JPH0580409B2 - - Google Patents

Info

Publication number
JPH0580409B2
JPH0580409B2 JP62299997A JP29999787A JPH0580409B2 JP H0580409 B2 JPH0580409 B2 JP H0580409B2 JP 62299997 A JP62299997 A JP 62299997A JP 29999787 A JP29999787 A JP 29999787A JP H0580409 B2 JPH0580409 B2 JP H0580409B2
Authority
JP
Japan
Prior art keywords
salt
crystals
crystal
evaporator
saline solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62299997A
Other languages
Japanese (ja)
Other versions
JPH01145320A (en
Inventor
Kenichi Kagiwada
Masami Hasegawa
Shizuo Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP62299997A priority Critical patent/JPH01145320A/en
Publication of JPH01145320A publication Critical patent/JPH01145320A/en
Publication of JPH0580409B2 publication Critical patent/JPH0580409B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、流動性の優れた8〜14面体結晶を食
塩溶液中から晶出する方法に関する。ここにいう
8〜14面体結晶とは、第1図に示す食塩の通常の
立面体(6面体)結晶Aから、結晶が成長変化し
て得られる14面体結晶Bないし8面体結晶C(以
下、「多面体結晶」という)のことである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for crystallizing octahedral to tetradecahedral crystals with excellent fluidity from a saline solution. The octahedral crystals referred to here are the 14-hedral crystals B to octahedral crystals C (hereinafter referred to as octahedral crystals) obtained by growing and changing the crystals from the normal erected (hexahedral) crystal A of common salt shown in Figure 1. , "polyhedral crystal").

多面体結晶にすることにより、今まで固結問題
のあつた精製塩、食卓塩などの高純度食塩におい
て、形状が球形に近くなるために食塩粒子相互間
の付着面を減少させることから固結防止が可能と
なり、また、流動性が良くなりホツパーなどの操
作性が向上するなどの効果が期待できる。さらに
は、せんべい、クラツカーなどに食塩を付着させ
て、使用する食品の商品性を向上させることがで
きる。
By making polyhedral crystals, high-purity salt such as refined salt and table salt, which have had caking problems up until now, can be prevented from caking by reducing the adhesion surface between salt particles because the shape becomes close to spherical. In addition, it is expected that the fluidity will be improved and the operability of the hopper will be improved. Furthermore, by attaching salt to rice crackers, crackers, etc., it is possible to improve the marketability of the food products used.

(従来の技術) 従来、一般的には加圧、真空蒸発または冷却に
より立方体結晶の食塩が製造されており、特殊な
例として平釜などにより表面蒸発を律速にさせ回
転数を制御してトレミー又はフレーク塩結晶を製
造していた。
(Prior art) Conventionally, cubic crystal salt has generally been produced by pressurization, vacuum evaporation, or cooling.As a special example, tremie is produced by controlling the rate of surface evaporation using a flat pot, etc. Or they were producing flake salt crystals.

立方体結晶食塩は、機械的磨耗などにより球状
又は14面体に近い形状の結晶を製造することが可
能であるが、このような方法は、労力増や製造さ
れた結晶の不均一性に問題点があつた。
Cubic crystalline salt can be produced into crystals with a shape close to spherical or tetradecahedral through mechanical abrasion, etc., but such methods have problems such as increased labor and non-uniformity of the produced crystals. It was hot.

8面体結晶食塩の晶出については、食塩溶液中
に尿素、ポリリン酸ナトリウム(テトラ)を添加
して晶出すれば製造可能ことが知られている
(「晶析工学」、中井 資、86〜87P、1986年)が、
添加する尿素、ポリリン酸ナトリウムは食品添加
物でないので問題点があつた。
It is known that octahedral crystalline salt can be produced by adding urea and sodium polyphosphate (tetra) to a salt solution ("Crystallization Engineering", Susumu Nakai, 86- 87P, 1986), but
There was a problem because the urea and sodium polyphosphate added are not food additives.

また、梅漬け製造時に8面体結晶食塩が析出す
ることは知られている(「日本海水学会誌」、第40
巻、第1号、28P、1986年)が、これは勿論工業
的製造法として利用することはできない。
Additionally, it is known that octahedral crystalline salt precipitates during the production of umezuke (Journal of the Seawater Society of Japan, No. 40).
Volume, No. 1, 28P, 1986), but of course this cannot be used as an industrial manufacturing method.

(発明が解決しようとする問題点) 本発明は、蒸発、冷却などの工業的食塩製造方
法において、微量の食品添加物を添加することに
より容易に多面体結晶食塩を得ることができる方
法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention provides a method for easily obtaining polyhedral crystalline salt by adding trace amounts of food additives in industrial salt production methods such as evaporation and cooling. That is.

(問題点を解決するための手段) 本発明は、食塩溶液中に、ポリアクリル酸ナト
リウムを5〜1000ppm添加し、常法により結晶を
晶出させることを特徴とする多面体結晶食塩の製
造方法を要旨とするものである。
(Means for Solving the Problems) The present invention provides a method for producing polyhedral crystalline salt, which is characterized by adding 5 to 1000 ppm of sodium polyacrylate to a salt solution and crystallizing the crystals by a conventional method. This is a summary.

食塩を溶解した飽和ないし飽和に近い溶液又は
海水を濃縮したかん水からなる食塩溶液中に、ポ
リアクリル酸ナトリウム(CH2=CHCOONa)o
を5〜1000ppm添加する。
Sodium polyacrylate (CH 2 = CHCOONa) is added to a saturated or nearly saturated solution of common salt or a salt solution made of concentrated seawater .
Add 5 to 1000 ppm.

ポリアクリル酸ナトリウムを添加した食塩溶液
中に、さら微細な100〜420μm径の立方体結晶か
らなる食塩を結晶種として添加することが、本発
明多面体結晶を効率的に晶出させるうえで有効で
ある。
It is effective to add, as a crystal seed, salt consisting of finer cubic crystals with a diameter of 100 to 420 μm to a salt solution containing sodium polyacrylate in order to efficiently crystallize the polyhedral crystals of the present invention. .

晶出方法としては、通常用いられる、例えば冷
却晶出法でも、蒸発濃縮法でも差し支えない。こ
れらの晶出方法に用いられる装置の概略を示す第
2図及び第3図をもつて、晶出方法についてさら
に詳しく説明する。
The crystallization method may be a commonly used method, such as a cooling crystallization method or an evaporative concentration method. The crystallization methods will be explained in more detail with reference to FIGS. 2 and 3, which schematically show the apparatuses used in these crystallization methods.

第2図は、冷却晶出法に用いられる装置を示
し、1は恒温加熱水槽、2は食塩溶液を入れる容
器、3は撹拌機、4はポンプ、5は冷却器、6は
晶析器、7は晶析器6内に添加される結晶種、8
は容器2内と冷却器5をポンプ4を介して結ぶ導
管、9は冷却器5と晶析器6を結ぶ導管、10は
晶析器6と容器2内を結ぶ導管である。
Figure 2 shows the equipment used in the cooling crystallization method, in which 1 is a constant temperature heating water bath, 2 is a container for storing a saline solution, 3 is a stirrer, 4 is a pump, 5 is a cooler, 6 is a crystallizer, 7 is a crystal seed added into the crystallizer 6, 8
9 is a conduit connecting the inside of the container 2 and the cooler 5 via the pump 4, 9 is a conduit connecting the cooler 5 and the crystallizer 6, and 10 is a conduit connecting the crystallizer 6 and the inside of the container 2.

恒温加熱水槽1に入れられた容器2内に食塩溶
液を入れ、ポリアクリル酸ナトリウム50〜
1000ppm添加し、撹拌機3によつて撹拌する。容
器2内の食塩溶液は、ポンプ4により導管8を介
して冷却器5に送られる。冷却されて過飽和とな
つた食塩溶液は、導管9を介して晶析器6内に送
られる。晶析器6内の過飽和食塩溶液には、予め
準備された食塩の結晶種7が投入される。晶析器
6内で結晶種7の周りに結晶が成長し、14面体な
いし8面体のより大きな結晶に成長していく。晶
析器6内の上澄み液は、オーバーフローし導管1
0を介して容器2内に返される。
Pour the saline solution into the container 2 placed in the constant temperature heating water tank 1, and add 50~
Add 1000 ppm and stir with stirrer 3. The saline solution in container 2 is sent by pump 4 via conduit 8 to cooler 5 . The cooled and supersaturated saline solution is sent through conduit 9 into crystallizer 6 . A salt crystal seed 7 prepared in advance is introduced into the supersaturated salt solution in the crystallizer 6 . Crystals grow around the crystal seeds 7 in the crystallizer 6, and grow into larger crystals of tetradecahedrons or octahedrons. The supernatant liquid in the crystallizer 6 overflows and flows into the conduit 1.
0 into the container 2.

このような循環を繰り返すことにより、晶析器
6内で食塩結晶が、徐々に8面体の大きな結晶に
成長する。循環を繰り返し、晶出の時間を長くす
れば、得られる結晶はほぼ完全な8面体結晶とな
り、短ければ14面体結晶となる。本装置は、バツ
チ式で運転され、必要な時間経過後、適宜な大き
さに成長した多面体結晶を取り出し乾燥する。
By repeating such circulation, the salt crystal gradually grows into a large octahedral crystal in the crystallizer 6. If the cycle is repeated and the crystallization time is increased, the resulting crystal will be an almost perfect octahedral crystal, or if it is short, it will be a tetradecahedral crystal. This apparatus is operated in batch mode, and after the required time has elapsed, the polyhedral crystals that have grown to an appropriate size are taken out and dried.

第3図は、蒸発濃縮法に用いられる装置を示
し、11は蒸発缶、12はポンプ、13は加熱
管、14はボイラー、15は真空ポンプ、16は
コンデンサー、17はドレン槽、18は食塩溶液
槽、19はボイラー14と加熱管13を結ぶ導
管、20は蒸発缶11内の食塩溶液をポンプ12
及び加熱管13を介して循環させる導管、21は
蒸発缶11の上部とドレン槽17をコンデンサー
16を介して結ぶ導管、22はドレン槽17と真
空ポンプ15を結ぶ導管、24は蒸発缶11の底
に取り付けられた開閉自在のコツクを有する取出
管である。
Figure 3 shows the equipment used in the evaporation concentration method, 11 is an evaporator, 12 is a pump, 13 is a heating tube, 14 is a boiler, 15 is a vacuum pump, 16 is a condenser, 17 is a drain tank, and 18 is salt. A solution tank, 19 is a conduit connecting the boiler 14 and the heating tube 13, and 20 is a pump 12 for pumping the salt solution in the evaporator 11.
21 is a conduit that connects the upper part of the evaporator 11 and the drain tank 17 via the condenser 16; 22 is a conduit that connects the drain tank 17 and the vacuum pump 15; This is an extraction pipe with a cap attached to the bottom that can be opened and closed.

食塩溶液槽18内のポリアクリル酸ナトリウム
50〜1000ppmを添加した食塩溶液をポンプ12で
汲み上げて、蒸発缶11内に送り込む。蒸発缶1
1内は、絶えず真空ポンプ15によつて減圧状態
となつているため、加熱管13で加熱された食塩
溶液は、大気圧より低い温度で蒸発缶11内で沸
騰する。沸騰により発生した蒸気は導管21によ
り排出され、コンデンサー16において凝縮し、
ドレン槽17に溜められる。蒸発缶11内に結晶
種7を添加し、加熱管13で加熱された食塩溶液
を循環させると蒸発濃縮され、結晶種7の周りに
結晶が成長し、14面体ないし8面体のより大きな
結晶に成長していく。なお、蒸発により減少した
蒸発缶11内の食塩溶液は、食塩溶液槽18から
供給される。晶出の時間を長くすれば、得られる
結晶はほぼ完全な8面体結晶となり、短ければ14
面体結晶となる。本装置もバツチ式で運転され、
必要な時間経過後、適宜な大きさに成長した絶面
体結晶を取出管24から取り出し乾燥する。
Sodium polyacrylate in the saline solution tank 18
A salt solution to which 50 to 1000 ppm has been added is pumped up by a pump 12 and sent into the evaporator 11. Evaporator 1
Since the inside of the evaporator 11 is constantly kept under reduced pressure by the vacuum pump 15, the salt solution heated by the heating tube 13 boils in the evaporator 11 at a temperature lower than atmospheric pressure. The steam generated by boiling is discharged through conduit 21 and condensed in condenser 16,
It is collected in the drain tank 17. When the crystal seeds 7 are added to the evaporator 11 and the saline solution heated by the heating tube 13 is circulated, it is evaporated and concentrated, and the crystals grow around the crystal seeds 7 to form larger crystals of tetradecahedron or octahedron. Grow. Note that the saline solution in the evaporator 11 that has decreased due to evaporation is supplied from the saline solution tank 18. If the crystallization time is increased, the resulting crystal will be an almost perfect octahedral crystal;
It becomes a hedral crystal. This device is also operated in batch mode,
After a required period of time has elapsed, the obsolete crystal that has grown to an appropriate size is taken out from the take-out tube 24 and dried.

(作用) 食塩溶液にポリアクリル酸ナトリウムを50〜
1000ppm添加することにより、食塩結晶の析出時
に結晶成長方向の晶癖を変化させることになり、
通常6面体となる食塩の結晶が多面体結晶に変化
するものと思われる。生成した多面体結晶中には
添加したポリアクリル酸ナトリウムはほとんど含
まれないが、仮に含まれたとしてもポリアクリル
酸ナトリウムは食品添加物であるので、問題はな
い。
(Action) Add sodium polyacrylate to a saline solution at 50~
Adding 1000ppm will change the crystal habit in the crystal growth direction during precipitation of salt crystals,
It is thought that the salt crystals, which are normally hexahedral, change to polyhedral crystals. The polyhedral crystals produced do not contain much of the added sodium polyacrylate, but even if it were contained, there would be no problem since sodium polyacrylate is a food additive.

(実施例) 実施例 1 第2図に示す装置を用いて、冷却晶出法により
食塩結晶を晶出した。恒温加熱水槽1の温度を60
℃に設定し、容器2に精製塩を溶かした食塩溶液
を入れ、余分の精製塩とポリアクリル酸ナトリウ
ム80ppmを添加し、装置を運転した。冷却器5の
温度を5℃に設定し、晶析器6には350〜420μm
の結晶種7を添加した食塩溶液を入れた。
(Examples) Example 1 Using the apparatus shown in FIG. 2, salt crystals were crystallized by a cooling crystallization method. The temperature of constant temperature heating water tank 1 is set to 60
℃, a saline solution containing purified salt dissolved in container 2 was added, excess purified salt and 80 ppm of sodium polyacrylate were added, and the apparatus was operated. The temperature of the cooler 5 is set to 5℃, and the temperature of the crystallizer 6 is 350 to 420 μm.
A saline solution containing crystal seeds 7 was added.

この装置を3時間循環運転することによつて、
晶析器6内に平均径600μmの8面体結晶食塩を
得ることができた。
By running this device for 3 hours,
It was possible to obtain octahedral crystalline salt having an average diameter of 600 μm in the crystallizer 6.

実施例 2 第3図に示す装置を用いて、蒸発濃縮法により
食品結晶を晶出した。蒸発缶11内と食塩溶液槽
18内に並塩(NaClを95%以上含有)を溶解し
た食塩溶液を入れ、ポリアクリル酸ナトリウム
150ppの添加した。蒸発缶11内の食塩溶液に
は、さらに飽和溶液になつた時点で100〜150μm
の結晶種7を添加した。ポンプ12により蒸発缶
11内の食塩溶液を循環し、加熱管13による加
熱温度を70℃に設定し、蒸発缶11内の気圧は真
空ポンプ15を運転して610mmHgとした。蒸発缶
11内の液面が絶えず一定になるように、食塩溶
液層18からポンプ12によつて食塩溶液を補充
しながら蒸発濃縮を進めた。
Example 2 Food crystals were crystallized by the evaporative concentration method using the apparatus shown in FIG. A salt solution in which normal salt (containing 95% or more of NaCl) is dissolved is put into the evaporator 11 and the salt solution tank 18, and sodium polyacrylate is added.
Added 150pp. The salt solution in the evaporator 11 has a thickness of 100 to 150 μm when it becomes a saturated solution.
Crystal Seed 7 was added. The salt solution in the evaporator 11 was circulated by the pump 12, the heating temperature by the heating tube 13 was set at 70°C, and the atmospheric pressure in the evaporator 11 was set to 610 mmHg by operating the vacuum pump 15. Evaporation and concentration proceeded while replenishing the saline solution from the saline solution layer 18 with the pump 12 so that the liquid level in the evaporator 11 remained constant.

この運転を5時間続けた後、取立管24から食
塩結晶を取り出した。食塩結晶は、平均径500μ
mの8面体結晶であつた。
After this operation was continued for 5 hours, the salt crystals were taken out from the collection pipe 24. Salt crystals have an average diameter of 500μ
It was an octahedral crystal of m.

(発明の効果) 本発明は、食品添加物であるポリアクリル酸ナ
トリウムを食塩溶液に微量添加することにより、
容易に食塩の多面体結晶を製造することができ、
結晶形の特徴から食塩粒子の固結防止、流動性の
優れた食塩を提供でき、このような食塩を食品に
付着させて使用すれば、その食品の商品性の向上
も図ることができる。
(Effects of the invention) The present invention achieves the following by adding a small amount of sodium polyacrylate, which is a food additive, to a salt solution.
Polyhedral crystals of common salt can be easily produced,
Due to the characteristics of the crystalline form, it is possible to provide salt with excellent fluidity and prevention of caking of salt particles, and if such salt is attached to food and used, it is possible to improve the marketability of the food.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、立方体食塩結晶を基にして、本発明
方法によつて製造される14面体ないし8面体結晶
食塩を示す斜視図、第2図は、本発明方法を実施
する際に用いられる冷却法による食塩結晶製造装
置の概略を示すフローシート、第3図は、同蒸発
濃縮法による食塩結晶製造装置の概略を示すフロ
ーシートである。 1:恒温加熱層、2:容器、3:撹拌機、4:
ポンプ、5:冷却器、6:晶析器、7:結晶種、
8,9,10:導管、11:蒸発缶、12:ポン
プ、13:加熱管、14:ボイラー、15:真空
ポンプ、16:コンデンサー、17:ドレン槽、
18:食塩溶液槽、19,20,21,22,2
3:導管、24:取出管。
FIG. 1 is a perspective view showing tetradecahedral or octahedral crystalline salt produced by the method of the present invention based on cubic salt crystals, and FIG. 2 is a cooling diagram used in carrying out the method of the present invention. FIG. 3 is a flow sheet showing an outline of an apparatus for producing salt crystals by the same evaporation concentration method. 1: Constant temperature heating layer, 2: Container, 3: Stirrer, 4:
pump, 5: cooler, 6: crystallizer, 7: crystal seed,
8, 9, 10: conduit, 11: evaporator, 12: pump, 13: heating tube, 14: boiler, 15: vacuum pump, 16: condenser, 17: drain tank,
18: Salt solution tank, 19, 20, 21, 22, 2
3: conduit, 24: extraction pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 食塩溶液中にポリアクリル酸ナトリウムを50
〜1000ppm添加し、常法により結晶を晶出させる
ことを特徴とする8〜14面体結晶食塩の製造方
法。
1 50% sodium polyacrylate in a saline solution
1. A method for producing octadecahedral crystalline salt, characterized by adding ~1000 ppm and crystallizing the crystals by a conventional method.
JP62299997A 1987-11-30 1987-11-30 Production of common salt having 8-14-hedron crystal Granted JPH01145320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299997A JPH01145320A (en) 1987-11-30 1987-11-30 Production of common salt having 8-14-hedron crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299997A JPH01145320A (en) 1987-11-30 1987-11-30 Production of common salt having 8-14-hedron crystal

Publications (2)

Publication Number Publication Date
JPH01145320A JPH01145320A (en) 1989-06-07
JPH0580409B2 true JPH0580409B2 (en) 1993-11-09

Family

ID=17879491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299997A Granted JPH01145320A (en) 1987-11-30 1987-11-30 Production of common salt having 8-14-hedron crystal

Country Status (1)

Country Link
JP (1) JPH01145320A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665606B2 (en) * 1988-12-28 1994-08-24 テクノバイオ株式会社 Super dilute composite aqueous solution
FR2732004B1 (en) * 1995-03-24 1997-05-30 Solvay SALT COMPRISING SODIUM CHLORIDE AND LESS THAN 5% BY WEIGHT OF WATER AND USE THEREOF
HU227772B1 (en) * 2001-07-09 2012-02-28 Akzo Nobel Nv Process to make high-purity wet salt, wet salt so obtainable, and the use thereof in an electrolysis process
PL373869A1 (en) * 2002-08-08 2005-09-19 Akzo Nobel N.V. Process to make high-purity salt and its use in electrolysis processes
JP2007044639A (en) * 2005-08-11 2007-02-22 Iwate Univ Crystallization method and crystallization apparatus
WO2014009411A1 (en) * 2012-07-12 2014-01-16 Akzo Nobel Chemicals International B.V. Free flowing salt composition prepared by evaporative crystallization

Also Published As

Publication number Publication date
JPH01145320A (en) 1989-06-07

Similar Documents

Publication Publication Date Title
USRE32241E (en) Fractional crystallization process
JPH0580408B2 (en)
US2827366A (en) Crystallization apparatus
JPH0580409B2 (en)
US2647043A (en) Crystal growing apparatus
US2587293A (en) Sugar crystallizing process
US2470822A (en) Process for manufacturing coarse granular potassium chloride
US3859052A (en) Crystallization apparatus having pressure-liquid level control means
US2045301A (en) Crystallizing process
JPS59175900A (en) Production of graft crystal for boiled surcrose suspension
JP3032434B2 (en) Method and apparatus for producing flake salt
CN114162839A (en) Device for preparing ammonium chloride by co-production of sodium bicarbonate
US2863740A (en) Crystal growing system
CN104671261B (en) A kind of snow salt and its production technology
US3202487A (en) Multiple effect, gravity classification crystallization method and apparatus
Svanoe “KRYSTAL” CLASSIFYING CRYSTALLIZER
US1476873A (en) Process of recovering valuable components from a complex liquid phase
US5004507A (en) Aqueous-alcohol fructose crystallization
CN216426772U (en) Device for preparing ammonium chloride by co-production of sodium bicarbonate
KHAN et al. Laboratory scale study for the control crystallization of sodium chloride pyramid crystals (fleur de sel), prepared by solar salt
CN1214000C (en) Crystallizing process of glutaminic acid monohydrate monosodium crystal
JP4293525B2 (en) Method and apparatus for continuous crystallization in sugar production
JP5728773B2 (en) Crystal product manufacturing method and classified layer crystallizer used therefor
RU2690434C1 (en) Method of obtaining first crystallization stage fillmass
US1317954A (en) Geobge b

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees