JPH0580353A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0580353A
JPH0580353A JP24081991A JP24081991A JPH0580353A JP H0580353 A JPH0580353 A JP H0580353A JP 24081991 A JP24081991 A JP 24081991A JP 24081991 A JP24081991 A JP 24081991A JP H0580353 A JPH0580353 A JP H0580353A
Authority
JP
Japan
Prior art keywords
pixel electrode
electrode
signal line
liquid crystal
signal lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24081991A
Other languages
Japanese (ja)
Other versions
JP3046413B2 (en
Inventor
Tomomasa Ueda
知正 上田
友信 ▲もたい▼
Tomonobu Motai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24081991A priority Critical patent/JP3046413B2/en
Publication of JPH0580353A publication Critical patent/JPH0580353A/en
Application granted granted Critical
Publication of JP3046413B2 publication Critical patent/JP3046413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a liquid crystal display device where the dispersion of parasitic capacity between a picture element electrode and a signal is eliminated, and the deterioration of image quality on a screen is restrained to improve the uniformity. CONSTITUTION:This liquid crystal display device is provided with the signal lines plurally arranged in a row direction, scanning lines 3 plurally arranged in a column direction, a picture element electrode 1 arranged in an area surrounded by a signal line 2 and the scanning line 3, and a thin film transistor 4 which is connected between the electrode 1 and the signal line 2 and whose gate electrode is connected to the scanning line 3. In the liquid crystal display device, respective distances (da) and (db) between the electrode 1 and the two signal lines 2 adjacent to the electrode 1 are made different, and respective electrostatic capacities Cds1 and Cds2 between the electrode 1 and the two signal lines 2 adjacent to the electrode 1 are made equal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置に係わ
り、特に画素電極−信号線間の寄生容量を考慮した液晶
表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device considering the parasitic capacitance between a pixel electrode and a signal line.

【0002】[0002]

【従来の技術】近年、薄型軽量の表示装置として液晶デ
ィスプレイの開発が活発に行われている。なかでも、高
画質,高精細を実現する方式として、薄膜トランジスタ
アレイを用いた液晶ディスプレイの研究がなされてお
り、CRTに代わるディスプレイとして期待されてい
る。
2. Description of the Related Art In recent years, liquid crystal displays have been actively developed as thin and lightweight display devices. Among them, as a method for realizing high image quality and high definition, research on a liquid crystal display using a thin film transistor array has been made, and it is expected as a display replacing a CRT.

【0003】液晶ディスプレイに用いる薄膜トランジス
タアレイは、図13に示す等価回路で表わされる。走査
線(ゲート線)が選択された時間だけ、スイッチング素
子である薄膜トランジスタがオンとなり、画素電極と対
向電極に挟まれた液晶で形成されるコンデンサ(CLC
と、アレイ基板上に作り込まれた補助容量(CS )と
が、信号線の電圧によって充電される。走査線の非選択
時は、CLC,CS のリーク電流に応じて画素電位が保持
される。
A thin film transistor array used in a liquid crystal display is represented by an equivalent circuit shown in FIG. Only when the scanning line (gate line) is selected, the thin film transistor, which is a switching element, is turned on, and the capacitor (C LC ) formed by the liquid crystal sandwiched between the pixel electrode and the counter electrode.
And the auxiliary capacitance (C S ) formed on the array substrate are charged by the voltage of the signal line. When the scanning line is not selected, the pixel potential is held according to the leak currents of C LC and C S.

【0004】薄膜トランジスタアレイでは、寄生容量で
ある画素電極−走査線間の静電容量(Cgs)を考慮しな
ければならないことが分かっている。Cgsは薄膜トラン
ジスタアレイの構造上、主にゲート電極とソース電極の
重なり部分によって形成される。この寄生容量により保
持中の画素電位は、走査線の電位変動の影響を受け、走
査線のパルスの立ち下がり時に付け抜け電圧と呼ばれる
電位変化が生じる。
It is known that in the thin film transistor array, the electrostatic capacitance (Cgs) between the pixel electrode and the scanning line, which is a parasitic capacitance, must be taken into consideration. Due to the structure of the thin film transistor array, Cgs is mainly formed by the overlapping portion of the gate electrode and the source electrode. Due to the parasitic capacitance, the pixel potential being held is affected by the potential fluctuation of the scanning line, and a potential change called a through voltage occurs when the pulse of the scanning line falls.

【0005】また、薄膜トランジスタアレイで考慮しな
ければならない寄生容量には、Cgsの他に画素電極−信
号線間の静電容量(Cds)がある。Cdsはアレイ構造
上、主に画素電極と信号線が隣接する部分で形成され
る。一般には、図14に示すように画素電極1は2本の
信号線2で囲まれており、それぞれ一つの画素電極1に
対して信号線21 ,22 との間にCds1,Cds2が形成
される。画素電極−信号線間の距離が近付くほど、さら
に隣接する部分が長いほど容量は大きくなり、その形状
や材料によって容量は決まる。また、画素電極1と信号
線2のマスク合わせずれによってその相対位置が変わる
と、それぞれのCdsが変化する。なお、図14におい
て、3はゲート線(走査線)、4は薄膜トランジスタ、
5は補助容量電極を示している。
In addition to Cgs, the parasitic capacitance that must be taken into consideration in the thin film transistor array includes the electrostatic capacitance (Cds) between the pixel electrode and the signal line. Cds is mainly formed in a portion where the pixel electrode and the signal line are adjacent to each other due to the array structure. Generally, the pixel electrode 1 is surrounded by two signal lines 2 as shown in FIG. 14, and Cds1 and Cds2 are formed between the signal lines 2 1 and 2 2 for each pixel electrode 1. To be done. The smaller the distance between the pixel electrode and the signal line, and the longer the adjacent portion, the larger the capacitance becomes, and the capacitance is determined by the shape and material. Further, when the relative positions of the pixel electrode 1 and the signal line 2 change due to the mask misalignment, the respective Cds change. In FIG. 14, 3 is a gate line (scanning line), 4 is a thin film transistor,
Reference numeral 5 indicates an auxiliary capacitance electrode.

【0006】ここで、画素電極−信号線間の寄生容量を
考慮した画素電位の変動ΔVPXは、次式で示される。 ΔVPX=(Cds1×ΔVsig 1+Cds2+ΔVsig 2) /(CLC+CS +Cgs+Cds1+Cds2)
Here, the fluctuation ΔV PX of the pixel potential considering the parasitic capacitance between the pixel electrode and the signal line is expressed by the following equation. ΔV PX = (Cds1 × ΔVsig 1 + Cds2 + ΔVsig 2) / (C LC + C S + Cgs + Cds1 + Cds2)

【0007】従って、信号線の電位が変化する毎に画素
電極の電位は変動する。液晶は基本的には交流駆動しな
ければならず、対向電極に対して画素電極の電位、即ち
信号線電位を反転させなければならない。そのためΔV
sig は、信号線の極性を反転させた時が最も大きくな
る。実際の画素電位の変動の様子は、駆動方法により次
のように変わる。
Therefore, the potential of the pixel electrode changes every time the potential of the signal line changes. The liquid crystal must basically be driven by an alternating current, and the potential of the pixel electrode, that is, the signal line potential must be inverted with respect to the counter electrode. Therefore ΔV
sig becomes maximum when the polarity of the signal line is reversed. The actual variation of the pixel potential changes depending on the driving method as follows.

【0008】まず、全ての信号線の極性を対向電極に対
して同一とし、その極性をフレーム毎に反転させた場合
(フレーム反転)の画素電位の変化を、図15に示す。
静電容量Cds1,Cds2を形成する2本の信号線は同じ
方向にその極性が反転する。この場合、当然フレーム毎
に反転したときの信号線の電位変化が最も大きく、画素
を書き込んで信号線が反転するまでの時間が、画面の上
下(信号線方向)で違うため、液晶にかかる実効電圧に
差が出て、上下方向に輝度差が現われる。またCds1+
Cds2のばらつきは画面の左右方向でも均一性を損なう
原因となる。
First, FIG. 15 shows a change in pixel potential when all the signal lines have the same polarity with respect to the counter electrode and the polarities are inverted every frame (frame inversion).
The polarities of the two signal lines forming the electrostatic capacitances Cds1 and Cds2 are inverted in the same direction. In this case, of course, the potential change of the signal line when reversing every frame is the largest, and the time until the signal line is reversed after writing a pixel is different depending on the top and bottom of the screen (signal line direction). There is a difference in voltage, and a difference in brightness appears in the vertical direction. Also Cds1 +
The variation of Cds2 causes a loss of uniformity even in the horizontal direction of the screen.

【0009】次に、隣り合う信号線を逆極性とし、その
極性をフレーム毎に反転させた場合(信号線反転)の画
素電位の変化を、図16に示す。Cds1,Cds2を形成
する2本の信号線は逆方向にその極性が反転する。この
場合は、フレーム反転に比べて、2本の信号線からの影
響が相殺するため画素電位の変動が幾らか抑えられるこ
とが分かる。しかしながら、Cds1 とCds2の値が大き
く違うと、その効果は減少する。
FIG. 16 shows a change in pixel potential when adjacent signal lines have opposite polarities and the polarities are inverted for each frame (signal line inversion). The polarities of the two signal lines forming Cds1 and Cds2 are inverted in opposite directions. In this case, it can be seen that the fluctuation of the pixel potential can be suppressed to some extent as compared with the case of the frame inversion, because the influences from the two signal lines are canceled out. However, if the values of Cds1 and Cds2 are significantly different, the effect is reduced.

【0010】また、隣り合う信号線を逆極性とし、その
極性を1走査毎に反転させた場合(信号線・走査線反
転)の画素電位の変化を、図17に示す。Cds1,Cds
2を形成する2本の信号線は、逆方向にその極性が1走
査毎に反転する。この場合には、1走査毎に信号線の極
性の反転が起こり、画素電位が小刻みに大きく変動する
が、保持時間中の液晶の表示はある実効電圧で決まるた
め、信号線反転の場合に比べ上下方向での輝度差は現わ
れない。しかしながら、Cds1とCds2が大きく違う
と、保持時間中の電位変動が大きく、さらにCds1とC
ds2のばらつきは均一性を損なう原因になる。またこの
駆動方法は信号線駆動回路が高価なものとなる。
FIG. 17 shows changes in pixel potential when adjacent signal lines have opposite polarities and the polarities are inverted every scan (signal line / scan line inversion). Cds1, Cds
The polarities of the two signal lines forming 2 are reversed in the opposite direction for each scanning. In this case, the polarity of the signal line is inverted every scan, and the pixel potential fluctuates greatly, but the liquid crystal display during the holding time is determined by a certain effective voltage. There is no difference in brightness in the vertical direction. However, if Cds1 and Cds2 are significantly different, the potential fluctuation during the holding time is large, and further Cds1 and Cds2
The variation of ds2 causes the loss of uniformity. Further, in this driving method, the signal line driving circuit becomes expensive.

【0011】近年、液晶ディスプレイの大面積化,高精
細化によって、一画素の占める面積が小さくなってい
る。従って、液晶容量(CLC)や補助容量(CS )が小
さくなり、また信号線−画素電極間の距離が小さくなる
と、これまでは考慮されなかった画素電極−信号線間の
寄生容量が相対的に大きくなり、これが画面に与える影
響が大きくなってくる。また、製造上の問題で、例えば
露光機の解像力やマスク合わせ精度のためにトランジス
タの大きさはある大きさ以下にできないため、一画素で
のトランジスタの占める面積が大きくなり、左右での信
号線と画素電極の接する長さが変わってきて、Cds1,
Cds2の大きさの違いが、表示画像の劣化や均一性を損
なう原因となってくる。
In recent years, the area occupied by one pixel has become smaller due to the increase in area and higher definition of liquid crystal displays. Therefore, when the liquid crystal capacitance (C LC ) and the auxiliary capacitance (C S ) become small and the distance between the signal line and the pixel electrode becomes small, the parasitic capacitance between the pixel electrode and the signal line, which has not been considered so far, becomes relatively large. The larger the effect, the greater the impact on the screen. Also, due to manufacturing problems, for example, the size of the transistor cannot be less than a certain size due to the resolving power of the exposure machine and the mask alignment accuracy, so the area occupied by the transistor in one pixel becomes large, and the signal line on the left and right And the contact length of the pixel electrode has changed, Cds1,
The difference in the size of Cds2 causes deterioration of the display image and loss of uniformity.

【0012】[0012]

【発明が解決しようとする課題】このように従来、薄膜
トランジスタアレイを用いた液晶表示装置においては、
画素電極−信号線間の寄生容量のばらつきが、画質の劣
化及び均一性の低下を招く要因となっていた。
As described above, in the conventional liquid crystal display device using the thin film transistor array,
The variation in the parasitic capacitance between the pixel electrode and the signal line has been a factor causing deterioration of image quality and deterioration of uniformity.

【0013】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、画素電極−信号線間の
寄生容量のばらつきをなくすことができ、画面内での画
質の劣化を抑えて均一性の向上をはかり得る液晶表示装
置を提供することにある。
The present invention has been made in consideration of the above circumstances. An object of the present invention is to eliminate variations in parasitic capacitance between the pixel electrode and the signal line and to prevent deterioration of image quality on the screen. It is an object of the present invention to provide a liquid crystal display device that can suppress and improve the uniformity.

【0014】[0014]

【課題を解決するための手段】本発明の骨子は、画素電
極と隣接する2本の信号線間の静電容量を等しくするこ
とにある。
The essence of the present invention is to equalize the electrostatic capacitance between the pixel electrode and two adjacent signal lines.

【0015】即ち本発明は、行方向又は列方向に複数本
配列された信号線と、これらの信号線と直交する方向に
複数本配列された走査線と、信号線及び走査線で囲まれ
た領域にそれぞれ配置された画素電極と、画素電極と信
号線との間に接続され、そのゲート電極が走査線に接続
された薄膜トランジスタとを具備した液晶表示装置にお
いて、画素電極と該電極に隣接する2本の信号線間の各
距離を異ならせるか、又は画素電極の一部に信号線との
容量調整部を設けることによって、画素電極と該電極に
隣接する2本の信号線間の各静電容量が等しくなるよう
にしたものである。
That is, according to the present invention, a plurality of signal lines arranged in the row direction or the column direction, a plurality of scanning lines arranged in a direction orthogonal to these signal lines, and a signal line and a scanning line are surrounded. In a liquid crystal display device including a pixel electrode arranged in each region and a thin film transistor connected between the pixel electrode and a signal line and having a gate electrode connected to a scanning line, the pixel electrode is adjacent to the pixel electrode The distance between the two signal lines is made different, or a capacitance adjusting portion for the signal line is provided in a part of the pixel electrode, so that the static electricity between the pixel electrode and the two signal lines adjacent to the pixel electrode is reduced. The electric capacities are made equal.

【0016】[0016]

【作用】一画素毎に薄膜トランジスタを形成する場合、
画素電極が薄膜トランジスタと重ならないように、トラ
ンジスタ形成領域を避けて画素電極を形成することが望
ましい。一般には、薄膜トランジスタは信号線及び走査
線で囲まれた領域の角部に形成される。この場合、画素
電極に隣接する2本の信号線と画素電極との近接部分の
長さが相互に異なったものとなり、従来のように画素電
極とこれに隣接する2本の信号線間の距離が等しいと、
これらの間の静電容量は異なったものとなる。
When a thin film transistor is formed for each pixel,
It is desirable to form the pixel electrode while avoiding the transistor formation region so that the pixel electrode does not overlap with the thin film transistor. Generally, the thin film transistor is formed at a corner portion of a region surrounded by the signal line and the scan line. In this case, the lengths of the two signal lines adjacent to the pixel electrode and the proximity portion of the pixel electrode are different from each other, and the distance between the pixel electrode and the two signal lines adjacent thereto is different from the conventional one. Are equal,
The capacitance between them will be different.

【0017】本発明では、薄膜トランジスタの形成によ
り画素電極と2本の信号線との近接する辺の長さが相互
に異なる場合にも、画素電極とこれに隣接する2本の信
号線間の各距離を異ならせる、即ち薄膜トランジスタが
存在する方で近接距離を短くすることにより、画素電極
と該電極に隣接する信号線間の各静電容量を等しくする
ことができる。従って、画素電極と隣接する2本の信号
線間の寄生容量のばらつきをなくし、画像の均一性を向
上させることができる。
According to the present invention, even if the lengths of the adjacent sides of the pixel electrode and the two signal lines are different from each other due to the formation of the thin film transistor, the distance between the pixel electrode and the two signal lines adjacent thereto is reduced. By making the distance different, that is, by reducing the proximity distance in the presence of the thin film transistor, it is possible to equalize the respective capacitances between the pixel electrode and the signal line adjacent to the electrode. Therefore, it is possible to eliminate the variation in the parasitic capacitance between the two signal lines adjacent to the pixel electrode and improve the uniformity of the image.

【0018】また、画素電極の一部に信号線との容量調
整部を設けることによって、画素電極と信号線を形成す
る際のマスク合わせのずれによる電極配置の変化が起こ
っても、これを自動的に補正して静電容量の変化をなく
すことができる。このため、従来技術と比べて、さらに
高画質な液晶表示装置の形成が可能となる。
Further, by providing a capacitance adjusting portion for the signal line on a part of the pixel electrode, even if the electrode arrangement is changed due to the misalignment of the mask when forming the pixel electrode and the signal line, this is automatically adjusted. It is possible to eliminate the change in the electrostatic capacity by correcting the change. Therefore, it is possible to form a liquid crystal display device having higher image quality than the conventional technique.

【0019】[0019]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。
The details of the present invention will be described below with reference to the illustrated embodiments.

【0020】図1は、本発明の第1の実施例に係わる液
晶ディスプレイの1画素構成を示す平面図である。図中
1は液晶ディスプレイの1画素を構成する画素電極、2
は信号線、3はゲート線(走査線)、4は画素電極1と
信号線2との間に接続されゲート線によりオン・オフ性
御される薄膜トランジスタ、5は補助容量電極を示して
いる。
FIG. 1 is a plan view showing a one-pixel configuration of a liquid crystal display according to the first embodiment of the present invention. In the figure, 1 is a pixel electrode which constitutes one pixel of a liquid crystal display, 2
Is a signal line, 3 is a gate line (scanning line), 4 is a thin film transistor which is connected between the pixel electrode 1 and the signal line 2 and is turned on / off by the gate line, and 5 is an auxiliary capacitance electrode.

【0021】基本的な構成は従来装置と同様であるが、
本実施例装置が従来装置と異なる点は、画素電極1とこ
れに隣接する2本の信号線2との間の距離da,dbを
異ならせたことにある。即ち、画素電極1は薄膜トラン
ジスタ4の形成により、左右で信号線と近接する辺の長
さがLa,Lb(La>Lb)と異なっており、daと
dbが同じ距離であれば、画素電極1と隣接する2本の
信号線との静電容量は異なったものとなる。そこで本実
施例では、距離daをdbよりも長くして各々の静電容
量が等しくなるようにしている。
The basic structure is the same as the conventional device,
The device of this embodiment is different from the conventional device in that the distances da and db between the pixel electrode 1 and the two signal lines 2 adjacent thereto are different. That is, in the pixel electrode 1, the lengths of sides adjacent to the signal line are different from La and Lb (La> Lb) due to the formation of the thin film transistor 4, and if da and db are the same distance, the pixel electrode 1 And two signal lines adjacent to each other have different capacitances. Therefore, in this embodiment, the distance da is made longer than db so that the respective capacitances become equal.

【0022】上記の液晶ディスプレイは、次のようにし
て構成される。まず、ガラス基板上にMo−Ta合金を
200nm形成し、これをパターニングしてゲート線及
びゲート電極を形成する。続いて、第1の絶縁膜として
SiOxを300nm、SiNxを50nm形成し、さ
らに連続してa−Siを50nm、保護膜としてSiN
xを150nmプラズマCVD法で形成する。
The above liquid crystal display is constructed as follows. First, a Mo—Ta alloy having a thickness of 200 nm is formed on a glass substrate and patterned to form a gate line and a gate electrode. Subsequently, SiOx having a thickness of 300 nm and SiNx having a thickness of 50 nm are formed as a first insulating film, a-Si having a thickness of 50 nm is continuously formed, and SiN is used as a protective film.
x is formed by a 150 nm plasma CVD method.

【0023】次いで、保護膜のSiNxを島状にパター
ニングし、ソース,ドレイン領域のオーミックコンタク
ト層である燐等の不純物をドープしたn+ a−Siを5
0nm形成したのち、a−Si層を島状にパターニング
する。さらに、ITOを100nm形成し、島状にパタ
ーニングして画素電極を形成した後、ゲート電極の端子
部分の上の第1の絶縁膜であるSiOxをエッチング除
去する。
Next, SiNx of the protective film is patterned into an island shape, and n + is doped with impurities such as phosphorus which are ohmic contact layers of the source and drain regions. a-Si is 5
After forming 0 nm, the a-Si layer is patterned into an island shape. Further, ITO is formed to a thickness of 100 nm and patterned into an island shape to form a pixel electrode, and then SiOx which is the first insulating film on the terminal portion of the gate electrode is removed by etching.

【0024】しかるのち、ソース・ドレイン電極金属と
してCr,Alをそれぞれ50,350nm形成し、信
号線及びソース・ドレイン電極を形成し、ソース・ドレ
イン電極金属をマスクとしてn+ a−Siをエッチング
除去しソース・ドレイン電極金属を電気的に分離し、薄
膜トランジスタアレイを形成する。
[0024] accordingly After, n Cr as the source and drain electrode metal, Al and each 50,350nm formation, to form a signal line and the source-drain electrodes, the source and drain electrode metal as a mask + The a-Si is removed by etching to electrically separate the source / drain electrode metals to form a thin film transistor array.

【0025】ここで、画素電極1であるITOと、信号
線2であるCr,Alの形状は、近接する部分の間隙を
左右で意図的に変化させ、画素電極1とこれに隣接する
2本の信号線2間の静電容量が等しくなるようにした。
この場合、例えば (La−Lb)/(La+Lb)≧0.1 の場合に、 da≧db×1.5 にすることによって顕著な効果が得られた。
Here, the shapes of ITO which is the pixel electrode 1 and Cr and Al which are the signal lines 2 intentionally change the gap between the adjacent portions to the left and right, and the pixel electrode 1 and the two adjacent to it. The electrostatic capacitances between the signal lines 2 are made equal.
In this case, for example, when (La−Lb) / (La + Lb) ≧ 0.1, a remarkable effect was obtained by setting da ≧ db × 1.5.

【0026】このように本実施例によれば、薄膜トラン
ジスタ4の形成によって信号線2と近接する画素電極1
の各辺の長さLa,Lbが異なる場合(La>Lb)に
おいて、Laの方の距離daをLbの方の距離dbより
も長くしているので、薄膜トランジスタ4の存在によ
り、画素電極1とこれに隣接する2本の信号線2間の各
静電容量を等しくすることができる。このため、寄生容
量のばらつきに起因する画質の劣化及び均一性の低下を
防止することができ、高品質の画像表示を行うことがで
きる。特に、アクティブマトリックス型液晶ディスプレ
イに応用した場合に、表示の均一化に対して大きな効果
を有する。図2は、本発明の第2の実施例の要部構成を
示す平面図である。なお、図1と同一部分には同一符号
を付して、その詳しい説明は省略する。
As described above, according to this embodiment, by forming the thin film transistor 4, the pixel electrode 1 close to the signal line 2 is formed.
When the lengths La and Lb of each side are different (La> Lb), the distance da toward La is longer than the distance db toward Lb. It is possible to equalize the respective capacitances between the two signal lines 2 adjacent to this. Therefore, it is possible to prevent the deterioration of the image quality and the deterioration of the uniformity due to the variation of the parasitic capacitance, and it is possible to display a high quality image. In particular, when it is applied to an active matrix type liquid crystal display, it has a great effect on the uniformity of display. FIG. 2 is a plan view showing the configuration of the main part of the second embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0027】この実施例が先に説明した第1の実施例と
異なる点は、薄膜トランジスタを形成していない方の辺
において、画素電極−信号線間距離を一部変化させたも
のである。即ち、画素電極1の薄膜トランジスタ4を形
成していない辺において、長さLa′の部分では信号線
2との距離da′をda(da=db)よりも長くして
いる。この場合、例えば (La−Lb)/(La+Lb)≧0.1 の場合に、 La−La′≦Lb da′≧da×1.4 において顕著な効果が得られた。
The difference of this embodiment from the first embodiment described above is that the distance between the pixel electrode and the signal line is partially changed on the side where the thin film transistor is not formed. That is, on the side of the pixel electrode 1 where the thin film transistor 4 is not formed, the distance da ′ to the signal line 2 is longer than da (da = db) in the portion of length La ′. In this case, for example, in the case of (La-Lb) / (La + Lb) ≧ 0.1, a remarkable effect was obtained when La−La ′ ≦ Lb da ′ ≧ da × 1.4.

【0028】図3は、本発明の第3の実施例の要部構成
を示す平面図である。この場合は、信号線2に突起部分
を設け画素電極1と2本の信号線2が隣接する部分の長
さを等しくすることで静電容量を等しくしている。この
場合も、例えば (La−Lb)/(La+Lb)≧0.1 の場合に (La−Lb−Lb′)/(La+Lb)≦0.1 にすることによって顕著な効果が得られた。また、この
突起部分は光遮蔽や信号線の断線のリペア部として用い
ることもできた。
FIG. 3 is a plan view showing the structure of the main part of the third embodiment of the present invention. In this case, the electrostatic capacitance is made equal by providing a protruding portion on the signal line 2 and making the lengths of the portions where the pixel electrode 1 and the two signal lines 2 are adjacent to each other equal. Also in this case, for example, when (La−Lb) / (La + Lb) ≧ 0.1, a remarkable effect was obtained by setting (La−Lb−Lb ′) / (La + Lb) ≦ 0.1. Further, this protruding portion could be used as a light shield or a repair portion for disconnection of a signal line.

【0029】上記の3つの実施例において上記数式から
外れても効果を持つことは言うまでもない。さらに、こ
れらの3つの実施例を適宜組み合わせて用いることも可
能である。図4は、本発明の第4の実施例の要部構成を
示す平面図である。なお、図1と同一部分には同一符号
を付して、その詳しい説明は省略する。
It goes without saying that there is an effect even if the above-mentioned three embodiments deviate from the above formulas. Furthermore, it is also possible to use these three embodiments in combination as appropriate. FIG. 4 is a plan view showing the configuration of the main part of the fourth embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0030】この実施例では、画素電極1であるITO
と、信号線2であるCr,Alの形状は、画素電極1と
隣接する2本の信号線2間の静電容量が等しくなるよう
に、先の実施例と同様に設計されており、さらに画素電
極1の一部と信号線2に接続された配線からインターデ
ジタル電極形状となる補正部分7を形成している。この
補正部分7は、画素電極1と信号線2の間隙で画素電極
1が信号線方向に近付いたときに、画素電極1と信号線
2(配線)間が離れるようになっている。このため、画
素電極1と信号線2の位置ずれによる画素電極1と信号
線2の静電容量の変化を補正し一定に保つようになって
いる。本実施例では、補正部分7においては、画素電極
1と信号線2間の距離が、主な信号線2と画素電極1の
距離よりも短くなっている。
In this embodiment, ITO which is the pixel electrode 1 is used.
The shape of Cr and Al that are the signal lines 2 is designed in the same manner as in the previous embodiment so that the capacitance between the pixel electrode 1 and two adjacent signal lines 2 is equal. A correction portion 7 having an interdigital electrode shape is formed from a part of the pixel electrode 1 and a wiring connected to the signal line 2. In the correction portion 7, when the pixel electrode 1 approaches the signal line direction in the gap between the pixel electrode 1 and the signal line 2, the pixel electrode 1 and the signal line 2 (wiring) are separated from each other. Therefore, the change in the electrostatic capacitance between the pixel electrode 1 and the signal line 2 due to the positional displacement between the pixel electrode 1 and the signal line 2 is corrected and kept constant. In the present embodiment, in the correction portion 7, the distance between the pixel electrode 1 and the signal line 2 is shorter than the distance between the main signal line 2 and the pixel electrode 1.

【0031】このような構成であれば、先の実施例と同
様に画素電極1とこれに隣接する2本の信号線2間の各
静電容量を等しくできるのは勿論のこと、画素電極1と
信号線2とのマスク合わせずれによる静電容量の変化を
未然に防止することができ、より高画質な液晶画像を得
ることが可能となる。
With such a configuration, it is needless to say that the capacitances between the pixel electrode 1 and the two signal lines 2 adjacent to the pixel electrode 1 can be equalized, as in the previous embodiment. It is possible to prevent the capacitance from changing due to the mask misalignment between the signal line 2 and the signal line 2, and it is possible to obtain a higher quality liquid crystal image.

【0032】図5〜7は、本発明の第5〜第7の実施例
の要部構成を示す平面図である。これらの実施例は、基
本的には第4の実施例と同様である。図5に示す第5の
実施例では、補正部分7をトランジスタ4の近くに形成
している。図6に示す第6の実施例でも、補正部分7を
トランジスタ4の近くに形成している。また、図7に示
す第7の実施例では、補正部分7を補助容量電極5の上
に形成している。つまり、補正する部分の形成位置は、
アレイ基板と対向基板の重ね合わせ精度を考えるとディ
スプレイにしたときの開口率を向上させるには、薄膜ト
ランジスタ,ゲート線,信号線の近くやCS 電極上など
が望ましい。図8は、本発明の第8の実施例の要部構成
を示す平面図である。なお、図4と同一部分には同一符
号を付して、その詳しい説明は省略する。
5 to 7 are plan views showing the construction of the essential parts of the fifth to seventh embodiments of the present invention. These embodiments are basically the same as the fourth embodiment. In the fifth embodiment shown in FIG. 5, the correction portion 7 is formed near the transistor 4. Also in the sixth embodiment shown in FIG. 6, the correction portion 7 is formed near the transistor 4. Further, in the seventh embodiment shown in FIG. 7, the correction portion 7 is formed on the auxiliary capacitance electrode 5. That is, the formation position of the portion to be corrected is
Considering the overlay accuracy of the array substrate and the counter substrate, in order to improve the aperture ratio in a display, it is desirable to be near a thin film transistor, a gate line, a signal line, or on a C S electrode. FIG. 8 is a plan view showing the configuration of the essential parts of the eighth embodiment of the present invention. The same parts as those in FIG. 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0033】この実施例が先の第4の実施例と異なる点
は、補正部分7において、画素電極1と信号線2とが一
部重なるように形成し、より少ない面積で補正を行うこ
とにある。また、信号線と画素電極による短絡不良を大
幅に軽減することができる。具体的には、次のようにし
て形成される。
The difference between this embodiment and the fourth embodiment is that the pixel electrode 1 and the signal line 2 are formed so as to partially overlap each other in the correction portion 7, and correction is performed with a smaller area. is there. In addition, it is possible to significantly reduce a short circuit defect due to the signal line and the pixel electrode. Specifically, it is formed as follows.

【0034】まず、ガラス基板上にTaを300nm形
成し、これをパターニングしてゲート線及びゲート電極
を形成する。続いて、ゲート電極であるTaの表層を陽
極酸化しTaOxとし、さらに絶縁膜として第1のSi
Oxを170nm形成する。次いで、SiOx上にIT
Oを100nm形成し、島状にパターニングして画素電
極を形成した後、第2のSiOxを170nm、SiN
xを50nm形成し、連続してa−Siを50nm、保
護膜としてSiNxを150nmプラズマCVDで形成
する。続いて、保護膜のSiNxを島状にパターニング
し、ソース・ドレイン領域のオーミックコンタクト層で
ある燐等の不純物をドープしたn+ a−Siを50nm
形成した後、a−Si層を島状にパターニングする。
First, 300 nm of Ta is formed on a glass substrate and patterned to form a gate line and a gate electrode. Subsequently, the surface layer of Ta, which is the gate electrode, is anodized to TaOx, and the first Si is used as an insulating film.
Ox is formed to 170 nm. Then IT on SiOx
After forming O to a thickness of 100 nm to form a pixel electrode by patterning in an island shape, second SiOx is formed to a thickness of 170 nm and SiN.
x is formed to a thickness of 50 nm, a-Si is formed to a thickness of 50 nm, and SiNx is formed to a protective film by plasma CVD of 150 nm. Then, SiNx of the protective film is patterned into an island shape, and n + is doped with impurities such as phosphorus, which is an ohmic contact layer of the source / drain regions. a-Si 50nm
After the formation, the a-Si layer is patterned into an island shape.

【0035】次いで、画素電極上の第1のSiOxと共
に、ゲート電極の端子部分の上の第1,第2のSiOx
を同時にエッチング除去する。しかるのち、先の第1の
実施例と同様に信号線及びソース・ドレイン電極を形成
し、さらにn+ a−Siを選択エッチングして薄膜トラ
ンジスタアレイを完成する。
Next, together with the first SiOx on the pixel electrode, the first and second SiOx on the terminal portion of the gate electrode.
Are simultaneously removed by etching. Then, similarly to the first embodiment, the signal line and the source / drain electrodes are formed, and n + The thin film transistor array is completed by selectively etching a-Si.

【0036】図9は、本発明の第9の実施例の要部構成
を示す平面図であり、(a)は1画素部分、(b)は
(a)の補正部分を拡大して示している。なお、図8と
同一部分には同一符号を付して、その詳しい説明は省略
する。
FIG. 9 is a plan view showing the structure of the essential part of the ninth embodiment of the present invention. FIG. 9A is an enlarged view of one pixel portion, and FIG. 9B is an enlarged view of the correction portion of FIG. There is. The same parts as those in FIG. 8 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0037】この実施例は基本的には第8の実施例と同
様であるが、特に補正部分7における画素電極1と信号
線2との重なり部分の形状を工夫している。即ち、補正
部分7における信号線2の一部に斜辺を形成し、画素電
極1と信号線2とのずれによる容量変化がずれの変化に
よって変化するようにしている。従ってこの実施例で
は、補正部分7における補正の範囲を広くすることがで
きる。また、画素電極1と信号線2とのマスク合わせず
れによる容量変化を、より少ない面積で補正することが
可能となる。
This embodiment is basically the same as the eighth embodiment, but the shape of the overlapping portion of the pixel electrode 1 and the signal line 2 in the correction portion 7 is particularly devised. That is, the hypotenuse is formed in a part of the signal line 2 in the correction portion 7 so that the capacitance change due to the shift between the pixel electrode 1 and the signal line 2 is changed by the shift shift. Therefore, in this embodiment, the correction range in the correction portion 7 can be widened. Further, it is possible to correct the capacitance change due to the mask misalignment between the pixel electrode 1 and the signal line 2 with a smaller area.

【0038】図10〜12は、本発明の第10〜12の
実施例の要部構成を示す図である。これらの実施例は、
基本的には第9の実施例と同様である。図10に示す第
10の実施例では、上下方向の位置のずれに対しても画
素電極1と信号線2の静電容量の変化を補正し一定に保
つようになっている。図11に示す第11の実施例で
は、斜辺部を複数個設け、補正の範囲をより広くしてい
る。
10 to 12 are views showing the construction of the essential parts of the tenth to twelfth embodiments of the present invention. These examples
Basically, it is similar to the ninth embodiment. In the tenth embodiment shown in FIG. 10, changes in the electrostatic capacitances of the pixel electrodes 1 and the signal lines 2 are corrected and kept constant even with respect to displacement in the vertical direction. In the eleventh embodiment shown in FIG. 11, a plurality of hypotenuses are provided to widen the correction range.

【0039】また、図12に示す第12の実施例は、画
素電極1と信号線2の重なり部分で層間ショートを対策
した一例である。なお、図12(a)は平面図、(b)
は(a)の矢視A−A′断面図である。
The twelfth embodiment shown in FIG. 12 is an example in which an interlayer short circuit is taken at the overlapping portion of the pixel electrode 1 and the signal line 2. Note that FIG. 12A is a plan view and FIG.
FIG. 7A is a sectional view taken along the line AA ′ in (a).

【0040】第8の実施例では信号線と画素電極の重な
り部分は170μmのSiOxで絶縁されているが、1
層の絶縁層ではピンホール等による欠陥により信号線・
画素電極間ショートが僅かだが発生していた。この実施
例では重なり部分の絶縁膜としてSiOx170μmと
TaOxの陽極酸化膜の2層を用いることで、層間ショ
ートによる不良を殆どなくすことができた。
In the eighth embodiment, the overlapping portion of the signal line and the pixel electrode is insulated by 170 μm of SiOx.
Insulating layer of the signal line due to defects such as pinholes
A slight short circuit between pixel electrodes occurred. In this embodiment, by using two layers of SiOx 170 μm and TaOx anodic oxide film as the insulating film in the overlapping portion, it was possible to almost eliminate defects due to interlayer short circuit.

【0041】なお、本発明は上述した各実施例に限定さ
れるものではなく、その要旨を逸脱しない範囲で、種々
変形して実施することができる。例えば、実施例で説明
したトランジスタ構造,膜材料,アレイパターン等は一
例に過ぎず、仕様に応じて適宜変更可能である。また、
実施例では位置のずれ方向をある位置方向を仮定して説
明したが、左右上下あらゆる方向のずれに対しても補正
可能であることは勿論である。
The present invention is not limited to the above-described embodiments, and various modifications can be carried out without departing from the scope of the invention. For example, the transistor structure, film material, array pattern, etc. described in the embodiments are merely examples, and can be appropriately changed according to the specifications. Also,
In the embodiment, the position shift direction has been described assuming a certain position direction, but it is needless to say that it is possible to correct shifts in all the left, right, up, and down directions.

【0042】[0042]

【発明の効果】以上述べたように本発明によれば、画素
電極とこれに隣接する2本の信号線間の静電容量を等し
くすることにより、画素電極−信号線間の寄生容量のば
らつきをなくすことができ、画面内での画質の劣化を抑
えて均一性の向上をはかり得る液晶表示装置を実現する
ことが可能となる。また、画素電極の一部に信号線との
容量調整部を設けることにより、画素電極と信号線を形
成する際のマスク合わせのずれによる電極配置の変化を
自動的に補正して静電容量の変化をなくすことができ、
これにより更に高画質な液晶表示装置を実現することが
可能となる。
As described above, according to the present invention, the electrostatic capacitance between the pixel electrode and the two signal lines adjacent to the pixel electrode is made equal, so that the variation in the parasitic capacitance between the pixel electrode and the signal line. Therefore, it becomes possible to realize a liquid crystal display device capable of suppressing the deterioration of the image quality on the screen and improving the uniformity. In addition, by providing a capacitance adjusting portion for the signal line in a part of the pixel electrode, the change in the electrode arrangement due to the misalignment of the mask when forming the pixel electrode and the signal line is automatically corrected to adjust the capacitance. You can eliminate the change,
This makes it possible to realize a liquid crystal display device with higher image quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わる液晶ディスプレイの1画
素構成を示す平面図、
FIG. 1 is a plan view showing a one-pixel configuration of a liquid crystal display according to a first embodiment,

【図2】第2の実施例の要部構成を示す平面図、FIG. 2 is a plan view showing the configuration of the main part of the second embodiment,

【図3】第3の実施例の要部構成を示す平面図、FIG. 3 is a plan view showing a configuration of a main part of a third embodiment,

【図4】第4の実施例の要部構成を示す平面図、FIG. 4 is a plan view showing the configuration of the main part of a fourth embodiment,

【図5】第5の実施例の要部構成を示す平面図、FIG. 5 is a plan view showing the main configuration of the fifth embodiment,

【図6】第6の実施例の要部構成を示す平面図、FIG. 6 is a plan view showing the configuration of the main part of a sixth embodiment,

【図7】第7の実施例の要部構成を示す平面図、FIG. 7 is a plan view showing the main configuration of a seventh embodiment,

【図8】第8の実施例の要部構成を示す平面図、FIG. 8 is a plan view showing the configuration of the main parts of an eighth embodiment,

【図9】第9の実施例の要部構成を示す平面図、FIG. 9 is a plan view showing the main configuration of a ninth embodiment,

【図10】第10の実施例の要部構成を示す平面図、FIG. 10 is a plan view showing the configuration of the main parts of the tenth embodiment,

【図11】第11の実施例の要部構成を示す平面図、FIG. 11 is a plan view showing the configuration of the main parts of the eleventh embodiment,

【図12】第11の実施例の要部構成を示す平面図及び
断面図、
FIG. 12 is a plan view and a sectional view showing the configuration of the essential parts of the eleventh embodiment;

【図13】薄膜トランジスタアレイの等価回路図、FIG. 13 is an equivalent circuit diagram of a thin film transistor array,

【図14】薄膜トランジスタアレイの構成例を示す平面
図、
FIG. 14 is a plan view showing a configuration example of a thin film transistor array,

【図15】フレーム反転の場合の画素電位の変化を示す
特性図、
FIG. 15 is a characteristic diagram showing changes in pixel potential in the case of frame inversion.

【図16】信号線反転の場合の画素電位の変化を示す特
性図、
FIG. 16 is a characteristic diagram showing a change in pixel potential in the case of signal line inversion,

【図17】信号線・走査線反転の場合の画素電位の変化
を示す特性図。
FIG. 17 is a characteristic diagram showing changes in pixel potential in the case of signal line / scan line inversion.

【符号の説明】[Explanation of symbols]

1…画素電極、 2…信号線、 3…走査線(ゲート線)、 4…薄膜トランジスタ、 5…補助容量電極、 7…補正部分。 DESCRIPTION OF SYMBOLS 1 ... Pixel electrode, 2 ... Signal line, 3 ... Scan line (gate line), 4 ... Thin film transistor, 5 ... Auxiliary capacity electrode, 7 ... Correction part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】行方向又は列方向に複数本配列された信号
線と、これらの信号線と直交する方向に複数本配列され
た走査線と、前記信号線及び走査線で囲まれた領域にそ
れぞれ配置された画素電極と、前記画素電極と信号線と
の間に接続され、且つ前記走査線にゲート電極が接続さ
れた薄膜トランジスタとを具備した液晶表示装置におい
て、 前記画素電極と該電極に隣接する2本の信号線間の各距
離を異ならせるか、又は前記画素電極の一部に信号線と
の容量調整部を設けて、画素電極と該電極に隣接する2
本の信号線間の各静電容量を等しくしてなることを特徴
とする液晶表示装置。
1. A plurality of signal lines arranged in a row direction or a column direction, a plurality of scanning lines arranged in a direction orthogonal to the signal lines, and a region surrounded by the signal lines and the scanning lines. In a liquid crystal display device, each of which is provided with a pixel electrode and a thin film transistor connected between the pixel electrode and a signal line and having a gate electrode connected to the scanning line, wherein the pixel electrode and the electrode are adjacent to each other. The distance between the two signal lines is different, or a capacitance adjusting part for the signal line is provided in a part of the pixel electrode, and
A liquid crystal display device, wherein each of the signal lines has an equal capacitance.
JP24081991A 1991-09-20 1991-09-20 Liquid crystal display Expired - Fee Related JP3046413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24081991A JP3046413B2 (en) 1991-09-20 1991-09-20 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24081991A JP3046413B2 (en) 1991-09-20 1991-09-20 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0580353A true JPH0580353A (en) 1993-04-02
JP3046413B2 JP3046413B2 (en) 2000-05-29

Family

ID=17065170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24081991A Expired - Fee Related JP3046413B2 (en) 1991-09-20 1991-09-20 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3046413B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922023A (en) * 1995-07-06 1997-01-21 Toshiba Corp Active matrix liquid crystal display device
JP2003140180A (en) * 2001-11-02 2003-05-14 Seiko Instruments Inc Liquid crystal display device
KR100394402B1 (en) * 2000-03-02 2003-08-09 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device having stabilized pixel electrode potentials
US6717630B1 (en) 1998-09-25 2004-04-06 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same
JP2007249240A (en) * 2002-11-11 2007-09-27 Lg Philips Lcd Co Ltd Liquid crystal display panel
WO2009087705A1 (en) * 2008-01-10 2009-07-16 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
US7834946B2 (en) 2006-03-30 2010-11-16 Sharp Kabushiki Kaisha Display device and color filter substrate
JP2011008217A (en) * 2009-06-24 2011-01-13 Chunghwa Picture Tubes Ltd Pixel set
EP2423739A1 (en) * 2010-08-30 2012-02-29 Hitachi Displays, Ltd. Display device
JP2014074798A (en) * 2012-10-04 2014-04-24 Japan Display Inc Liquid crystal display device
KR20150101983A (en) * 2015-08-25 2015-09-04 하이디스 테크놀로지 주식회사 Liquid crystal display device
TWI600952B (en) * 2013-09-24 2017-10-01 海帝士科技公司 Liquid crystal display device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922023A (en) * 1995-07-06 1997-01-21 Toshiba Corp Active matrix liquid crystal display device
US6717630B1 (en) 1998-09-25 2004-04-06 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same
KR100394402B1 (en) * 2000-03-02 2003-08-09 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display device having stabilized pixel electrode potentials
JP2003140180A (en) * 2001-11-02 2003-05-14 Seiko Instruments Inc Liquid crystal display device
JP2007249240A (en) * 2002-11-11 2007-09-27 Lg Philips Lcd Co Ltd Liquid crystal display panel
US7834946B2 (en) 2006-03-30 2010-11-16 Sharp Kabushiki Kaisha Display device and color filter substrate
US8274464B2 (en) 2008-01-10 2012-09-25 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
WO2009087705A1 (en) * 2008-01-10 2009-07-16 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
EP2230657A1 (en) * 2008-01-10 2010-09-22 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
EP2230657A4 (en) * 2008-01-10 2011-07-20 Sharp Kk Active matrix substrate and liquid crystal display device
JP5149910B2 (en) * 2008-01-10 2013-02-20 シャープ株式会社 Active matrix substrate and liquid crystal display device
JP2011008217A (en) * 2009-06-24 2011-01-13 Chunghwa Picture Tubes Ltd Pixel set
EP2423739A1 (en) * 2010-08-30 2012-02-29 Hitachi Displays, Ltd. Display device
CN102385203A (en) * 2010-08-30 2012-03-21 株式会社日立显示器 Display device
JP2012048088A (en) * 2010-08-30 2012-03-08 Hitachi Displays Ltd Display device
KR101277387B1 (en) * 2010-08-30 2013-06-20 파나소닉 액정 디스플레이 주식회사 Display device
US8624830B2 (en) 2010-08-30 2014-01-07 Hitachi Displays, Ltd. Display device with arrangement to reduce fluctuations in brightness of pixels caused by parasitic capacitance
JP2014074798A (en) * 2012-10-04 2014-04-24 Japan Display Inc Liquid crystal display device
US9530369B2 (en) 2012-10-04 2016-12-27 Japan Display Inc. Liquid crystal display device
TWI600952B (en) * 2013-09-24 2017-10-01 海帝士科技公司 Liquid crystal display device
KR20150101983A (en) * 2015-08-25 2015-09-04 하이디스 테크놀로지 주식회사 Liquid crystal display device

Also Published As

Publication number Publication date
JP3046413B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
US10217434B2 (en) Display device and driving method thereof
US10223958B2 (en) Display device and driving method thereof
KR100242225B1 (en) Liquid crystal display
JP3036513B2 (en) Liquid crystal display
KR100535531B1 (en) Tft-lcd device
US6717630B1 (en) Liquid crystal display device and method of fabricating the same
US20080180355A1 (en) Array substrate and display apparatus having the same
JP3046413B2 (en) Liquid crystal display
US6927807B2 (en) Liquid crystal display device
JP4703258B2 (en) Thin film transistor substrate and liquid crystal display panel
JPH0263020A (en) Active matrix type liquid crystal display element
US7548283B2 (en) Active matrix structure for display screen and screen comprising one such matrix
JP3527168B2 (en) Liquid crystal display
KR100205378B1 (en) Active matrix liquid crystal display element
JPH08211406A (en) Active matrix display element
JP3778411B2 (en) Active matrix type liquid crystal display device and pixel defect correcting method thereof
JP2007264656A (en) Active matrix type display device
JP4801835B2 (en) Electrode substrate for display device
JPH0566415A (en) Active matrix type liquid crystal display device
JP2862739B2 (en) Liquid crystal display
JPH11202369A (en) Liquid crystal display device and production thereof
JPH0480723A (en) Active matrix type liquid crystal display device
KR200380682Y1 (en) Tft-lcd device
TWI542924B (en) Liquid crystal displays
JPH09269503A (en) Liquid crystal display device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees