIG. 9 is an explanatory diagram of a drum shape.
【図10】仕上加工における太鼓形状の実測結果を示す
図である。FIG. 10 is a diagram showing an actual measurement result of a drum shape in finishing processing.
【図11】従来の技術における放電時の放電電圧波形と
放電電流波形との関係を示す図である。FIG. 11 is a diagram showing a relationship between a discharge voltage waveform and a discharge current waveform at the time of discharging in the conventional technique.
【図12】平均電圧が一定に制御されている場合の放電
電圧波形と放電電流波形との関係を示す図である。FIG. 12 is a diagram showing a relationship between a discharge voltage waveform and a discharge current waveform when the average voltage is controlled to be constant.
【図13】平均電流が一定に制御されている場合の放電
電流波形と放電電圧波形との関係を示す図である。FIG. 13 is a diagram showing a relationship between a discharge current waveform and a discharge voltage waveform when the average current is controlled to be constant.
1 ワイヤ電極 2 被加工物 3 ワイヤボビン 4a、4b 上部・下部加工液ノズル 5 給電子 6 テンションローラー 7 ワイヤ電極回収箱 8 加工電源 9 電圧検出回路 10 制御装置 11 サーボアンプ 12 駆動モータ 13 電流プローブ 14 電流検出回路 1 wire electrode 2 Workpiece 3 wire bobbins 4a, 4b Upper and lower machining fluid nozzles 5 power supply 6 Tension roller 7 wire electrode collection box 8 Processing power supply 9 Voltage detection circuit 10 Control device 11 Servo amplifier 12 Drive motor 13 Current probe 14 Current detection circuit
Claims (4)
間隙で放電を行うことにより、被加工物を加工するワイ
ヤ放電加工装置において、 放電電流を供給する加工電源と、 放電電極間の平均電圧を検出する電圧検出回路と、 放電電流の平均電流を検出する電流検出回路と、 放電電流を制御する制御装置とを備え、 前記電圧検出回路によって検出された平均電圧値が一定
となるように加工送り速度を制御するとともに、加工送
り速度の増大に従って前記電流検出回路の平均電流を低
下させ、加工送り速度の減少に従って前記電流検出回路
の平均電流を増大させるように前記制御装置を制御する
ことを特徴とするワイヤ放電加工装置。1. A wire electric discharge machining apparatus for machining a workpiece by discharging in a discharge gap formed between a wire electrode and the workpiece, a machining power supply for supplying a discharge current, and a discharge electrode. A voltage detection circuit for detecting the average voltage, a current detection circuit for detecting the average current of the discharge current, and a control device for controlling the discharge current are provided so that the average voltage value detected by the voltage detection circuit becomes constant. Controlling the machining feed speed, and controlling the controller so as to decrease the average current of the current detection circuit as the machining feed speed increases and increase the average current of the current detection circuit as the machining feed speed decreases. A wire electric discharge machine characterized by the above.
するように制御装置を制御することを特徴とする請求項
1記載のワイヤ放電加工装置。2. The wire electric discharge machine according to claim 1, wherein the controller is controlled so that the average current changes in inverse proportion to the machining feed rate.
間隙で放電を行うことにより、被加工物を加工するワイ
ヤ放電加工装置において、 放電電流を供給する加工電源と、 放電電極間の平均電圧を検出する電圧検出回路と、 放電電流の平均電流を検出する電流検出回路と、 放電電圧を制御する制御装置とを備え、 前記電流検出回路によって検出された平均電流値が一定
となるように加工送り速度を制御するとともに、加工送
り速度の増大に伴って前記電圧検出回路の平均電圧を増
加させ、加工送り速度の減少に伴って前記電圧検出回路
の平均電圧を低下させるように前記制御装置を制御する
ことを特徴とするワイヤ放電加工装置。3. A wire electrical discharge machining apparatus for machining a workpiece by discharging in a discharge gap formed between the wire electrode and the workpiece, a machining power supply for supplying a discharge current, and a discharge electrode between the discharge electrodes. A voltage detection circuit for detecting the average voltage, a current detection circuit for detecting the average current of the discharge current, and a control device for controlling the discharge voltage are provided so that the average current value detected by the current detection circuit becomes constant. The control so as to increase the average voltage of the voltage detection circuit as the processing feed speed increases and decrease the average voltage of the voltage detection circuit as the processing feed speed decreases. A wire electric discharge machine characterized by controlling the machine.
るように制御装置を制御することを特徴とする請求項3
記載のワイヤ放電加工装置。4. The control device is controlled so that the average voltage changes in proportion to the machining feed rate.
The wire electric discharge machine described.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3160332A JP2722867B2 (en) | 1991-07-01 | 1991-07-01 | Wire electric discharge machine |
DE69108547T DE69108547T3 (en) | 1991-07-01 | 1991-12-10 | Electro-discharge wire cutting machine. |
EP91121162A EP0521193B2 (en) | 1991-07-01 | 1991-12-10 | Wire-cut electric discharge machine |
US07/872,369 US5233147A (en) | 1991-07-01 | 1992-04-23 | Wire-cut electric discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3160332A JP2722867B2 (en) | 1991-07-01 | 1991-07-01 | Wire electric discharge machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH058122A true JPH058122A (en) | 1993-01-19 |
JP2722867B2 JP2722867B2 (en) | 1998-03-09 |
Family
ID=15712682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3160332A Expired - Fee Related JP2722867B2 (en) | 1991-07-01 | 1991-07-01 | Wire electric discharge machine |
Country Status (4)
Country | Link |
---|---|
US (1) | US5233147A (en) |
EP (1) | EP0521193B2 (en) |
JP (1) | JP2722867B2 (en) |
DE (1) | DE69108547T3 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2295180A2 (en) | 2009-09-11 | 2011-03-16 | Fanuc Corporation | Wire electric discharge machining method, apparatus therefor, wire electric discharge machining program creating device, and computer-readable recording medium in which program for creating wire electric discharge machining program is stored |
JP2011104741A (en) * | 2009-11-19 | 2011-06-02 | Sodick Co Ltd | Wire cut electric discharge machining method and wire cut electric discharge machining device |
JP2013126697A (en) * | 2011-12-19 | 2013-06-27 | Sodick Co Ltd | Wire cut electric discharge machining method and device |
JP2014097538A (en) * | 2012-11-13 | 2014-05-29 | Fanuc Ltd | Wire electric discharge machine having peak current correction function |
JP6180662B1 (en) * | 2016-02-12 | 2017-08-16 | 三菱電機株式会社 | Machining control apparatus, wire electric discharge machining apparatus, and wire electric discharge machining method |
CN107159983A (en) * | 2017-06-30 | 2017-09-15 | 自贡市嘉特数控机械制造有限公司 | Electric spark linear cutting machine feed processing unit (plant) and method |
JP6972443B1 (en) * | 2021-03-03 | 2021-11-24 | 三菱電機株式会社 | Wire EDM, Shape Dimension Compensator, Wire EDM Method, Learning Equipment, and Inference Equipment |
WO2023188370A1 (en) * | 2022-03-31 | 2023-10-05 | ファナック株式会社 | Wire electric discharge machining device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19547480C2 (en) * | 1995-12-19 | 2001-10-04 | Agie Sa | Wire EDM method and apparatus |
DE19614200C2 (en) * | 1996-04-10 | 2000-03-02 | Agie Sa | Method for moving at least one guide head of a wire erosion machine, and wire erosion machine with an actuating device for performing movements of at least one guide head |
DE19614134C2 (en) * | 1996-04-10 | 2002-06-13 | Agie Sa | Wire EDM machine and method for its operation |
DE19753812C2 (en) * | 1997-12-04 | 2000-05-18 | Agie Sa | Method and device for electrical discharge machining |
JP4140174B2 (en) * | 2000-06-28 | 2008-08-27 | ブラザー工業株式会社 | Control device and control method of wire electric discharge machine, and storage medium |
EP1219373B1 (en) * | 2000-12-25 | 2011-06-15 | Fanuc Corporation | Controller for wire electric discharge machine |
EP1886755B1 (en) * | 2006-08-11 | 2013-01-02 | Agie Charmilles SA | Device and method for high frequency electrical discharge machining |
CH697126A5 (en) | 2007-07-27 | 2008-05-15 | Charmilles Technologies | Electrospark machining method for workpiece, involves frustrating variations of machining gap width by permanent adjustment internal loop, which controls average machining power based on law, where loop does not induce any movement of axles |
DE112008003926B4 (en) * | 2008-07-03 | 2019-09-05 | Mitsubishi Electric Corp. | ELECTRICAL WIRE EDMATING MACHINE, CONTROL DEVICE THEREFOR AND ELECTRICAL WIRE DIRECT PROCESSING METHOD |
TWI357841B (en) * | 2008-08-14 | 2012-02-11 | Ind Tech Res Inst | Method and apparatus for feed control of wire cutt |
WO2011004426A1 (en) * | 2009-07-07 | 2011-01-13 | 三菱電機株式会社 | Wire electric discharge machining apparatus |
CN103203506B (en) * | 2013-05-08 | 2015-05-20 | 清华大学 | Mortar line cutting machining device and mortar line cutting machining method for nonconductive material |
JP6219785B2 (en) * | 2014-06-23 | 2017-10-25 | ファナック株式会社 | Wire electric discharge machine equipped with disconnection repair means |
JP6348131B2 (en) * | 2016-01-07 | 2018-06-27 | ファナック株式会社 | Wire electric discharge machine with function to detect deterioration of power supply line |
JP6360212B1 (en) * | 2017-01-31 | 2018-07-18 | ファナック株式会社 | Wire electric discharge machine |
JP6506349B2 (en) * | 2017-06-19 | 2019-04-24 | ファナック株式会社 | Control device of wire electric discharge machine, and control method of wire electric discharge machine |
JP7015264B2 (en) | 2019-03-12 | 2022-02-02 | ファナック株式会社 | Wire electric discharge machine and wire electric discharge machining method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5565033A (en) * | 1978-11-02 | 1980-05-16 | Mitsubishi Electric Corp | Wire cut electrical discharge machining apparatus |
JPH0259219A (en) * | 1988-08-26 | 1990-02-28 | Mitsubishi Electric Corp | Wire electro-discharge machining unit |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4104502A (en) * | 1974-11-25 | 1978-08-01 | A.G. Fur Industrielle Elektronik Agie | Electro-erosion machine tool with compensation for operating forces, and method of operation |
CH655029A5 (en) * | 1979-03-22 | 1986-03-27 | Mitsubishi Electric Corp | MACHINING DEVICE BY MEANS OF ELECTRICAL DISCHARGE, WITH A WIRE-SHAPED ELECTRODE. |
US4267423A (en) * | 1979-05-24 | 1981-05-12 | Colt Industries Operating Corp | Protection circuit for electrical discharge machining power supply |
JPS5652129A (en) * | 1979-09-27 | 1981-05-11 | Mitsubishi Electric Corp | Control of wire-cut electric spark machining |
US4339650A (en) * | 1980-09-12 | 1982-07-13 | Mitsubishi Denki Kabushiki Kaisha | Electric discharge machining apparatus |
JPS59142021A (en) * | 1983-01-29 | 1984-08-15 | Fanuc Ltd | Automatic measuring system of offset value in wire cut electric discharge machine |
JPS6067030A (en) * | 1983-09-22 | 1985-04-17 | Inoue Japax Res Inc | Wire-cut electric-discharge device |
CH662525A5 (en) * | 1984-10-16 | 1987-10-15 | Charmilles Technologies | PROCESS FOR REGULATING THE CONDITIONS OF SPARKING ON AN EROSIVE DISCHARGE MACHINE AND DEVICE FOR IMPLEMENTING SAME. |
JPS61125733A (en) * | 1984-11-24 | 1986-06-13 | Inoue Japax Res Inc | Wire cut electric discharge processing method |
CH661463A5 (en) * | 1984-12-19 | 1987-07-31 | Charmilles Technologies | Method and device for correcting a wire electrode during electrical discharge machining |
JPH0329531A (en) * | 1989-06-27 | 1991-02-07 | Mitsubishi Electric Corp | Muting circuit |
-
1991
- 1991-07-01 JP JP3160332A patent/JP2722867B2/en not_active Expired - Fee Related
- 1991-12-10 EP EP91121162A patent/EP0521193B2/en not_active Expired - Lifetime
- 1991-12-10 DE DE69108547T patent/DE69108547T3/en not_active Expired - Fee Related
-
1992
- 1992-04-23 US US07/872,369 patent/US5233147A/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5565033A (en) * | 1978-11-02 | 1980-05-16 | Mitsubishi Electric Corp | Wire cut electrical discharge machining apparatus |
JPH0259219A (en) * | 1988-08-26 | 1990-02-28 | Mitsubishi Electric Corp | Wire electro-discharge machining unit |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2295180A2 (en) | 2009-09-11 | 2011-03-16 | Fanuc Corporation | Wire electric discharge machining method, apparatus therefor, wire electric discharge machining program creating device, and computer-readable recording medium in which program for creating wire electric discharge machining program is stored |
JP2011104741A (en) * | 2009-11-19 | 2011-06-02 | Sodick Co Ltd | Wire cut electric discharge machining method and wire cut electric discharge machining device |
JP2013126697A (en) * | 2011-12-19 | 2013-06-27 | Sodick Co Ltd | Wire cut electric discharge machining method and device |
JP2014097538A (en) * | 2012-11-13 | 2014-05-29 | Fanuc Ltd | Wire electric discharge machine having peak current correction function |
US9459611B2 (en) | 2012-11-13 | 2016-10-04 | Fanuc Corporation | Wire electric discharge machine having peak current compensation function |
JP6180662B1 (en) * | 2016-02-12 | 2017-08-16 | 三菱電機株式会社 | Machining control apparatus, wire electric discharge machining apparatus, and wire electric discharge machining method |
CN107159983A (en) * | 2017-06-30 | 2017-09-15 | 自贡市嘉特数控机械制造有限公司 | Electric spark linear cutting machine feed processing unit (plant) and method |
JP6972443B1 (en) * | 2021-03-03 | 2021-11-24 | 三菱電機株式会社 | Wire EDM, Shape Dimension Compensator, Wire EDM Method, Learning Equipment, and Inference Equipment |
WO2022185431A1 (en) * | 2021-03-03 | 2022-09-09 | 三菱電機株式会社 | Wire electrical discharge machining device, shape dimension compensator, wire electrical discharge machining method, learning device, and inference device |
WO2023188370A1 (en) * | 2022-03-31 | 2023-10-05 | ファナック株式会社 | Wire electric discharge machining device |
Also Published As
Publication number | Publication date |
---|---|
EP0521193A2 (en) | 1993-01-07 |
EP0521193B1 (en) | 1995-03-29 |
JP2722867B2 (en) | 1998-03-09 |
US5233147A (en) | 1993-08-03 |
DE69108547T2 (en) | 1995-10-05 |
EP0521193B2 (en) | 2001-08-16 |
EP0521193A3 (en) | 1993-01-27 |
DE69108547D1 (en) | 1995-05-04 |
DE69108547T3 (en) | 2002-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH058122A (en) | Wire electric discharge machining apparatus | |
US7262381B2 (en) | Controller for wire electric discharge machine | |
US7039490B2 (en) | Controller for wire electric discharge machine | |
JP4772138B2 (en) | Wire-cut electric discharge machine with a function to suppress the occurrence of local streaks in finishing | |
US20120145691A1 (en) | Arc welding method and arc welding apparatus | |
JP3832433B2 (en) | Wire electric discharge machining method and apparatus | |
TWI424896B (en) | Controller for wire cut electric discharge machine | |
KR102183265B1 (en) | Wire electrical discharge machine and electrical discharge machining method | |
JP3575087B2 (en) | Electric discharge machine | |
US6930273B2 (en) | Power supply unit for wire electrical discharge machining and method of wire electrical discharge machining | |
US7038158B2 (en) | Wire electrical discharge machining apparatus | |
KR100469593B1 (en) | Wire electric-discharge machining apparatus | |
US5874703A (en) | Method and apparatus for impulse generator for electroerosive machining of workpieces | |
JPH03478A (en) | Method and device for plasma cutting | |
EP0554899B1 (en) | Electrical discharge machine with secondary electrode for corrosion prevention | |
JP3818257B2 (en) | Wire electrical discharge machine | |
US5824986A (en) | Method and apparatus for wire erosion | |
SU1484515A1 (en) | Method of spark-erosion alloying | |
JP2559220B2 (en) | Wire cut electrical discharge machine | |
JPS63102831A (en) | Wire-cut electric discharge machining device | |
JPS63102833A (en) | Wire-cut electric discharge machining device | |
JPWO2002024388A1 (en) | Electric discharge machining method and apparatus | |
JPH08318430A (en) | Method and device for electrical discharge machining | |
JPWO2002040209A1 (en) | Wire electric discharge machining method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |