JPH0580376A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH0580376A
JPH0580376A JP27004991A JP27004991A JPH0580376A JP H0580376 A JPH0580376 A JP H0580376A JP 27004991 A JP27004991 A JP 27004991A JP 27004991 A JP27004991 A JP 27004991A JP H0580376 A JPH0580376 A JP H0580376A
Authority
JP
Japan
Prior art keywords
face
crystal
optical
knbo
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27004991A
Other languages
Japanese (ja)
Other versions
JP2966600B2 (en
Inventor
Kazushi Mori
和思 森
Tadao Toda
忠夫 戸田
Mitsuharu Matsumoto
光晴 松本
Hideyuki Nonaka
英幸 野中
Takao Yamaguchi
隆夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27004991A priority Critical patent/JP2966600B2/en
Publication of JPH0580376A publication Critical patent/JPH0580376A/en
Application granted granted Critical
Publication of JP2966600B2 publication Critical patent/JP2966600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a non-doped nonlinear optical material of waveguide structure having a high optical-damage threshold value and a nonlinear optical effect almost equivalent to LiNbO3 by laminating the thin-film crystal of KNbO3 on a substrate having a lower refractive index than KNbO3. CONSTITUTION:The thin film crystal 2 is laminated on any one face 1 among the (110) face of spinel, the (112bar0) face and (112bar1) face of quartz crystal, the (010) face and (100) face of KTP or the (110) face of MgO. The obtained optical material is reduced in lattice mismatching, enhanced in proof stress to light and increased in the optical-damage threshold value, the nonlinear optical constant is increased, and the wavelength conversion effect is improved. The optical material is used for the wavelength conversion element, optical switch, light modulator, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度光ディスク用光源
装置, 光演算装置等の情報処理装置等において波長変換
素子,光スイッチ,光変調器等として用いられる非線形
光学材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical material used as a wavelength conversion element, an optical switch, an optical modulator or the like in a light source device for a high density optical disc, an information processing device such as an optical arithmetic device or the like.

【0002】[0002]

【従来の技術】非線形光学効果は同じ非線形光学材料,
同じ光出力の光源を用いても、可及的に狭い領域に光を
閉込める程、換言すれば非線形媒質に入射された光の空
間的密度が大きい程、その効果は大きくなる。このため
非線形光学材料の構造は導波路構造とするのが、また光
導波路においては基板とこれに積層した光導波路との界
面での屈折率変化がステップ状であることが設計の容易
性, 特性の制御性の点から好ましく、この観点から導波
路としては不純物拡散法, イオン交換法等により作製す
るよりも、導波路材料自身の屈折率よりも小さい屈折率
を有する基板上に薄膜状に堆積させた導波路、或いはそ
の薄膜をエッチングして作製したチャンネル型導波路が
より望ましいといえる。
2. Description of the Related Art Nonlinear optical effects are the same as nonlinear optical materials,
Even if light sources having the same light output are used, the more the light is confined in a region as narrow as possible, in other words, the larger the spatial density of the light incident on the nonlinear medium, the greater the effect. For this reason, the structure of the nonlinear optical material should be a waveguide structure, and in the optical waveguide, the step-like change in the refractive index at the interface between the substrate and the optical waveguide laminated on the substrate facilitates design and characteristics. This is preferable from the viewpoint of controllability, and from this point of view, a waveguide is deposited in a thin film on a substrate having a refractive index smaller than that of the waveguide material itself, rather than being formed by an impurity diffusion method, an ion exchange method, or the like. It can be said that it is more preferable to use the waveguide or the channel type waveguide manufactured by etching the thin film.

【0003】このような条件を満たす従来の非線形光学
材料として、LiTaO3 基板上、或いはサファイア(α−
Al2 3 )基板上にLPE ( 液相エピタキシャル) 法にて
LiNbO3 薄膜結晶を堆積させたものがある(OQE88-4
3)。LiNbO3 は非線形光学効果の強さを表す非線形光学
定数が大きく、また化学的にも安定で、例えば波長変換
素子等に利用して優れた特性を備えている。
As a conventional non-linear optical material satisfying these conditions, a LiTaO 3 substrate or sapphire (α-
On the Al 2 O 3 ) substrate by LPE (Liquid Phase Epitaxial) method
Some have deposited LiNbO 3 thin film crystals (OQE88-4
3). LiNbO 3 has a large non-linear optical constant indicating the strength of the non-linear optical effect, is chemically stable, and has excellent characteristics when used in, for example, a wavelength conversion element.

【0004】[0004]

【発明が解決しようとする課題】ところがLiNbO3 薄膜
結晶は、光のエネルギーによってその強誘電性が破壊さ
れるレベル、所謂光損傷閾値が波長1.06μm のレーザ光
の場合で約30MW/cm2 程度で他の材料に比べて低いとい
う問題があった。これを解決する手段として基板にMgO
をドーピングすることにより光損傷閾値を高める方法が
提案されている。
However, the LiNbO 3 thin film crystal is about 30 MW / cm 2 in the case of laser light having a so-called optical damage threshold of 1.06 μm, which is a level at which its ferroelectricity is destroyed by light energy. There was a problem that it was lower than other materials. As a means to solve this, MgO is added to the substrate.
There has been proposed a method of increasing the optical damage threshold value by doping Al.

【0005】しかしこの方法はMgOの成分比率の調整が
厳しく、特にスパッタ法による結晶成長過程でこのよう
な成分比率を満たすのは容易でないという難点があっ
た。本発明はこのような従来の問題点を解決すべくなさ
れたものであり、ノンドープで、しかも光損傷閾値が高
く、且つLiNbO3 と同程度の非線形光学効果を有する導
波路構造の非線形光学材料を提供することを目的とする
ものである。
However, this method has a drawback that it is difficult to adjust the MgO component ratio, and it is not easy to satisfy such a component ratio particularly in the crystal growth process by the sputtering method. The present invention has been made to solve such conventional problems, and provides a non-linear optical material having a waveguide structure that is non-doped, has a high optical damage threshold, and has a non-linear optical effect similar to that of LiNbO 3. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】本発明に係る非線形光学
材料にあっては、KNbO3 の屈折率よりも小さい屈折率
を有する基板上にKNbO3 薄膜結晶を堆積してなる非線
形光学材料において、前記KNbO3 薄膜結晶はスピネル
の{110 }面、水晶の{112 バー0 }面, {112 バー1
}面、KTP の{010 }面, {100 }面、又はMgOの{1
10}面のいずれかの面上に堆積してあることを特徴とす
る。
In the nonlinear optical material according to the present invention, in order to solve the problems], in the nonlinear optical material formed by depositing a KNbO 3 thin-film crystal on a substrate having a refractive index less than the refractive index of the KNbO 3, The KNbO 3 thin film crystal is a {110} plane of spinel, a {112 bar 0} plane of crystal, and a {112 bar 1 plane.
} Plane, KTP {010} plane, {100} plane, or MgO {1
It is characterized in that it is deposited on any one of the 10} planes.

【0007】[0007]

【作用】本発明にあってはスピネル,水晶,KTP(KTiO
PO4 ),又はMgOのいずれかで形成した基板表面にKNb
3 薄膜結晶を積層形成したから、格子不整合が小さく
で済み、また光に対する耐力が大幅に高められて光損傷
閾値が大きくなり、更に非線形光学定数も大きくなって
波長変換効果の向上が図れる。
[Function] In the present invention, spinel, crystal, KTP (KTiO)
KNb on the surface of the substrate formed by either PO 4 ) or MgO
Since the O 3 thin film crystal is laminated, the lattice mismatch is small, the proof stress against light is greatly increased, the optical damage threshold value is increased, and the nonlinear optical constant is also increased to improve the wavelength conversion effect. ..

【0008】[0008]

【実施例】以下本発明をその実施例を示す図面に基づき
具体的に説明する。 (実施例1)図1は本発明に係る薄膜導波路構造の非線
形光学材料を示す模式図であり、図中1は基板、2はK
NbO3 薄膜結晶からなる導波路を示している。基板1は
KNbO3 の屈折率よりも小さい屈折率を有する材料、例
えばスピネル(MgO・Al2 3 )で形成されており、そ
の(110) 面上にKNbO3 の薄膜結晶からなる導波路2を
RFマグネトロンスパッタ法等にて堆積してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. (Embodiment 1) FIG. 1 is a schematic view showing a nonlinear optical material of a thin film waveguide structure according to the present invention, in which 1 is a substrate and 2 is K.
It shows a waveguide made of NbO 3 thin film crystal. The substrate 1 is made of a material having a refractive index smaller than that of KNbO 3 , for example, spinel (MgO.Al 2 O 3 ), and a waveguide 2 made of a KNbO 3 thin film crystal on its (110) plane. To
It is deposited by the RF magnetron sputtering method or the like.

【0009】KNbO3 の薄膜結晶の堆積条件の一例を示
すと次のとおりである。スピネルは立方晶系に属し、格
子定数は常温で8.02Åであるが、先ずこの結晶を図2
(a) に示す如き(110) 面でカットして基板1を得る。図
2(a) はスピネルの単位格子及びその(110) 面を示す説
明図であり、図中3はスピネルの基本単位格子、4はス
ピネルの(110) 面(ハッチングを付して示す)である。
次にこの基板1をガス圧比Ar:O2 =1:1の雰囲気中
で約600 ℃に維持し、RFパワー密度約1w/cm2 で厚さ
1μm のKNbO3 単結晶の薄膜を堆積させる。
An example of the deposition conditions of KNbO 3 thin film crystals is as follows. Spinel belongs to the cubic system and has a lattice constant of 8.02Å at room temperature.
The substrate 1 is obtained by cutting along the (110) plane as shown in (a). FIG. 2 (a) is an explanatory view showing a unit cell of spinel and its (110) plane. In the figure, 3 is a basic unit cell of spinel, and 4 is a spinel (110) plane (shown by hatching). is there.
Next, this substrate 1 is maintained at about 600 ° C. in an atmosphere having a gas pressure ratio of Ar: O 2 = 1: 1, and a thin film of KNbO 3 single crystal having a RF power density of about 1 w / cm 2 and a thickness of 1 μm is deposited.

【0010】図2(b) はスピネルの酸素原子11と、スピ
ネルの(110) 面上に積層したKNbO3 薄膜結晶の酸素原
子12とを前者に後者を投影して示す説明図である。スピ
ネルの酸素原子11の配列は図2(d) に示す〔001 〕方向
に4.01Åの周期、また同じく〔11バー0 〕方向に2.84Å
の周期となっている。一方、KNbO3 の酸素原子12の配
列は図2(c) に示す如くb軸方向に3.97Åの周期、また
a軸方向に5.70Åの周期となっており、両者の格子不整
合は図2(b) に示す如くKNbO3 のb軸方向に1.0 %、
a軸方向に0.35%程度となり、相互の酸素原子の比較的
良好な整合が可能である。
FIG. 2B is an explanatory diagram showing oxygen atoms 11 of the spinel and oxygen atoms 12 of the KNbO 3 thin film crystal laminated on the (110) plane of the spinel, with the latter projected onto the former. The arrangement of spinel oxygen atoms 11 is 4.01Å in the [001] direction and 2.84Å in the [11 bar 0] direction as shown in Fig. 2 (d).
Has become a cycle. On the other hand, the arrangement of oxygen atoms 12 of KNbO 3 has a period of 3.97Å in the b-axis direction and a period of 5.70Å in the a-axis direction as shown in Fig. 2 (c). As shown in (b), 1.0% in the b-axis direction of KNbO 3 ,
It becomes about 0.35% in the a-axis direction, and relatively good matching of mutual oxygen atoms is possible.

【0011】なお上述の実施例ではスピネルの(110) 面
にKNbO3 薄膜結晶を積層形成した構成を示したが、こ
れに限らずこれと等価な面{110 }上であればよい。ま
たスピネルとしては混晶比が1:1のMgO・Al2 3
示したが、混晶比が他の割合のスピネルを使用してもよ
いことは勿論である。このような実施例1についてその
光損傷閾値を調べた結果、波長1.06μm の光に対して35
0MW /cm2 程度となることが確認された。
In the above-mentioned embodiments, the structure in which the KNbO 3 thin film crystal is formed on the (110) face of the spinel is shown, but the present invention is not limited to this, and the face {110} equivalent thereto may be used. Although MgO.Al 2 O 3 having a mixed crystal ratio of 1: 1 is shown as the spinel, it goes without saying that spinel having a different mixed crystal ratio may be used. As a result of investigating the light damage threshold value of Example 1 as described above, it was found that the light damage threshold value of 35
It was confirmed to be about 0 MW / cm 2 .

【0012】(実施例2)この実施例においては具体的
に図示していないが、基板として水晶を用い、水晶の(1
12バー0)面にLPE(液晶エピタキシャル)法を用いてKNb
3 薄膜結晶からなる導波路を積層形成した。KNbO3
薄膜結晶の堆積条件の一例を具体的数値と共に示すと以
下のとおりである。
(Embodiment 2) Although not specifically shown in this embodiment, quartz is used as the substrate and
KNb on the 12 bar 0) surface using LPE (liquid crystal epitaxial) method
Waveguides made of O 3 thin film crystals were laminated. KNbO 3
An example of the deposition conditions of the thin film crystal is shown below with specific numerical values.

【0013】先ず水晶を図3(a) に示す如き(112バー0)
面でカットして基板を得る。図3(a) は単位格子及びそ
の(112バー0)面を示す説明図であり、図中5は水晶の基
本単位格子、6は水晶の(112バー0)面(ハッチングを付
して示す)である。なお水晶の格子定数はa軸で4.91
Å,c軸で5.40Åであり、常温で三方晶であるが、等価
的に六方晶として表わすことが出来るから図3(a) にお
いては六方晶とみなして表わしてある。
First, the crystal is shown in FIG. 3 (a) (112 bar 0).
Cut the surface to obtain the substrate. FIG. 3 (a) is an explanatory view showing a unit lattice and its (112 bar 0) plane, in which 5 is a basic unit lattice of crystal, and 6 is a crystal (112 bar 0) plane (hatched and shown. ). The crystal lattice constant is 4.91 on the a-axis.
Å, 5.40Å on the c-axis, and is a trigonal crystal at room temperature, but since it can be equivalently expressed as a hexagonal crystal, it is represented as a hexagonal crystal in FIG. 3 (a).

【0014】次にこの基板とK2 O−Nb2 5 −V2
5 系の材料を用いてLPE 法により成長温度約1000℃で膜
厚1μm 以上のKNbO3 薄膜結晶(単結晶)を積層形成
した。なお水晶の(112バー0)面に限らず、これを含むこ
れと等価な{112 バー0 }面, 又は(112バー1)面, 又は
これを含む等価な{112 バー1 }面にKNbO3 薄膜結晶
を堆積しても同様の効果が得られる。
Next, this substrate and K 2 O--Nb 2 O 5 --V 2 O
A KNbO 3 thin film crystal (single crystal) having a film thickness of 1 μm or more was laminated by the LPE method using a 5 type material at a growth temperature of about 1000 ° C. Not only the (112 bar 0) plane of the crystal, but also the {112 bar 0} plane including this, or the (112 bar 1) plane, or the equivalent {112 bar 1} plane including this, KNbO 3 Similar effects can be obtained by depositing thin film crystals.

【0015】図3(b) は水晶の酸素原子13と、水晶の(1
12バー0)面上に堆積したKNbO3 薄膜結晶の酸素原子12
とを前者に後者を投影して示す説明図である。水晶の酸
素原子13の配列は図3(d) に示す〔0001〕方向に5.40Å
周期、また同じく〔11バー00〕方向に4.25Åの周期とな
っている。なおKNbO3 の酸素原子12の配列は実施例1
において示したとおりである。従って格子不整合はKNb
3 のa軸方向に5.5 %,b軸方向に7.0 %となり、水
晶とKNbO3 のa軸及びb軸上の酸素原子を整合させる
ことが可能である。
FIG. 3B shows the oxygen atom 13 of the crystal and (1
Oxygen atoms in KNbO 3 thin film crystal deposited on the (12 bar 0) plane 12
It is explanatory drawing which projects and shows the latter on the former. The arrangement of oxygen atoms 13 in the crystal is 5.40Å in the [0001] direction shown in Fig. 3 (d).
The cycle is also 4.25Å in the [11 bar 00] direction. The arrangement of oxygen atoms 12 of KNbO 3 is shown in Example 1.
As shown in. Therefore, the lattice mismatch is KNb
It becomes 5.5% in the a-axis direction of O 3 and 7.0% in the b-axis direction, and it is possible to match the oxygen atoms on the a-axis and the b-axis of quartz and KNbO 3 .

【0016】なお前述した実施例1においてはスピネル
を基板1とし、その(110) 面4にKNbO3 薄膜結晶の導
波路2を、また実施例2においては水晶を基板とし、そ
の(112バー0)面6にKNbO3 薄膜結晶を夫々積層形成し
た構成を説明したが、基板の材料は特にこれらに限るも
のではなくKTP(KTiOPO4 )、MgO等を用いてもよい。
基板としてKTP を用いる場合にはその(010) 面、(100)
面又はこれらと等価な{010 }面, {100 }面上に、ま
たMgOを用いる場合はその(110) 面又はこれと等価な
{110 }面上に夫々KNbO3 薄膜結晶を積層形成すれば
よい。
In the above-described Example 1, the spinel was used as the substrate 1, the waveguide 2 of KNbO 3 thin film crystal was used on the (110) plane 4 thereof, and in Example 2, quartz was used as the substrate (112 bar 0 ) The structure in which KNbO 3 thin film crystals are laminated on the surface 6 has been described, but the material of the substrate is not particularly limited to these, and KTP (KTiOPO 4 ), MgO or the like may be used.
If KTP is used as the substrate, its (010) plane, (100) plane
If KNbO 3 thin film crystals are laminated on the planes or their equivalent {010} planes, {100} planes, and when MgO is used, on their (110) planes or their equivalent {110} planes. Good.

【0017】次に基板として上記した如きスピネル(Mg
O・Al2 3 ),水晶(SiO2 ),KTP,MgOを用いた時
の格子不整合は表1に示すとおりである。
Next, as a substrate, spinel (Mg
Table 1 shows the lattice mismatch when O · Al 2 O 3 ), quartz (SiO 2 ), KTP, and MgO are used.

【0018】[0018]

【表1】 [Table 1]

【0019】また本発明に係る非線形光学材料と従来の
非線形光学材料との非線形光学定数(pm/V)は表2に
示すとおりである。
The nonlinear optical constants (pm / V) of the nonlinear optical material according to the present invention and the conventional nonlinear optical material are shown in Table 2.

【0020】 [0020]

【0021】[0021]

【発明の効果】以上の如く本発明に係る非線形光学材料
にあっては、KNbO3 の屈折率よりも小さい屈折率を有
する基板上にKNbO3 薄膜結晶を積層形成してあるか
ら、KNbO3 薄膜結晶の強誘電性が損なわれるレベルた
る光損傷閾値が大きくなり、しかも非線形光学定数も大
きく、波長変換素子,光スイッチ,光変調器等に用いて
優れた特性が得られる等、本発明は優れた効果を奏する
ものである。
In the nonlinear optical material according to the present invention as described above, according to the present invention, since a KNbO 3 thin-film crystal on a substrate having a refractive index less than the refractive index of the KNbO 3 are then stacked, KNbO 3 thin film The present invention is excellent in that the optical damage threshold, which is the level at which the ferroelectricity of the crystal is impaired, is increased, the nonlinear optical constant is also large, and excellent characteristics are obtained when used in wavelength conversion elements, optical switches, optical modulators, etc. It has a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非線形光学材料の模式図である。FIG. 1 is a schematic view of a nonlinear optical material according to the present invention.

【図2】スピネルの単位格子及び酸素原子の整合態様を
示す説明図である。
FIG. 2 is an explanatory diagram showing a matching mode of a unit cell of spinel and oxygen atoms.

【図3】水晶の単位格子及び酸素原子の整合態様を示す
説明図である。
FIG. 3 is an explanatory diagram showing a matching mode of a unit cell of quartz and oxygen atoms.

【符号の説明】[Explanation of symbols]

1 基板 2 KNbO3 薄膜結晶からなる導波路 3 スピネルの単位格子 4 スピネルの(110) 面 5 水晶の単位格子 6 水晶の(112バー0)面 11 スピネルの酸素原子 12 KNbO3 薄膜結晶の酸素原子 13 水晶の酸素原子1 substrate 2 waveguide consisting of KNbO 3 thin film crystal 3 unit cell of spinel 4 (110) face of spinel 5 unit lattice of crystal 6 (112 bar 0) face of crystal 11 oxygen atom of spinel 12 oxygen atom of KNbO 3 thin film crystal 13 Quartz oxygen atoms

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野中 英幸 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 山口 隆夫 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideyuki Nonaka 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Takao Yamaguchi 2-18th Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 KNbO3 の屈折率よりも小さい屈折率を
有する基板上にKNbO3 薄膜結晶からなる導波路を積層
してなる非線形光学材料において、前記導波路であるK
NbO3 薄膜結晶は基板であるスピネルの{110 }面、水
晶の{112 バー0 }面, {112 バー1 }面、KTP の{01
0 }面, {100 }面、又はMgOの{110 }面のいずれか
の面上に堆積してあることを特徴とする非線形光学材
料。
1. A nonlinear optical material formed by laminating a waveguide made of KNbO 3 thin-film crystal on a substrate having a refractive index less than the refractive index of the KNbO 3, which is the waveguide K
NbO 3 thin film crystals are spinel {110} planes, crystal {112 bar 0} planes, {112 bar 1} planes, and KTP {01} planes.
A non-linear optical material characterized by being deposited on any of the 0} plane, the {100} plane, or the MgO {110} plane.
JP27004991A 1991-09-20 1991-09-20 Nonlinear optical material Expired - Fee Related JP2966600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27004991A JP2966600B2 (en) 1991-09-20 1991-09-20 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27004991A JP2966600B2 (en) 1991-09-20 1991-09-20 Nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH0580376A true JPH0580376A (en) 1993-04-02
JP2966600B2 JP2966600B2 (en) 1999-10-25

Family

ID=17480816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27004991A Expired - Fee Related JP2966600B2 (en) 1991-09-20 1991-09-20 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2966600B2 (en)

Also Published As

Publication number Publication date
JP2966600B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP3462265B2 (en) Wavelength conversion element
US5158823A (en) Second harmonic wave generating device
Tien et al. Research in optical films for the applications of integrated optics
JP2966600B2 (en) Nonlinear optical material
US5227011A (en) Method for producing a second harmonic wave generating device
JPH11335199A (en) Production of single crystal membrane
US5363462A (en) Multilayer waveguide using a nonlinear LiNb Ta1-x O3 optical film
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP2502818B2 (en) Optical wavelength conversion element
JP3896145B2 (en) Optical waveguide material and optical waveguide
JPH06305888A (en) Thin-film waveguide crystal and its production
WO2022264426A1 (en) Method for forming lithium niobate crystal thin film, and laminate including lithium niobate crystal thin film
JP3552135B2 (en) Waveguide and wavelength conversion element using the same
JP2945107B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH05264840A (en) Optical waveguide
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JP2001264554A (en) Optical device
JP3203003B2 (en) Optical wavelength conversion element
JPH06281829A (en) Single mode optical waveguide
JPH0812490A (en) Production of single crystal film
Chow Microstructural and optical characterization of potassium niobate thin films
JP2973463B2 (en) Optical waveguide device
JP3029062B2 (en) Single crystalline thin film and method for producing the same
JPH05216082A (en) Production of optical waveguide and production of optical wavelength conversion element
JPH0412094A (en) Thin film of lithium niobate single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees