JPH0580035A - Ultrasonic flaw detector for civil engineering construction - Google Patents

Ultrasonic flaw detector for civil engineering construction

Info

Publication number
JPH0580035A
JPH0580035A JP3242945A JP24294591A JPH0580035A JP H0580035 A JPH0580035 A JP H0580035A JP 3242945 A JP3242945 A JP 3242945A JP 24294591 A JP24294591 A JP 24294591A JP H0580035 A JPH0580035 A JP H0580035A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
civil engineering
tire
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3242945A
Other languages
Japanese (ja)
Other versions
JP2931453B2 (en
Inventor
Shinichi Takeuchi
真一 竹内
Kinuko Kato
衣子 加藤
Ryohei Mogi
良平 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP3242945A priority Critical patent/JP2931453B2/en
Publication of JPH0580035A publication Critical patent/JPH0580035A/en
Application granted granted Critical
Publication of JP2931453B2 publication Critical patent/JP2931453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To facilitate accurate judgment with efficient measuring work by enabling the obtaining of a section image of an object to be inspected continuously concerning an ultrasonic flaw detector of a civil engineering construction for non-destructive inspection of internal condition of the civil engineering construction such as asphalt paved road or the like. CONSTITUTION:A tire probe 5 with ultrasonic probes 1 and 2 for transmitting and receiving is made to run over an inspection surface 4 of an object 3 to be inspected to display an image based on a brightness signal corresponding to a receiving level according to a vertical sweep signal corresponding to a propagation speed and a horizontal sweep signal corresponding to a running range of a tire on a screen. The previous images displayed on a CRT display device 16 are stored and the previous images are shown on the CRT display device 16 together with an image obtained in real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アスファルト舗装道路
等の土木建築構造物の内部の状態を非破壊検査する土木
建築構造物の超音波探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detector for civil engineering structures for nondestructive inspection of the internal condition of civil engineering structures such as asphalt pavements.

【0002】[0002]

【従来の技術】従来、アスファルト舗装道路等の施工後
の非破壊検査を行う超音波探傷装置は、図3に示すよう
に検査対象物3に直接接触させるタイプの送信用超音波
探触子1と受信用超音波探触子2を使用し、検査対象面
4と超音波探触子1,2の間に水、グリセリン、スピン
ドル油等の音響カップリング材24を介在させ、送信機
20の送信動作によって受信機21から得られた超音波
受信波形をオシロスコープ23で観測して判読し、空洞
等の欠陥が存在するか否かの内部状態の推定を行ってい
る。
2. Description of the Related Art Conventionally, an ultrasonic flaw detector for performing nondestructive inspection after construction of an asphalt pavement or the like has a transmitting ultrasonic probe 1 of a type that directly contacts an inspection object 3 as shown in FIG. And the ultrasonic probe 2 for reception are used, and an acoustic coupling material 24 such as water, glycerin, or spindle oil is interposed between the surface 4 to be inspected and the ultrasonic probes 1 and 2, and the transmitter 20 The ultrasonic wave reception waveform obtained from the receiver 21 by the transmission operation is observed and read by the oscilloscope 23 to estimate the internal state of whether or not there is a defect such as a cavity.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の土木建築物を対象とした超音波探傷装置にあ
っては、受信波形から空洞等の欠陥を判読するために相
当な経験と熟練が必要であり、また内部状態を十分に捕
えするためには欠陥が存在すると思われた場所で測定点
を何回も変えて波形を観測する多点測定が必要であり、
測定点を変えるたびに音響カップリング材を塗布して超
音波探触子を設置しなおす必要があり、測定に多大な時
間を要している。
However, in such a conventional ultrasonic flaw detector for civil engineering buildings, considerable experience and skill are required to read defects such as cavities from the received waveform. It is necessary, and in order to fully capture the internal state, it is necessary to change the measurement points many times at the location where defects are considered to exist and observe the waveform at multiple points,
Each time the measurement point is changed, it is necessary to apply an acoustic coupling material and re-install the ultrasonic probe, which requires a lot of time for measurement.

【0004】また1つの測定点で検査できる範囲は比較
的狭いため、施工道路の全てを検査することは不可能で
あり、測定点を絞り込んで検査せざるを得ず、検査の信
頼性が必ずしも保証されないという問題があった。本発
明は、このような従来の問題点に鑑みてなされたもの
で、検査対象物の断層像を連続して得られるようにして
測定作業が効率良くできると共に正確な判断が容易にで
きる土木建築物の超音波探傷装置を提供することを目的
とする。
Further, since the range that can be inspected at one measuring point is relatively narrow, it is impossible to inspect all the construction roads, and it is necessary to narrow down the measuring points to inspect, and the reliability of the inspection is not always required. There was a problem that it was not guaranteed. The present invention has been made in view of the above-mentioned conventional problems, and civil engineering and construction in which a tomographic image of an inspection object can be continuously obtained and measurement work can be efficiently performed and accurate determination can be easily performed. An object is to provide an ultrasonic flaw detector for an object.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
本発明による土木建築物の超音波探傷装置は、媒質液の
中に下向きに送受信用超音波探触子を配置したタイヤ探
触子と、低周波送信信号により前記送信用超音波探触子
を一定周期毎に駆動して検査対象物に超音波を送信させ
る送信回路部と、受信用探触子の受信信号を受信し、受
信レベルに応じた輝度信号に変換する受信回路部と、送
信動作に同期して対象物における超音波の伝播速度に基
づく掃引速度で垂直掃引信号を発生する垂直掃引回路
と、タイヤ探触子の回転数を検出する回転数検出器と、
回転数検出器の検出回転数から走行距離を演算する走行
距離演算回路と、走行距離演算回路で求めた走行距離に
応じてCRT画面の水平軸での掃引位置を決める水平掃
引回路と、受信回路部からの輝度信号による画像を前記
垂直掃引信号と水平掃引信号に基づいて画面上に表示す
るCRT表示装置と、CRT表示装置に表示された過去
の画像を記憶し、リアルタイムで得られる画像と共に過
去の画像をCRT表示装置に表示させる画像記憶装置と
を備えたことを特徴とする。
In order to achieve this object, an ultrasonic flaw detector for civil engineering buildings according to the present invention comprises a tire probe in which a transmitting / receiving ultrasonic probe is arranged downward in a liquid medium. A transmitting circuit unit that drives the transmitting ultrasonic probe at a constant cycle by a low-frequency transmitting signal to transmit an ultrasonic wave to an inspection target; and a receiving level of a receiving signal of the receiving probe. , A vertical sweep circuit that generates a vertical sweep signal at a sweep speed based on the propagation speed of ultrasonic waves in the object in synchronization with the transmission operation, and a rotation speed of the tire probe. A rotation speed detector for detecting
A mileage calculation circuit that calculates a mileage from the rotation speed detected by the rotation speed detector, a horizontal sweep circuit that determines the sweep position on the horizontal axis of the CRT screen according to the mileage calculated by the mileage calculation circuit, and a reception circuit A CRT display device for displaying an image based on a luminance signal from the display unit on the screen based on the vertical sweep signal and the horizontal sweep signal, and a past image displayed on the CRT display device are stored. And an image storage device for displaying the image of 1. on a CRT display device.

【0006】ここでタイヤ探触子は、送信用超音波探触
子と受信用超音波探触子の2つを備えた2探触子法によ
り距離分解能を高める。
Here, the tire probe improves the distance resolution by a two-probe method provided with two ultrasonic probes for transmission and ultrasonic probes for reception.

【0007】[0007]

【作用】このような構成を備えた本発明の土木建築物の
超音波探傷装置によれば、タイヤ探触子を検査対象とな
る例えば施工済みのアスファルト舗装道路の路面上を走
行させると、装置のCRT画面上に、横軸を走行距離と
した検査対象物の断層像が連続的に表示され、この断層
像から内部の状態が容易に判り、空洞等の欠陥を確実に
発見することができる。
According to the ultrasonic flaw detector for civil engineering buildings of the present invention having such a configuration, when the tire probe is run on the road surface of an asphalt pavement road to be inspected, for example, On the CRT screen, a tomographic image of the inspection object with the travel distance on the horizontal axis is continuously displayed, the internal state can be easily understood from this tomographic image, and defects such as cavities can be reliably found. ..

【0008】[0008]

【実施例】図1は本発明の一実施例を示した実施例構成
図である。図1において、5はタイヤ探触子であり、ウ
レタンゴム等で作られたタイヤ25の内部に送信用超音
波探触子1と受信用超音波探触子2を下向きに並べて配
置しており、タイヤ25の内部には媒質液として例えば
水が充満されている。
FIG. 1 is a block diagram of an embodiment showing one embodiment of the present invention. In FIG. 1, reference numeral 5 denotes a tire probe in which a transmitting ultrasonic probe 1 and a receiving ultrasonic probe 2 are arranged side by side inside a tire 25 made of urethane rubber or the like. The tire 25 is filled with water, for example, as a liquid medium.

【0009】ここで、検査対象物3を道路、ビル壁面等
の土木建築構造物とした場合、超音波の減衰散乱が大き
いので、例えば20KHz〜100KHzの範囲の低い
周波数を使用しなくてはならない。例えば使用周波数f
としてf=30KHzとしたとすると、検査対象物3を
伝播する音速は約3000m/sとなるため、波長が約
10cmとなる。
Here, when the inspection object 3 is a civil engineering building structure such as a road or a wall surface of a building, since the attenuation and scattering of ultrasonic waves is large, it is necessary to use a low frequency in the range of 20 KHz to 100 KHz, for example. .. For example, the used frequency f
Assuming that f = 30 KHz, the speed of sound propagating through the inspection object 3 is about 3000 m / s, and the wavelength is about 10 cm.

【0010】このため、送受信を1つの超音波探触子で
行う1探触子法では少なくとも波長に相当する10cm
程度のデッドゾーン(検査不能領域)が発生する。そこ
で本発明にあっては、このデッドゾーンの発生を避ける
ため、送信用超音波探触子1と受信用超音波探触子2を
用いた2探触子法を採用している。送信用超音波探触子
1に対する送信回路部としてトリガ回路7及び送信回路
8が設けられる。トリガ回路7は制御回路6によるタイ
ミング制御を受けて一定の測定周期毎に送信トリガ信号
を送信回路8に出力する。送信回路8はトリガ信号を受
けた時に一定時間幅の送信パルスを作り出し、この送信
パルスで使用周波数f=30KHzを振幅変調した送信
信号を送信用超音波探触子1に供給する。
Therefore, in the one-probe method in which transmission and reception are performed by one ultrasonic probe, at least 10 cm corresponding to the wavelength is used.
A certain amount of dead zone (uninspectable area) occurs. Therefore, in the present invention, in order to avoid the occurrence of this dead zone, the two-probe method using the transmitting ultrasonic probe 1 and the receiving ultrasonic probe 2 is adopted. A trigger circuit 7 and a transmission circuit 8 are provided as a transmission circuit unit for the transmission ultrasonic probe 1. The trigger circuit 7 receives the timing control by the control circuit 6 and outputs a transmission trigger signal to the transmission circuit 8 at constant measurement intervals. When receiving the trigger signal, the transmission circuit 8 creates a transmission pulse having a fixed time width, and supplies the transmission ultrasonic probe 1 with a transmission signal which is amplitude-modulated with the use frequency f = 30 KHz.

【0011】タイヤ探触子5に設けた受信用超音波探触
子2からの超音波エコーに基づく受信信号は受信回路9
に供給され、信号増幅,ノイズ除去のフィルタリング等
を施した後、信号処理回路10に供給される。勿論、受
信回路9に対する受信信号は制御回路6からの送信タイ
ミングを与える信号によりゲートが掛けられ、ゲート有
効期間に得られた受信信号のみを出力する。
The reception signal based on the ultrasonic echo from the receiving ultrasonic probe 2 provided in the tire probe 5 is received by the receiving circuit 9.
Is supplied to the signal processing circuit 10 after being subjected to signal amplification, noise removal filtering, and the like. Of course, the received signal to the receiving circuit 9 is gated by the signal that gives the transmission timing from the control circuit 6, and only the received signal obtained during the gate effective period is output.

【0012】信号処理回路10は受信信号に所定の信号
処理を施して送信波長10cm以内の位置についても距
離分解能が得られるようにする。即ち、検査対象物4の
検査対象となる深さまたは厚さは5〜10cm程度とな
ることが多く、超音波の使用波長と同程度となる。従っ
て、使用波長以下の距離分解能が要求される。信号処理
回路10で距離分解能を高める処理が施された受信信号
は輝度変調回路11に与えられ、受信レベルに応じた輝
度信号に変換され、CRT表示装置16に供給される。
The signal processing circuit 10 performs predetermined signal processing on the received signal so that distance resolution can be obtained even at a position within a transmission wavelength of 10 cm. That is, the depth or thickness of the inspection object 4 to be inspected is often about 5 to 10 cm, which is about the same as the wavelength used for ultrasonic waves. Therefore, a distance resolution equal to or less than the used wavelength is required. The received signal that has been subjected to the processing for increasing the distance resolution in the signal processing circuit 10 is given to the luminance modulation circuit 11, converted into a luminance signal according to the received level, and supplied to the CRT display device 16.

【0013】また、トリガ回路7からのトリガ信号は垂
直掃引回路12に供給され、垂直掃引周期を設定する。
垂直掃引回路12は検査対象物3内を伝播する超音波の
音速約3000m/sで決まる掃引速度をもつ垂直掃引
信号をCRT表示装置16に出力する。更に、タイヤ探
触子5の走行に伴うタイヤ25の回転数を検出するタイ
ヤ回転数検出器13が設けられる。タイヤ回転数検出器
13の検出回転数は走行距離演算回路14に与えられ、
タイヤ25の径が決まっていることからタイヤ回転数を
用いて走行距離を演算する。
The trigger signal from the trigger circuit 7 is supplied to the vertical sweep circuit 12 to set the vertical sweep cycle.
The vertical sweep circuit 12 outputs to the CRT display device 16 a vertical sweep signal having a sweep speed determined by the speed of sound of ultrasonic waves propagating in the inspection object 3 at about 3000 m / s. Furthermore, a tire rotation speed detector 13 that detects the rotation speed of the tire 25 as the tire probe 5 travels is provided. The detected rotation speed of the tire rotation speed detector 13 is given to the mileage calculation circuit 14,
Since the diameter of the tire 25 is fixed, the traveling distance is calculated using the tire rotation speed.

【0014】タイヤ回転数検出器13及び走行距離演算
回路14は測定開始時に制御回路6から供給されるイニ
シャルリセット信号を受けて検出回転数=0、走行距離
=0の初期状態となる。走行距離演算回路14で演算さ
れた走行距離は水平掃引回路15に供給される。水平掃
引回路15はタイヤ探触子5の走行距離に応じたCRT
表示装置の水平位置を表示位置として指定する水平掃引
信号を出力する。
The tire rotation speed detector 13 and the traveling distance calculation circuit 14 receive the initial reset signal supplied from the control circuit 6 at the start of measurement, and are in the initial state of detected rotation speed = 0 and traveling distance = 0. The travel distance calculated by the travel distance calculation circuit 14 is supplied to the horizontal sweep circuit 15. The horizontal sweep circuit 15 is a CRT according to the traveling distance of the tire probe 5.
A horizontal sweep signal that specifies the horizontal position of the display device as the display position is output.

【0015】CRT表示装置16は制御回路6による測
定周期毎に輝度変調回路11から出力される超音波エコ
ーデータとしての変調信号を水平掃引回路15からの水
平掃引信号で決まる水平方向の走行距離に応じた位置に
おいて、垂直掃引回路12からの垂直掃引信号による垂
直走査に従って縦方向の掃引線による1ライン分の画像
表示を行う。
In the CRT display device 16, the modulation signal as ultrasonic echo data output from the brightness modulation circuit 11 at each measurement cycle by the control circuit 6 is set to a horizontal traveling distance determined by the horizontal sweep signal from the horizontal sweep circuit 15. At a corresponding position, one line of image is displayed by a vertical sweep line in accordance with vertical scanning by the vertical sweep signal from the vertical sweep circuit 12.

【0016】CRT表示装置16に対し画像記憶装置1
8を設け、過去に掃引された画像データを画像記憶装置
18に順次記憶し、現在の走行位置即ち水平位置より以
前の過去の画像データを画像記憶装置18より読み出し
てCRT表示装置16に表示するようにしており、これ
によってタイヤ探触子5の走行による連続的な断層像を
表示することができる。
Image storage device 1 for CRT display device 16
8, the image data swept in the past is sequentially stored in the image storage device 18, and the past image data before the current traveling position, that is, the horizontal position is read from the image storage device 18 and displayed on the CRT display device 16. By doing so, it is possible to display continuous tomographic images as the tire probe 5 travels.

【0017】図2は図1の実施例におけるCRT表示装
置16の表示動作を示した説明図である。図2(a)は
測定開始時の画面を示しており、現在位置を示すマーカ
30により垂直1ライン分の深さ方向の画像データが表
示されている。この測定開始時からタイヤ探触子5を走
行して時間が経過すると、リアルタイムで得られる1垂
直ライン分の画像データは順番に画像記憶装置18に格
納され、例えば図2(b)に示す現在位置を示すマーカ
30の位置に進んだ場合にはマーカ30で示すリアルタ
イム画像に加え、それまでに記憶された画像記憶装置1
8からの記憶画像が併せて表示されることになり、この
連続的な断層像により、例えば断層像の中に空洞等の欠
陥32があることが簡単に分かる。
FIG. 2 is an explanatory view showing the display operation of the CRT display device 16 in the embodiment of FIG. FIG. 2A shows a screen at the start of measurement, in which image data in the depth direction for one vertical line is displayed by the marker 30 indicating the current position. When time elapses after the tire probe 5 is run from the start of this measurement, the image data for one vertical line obtained in real time is sequentially stored in the image storage device 18, for example, as shown in FIG. When the position of the marker 30 indicating the position is reached, in addition to the real-time image indicated by the marker 30, the image storage device 1 stored up to that time is displayed.
The stored images from 8 are also displayed, and the continuous tomographic images make it easy to see that there are defects 32 such as cavities in the tomographic images.

【0018】実際の検査作業にあっては、例えばアスフ
ァルト舗装道路等を例にとると、最初は自動車等により
タイヤ探触子5を備えた本発明の超音波探傷装置を牽引
して比較的早い速度で探傷作業を行い、この探傷作業で
得られた断層像から欠陥を見つけ、欠陥があると思われ
る場所について次に作業員等がゆっくりとタイヤ探触子
5を走行させて水平方向の分解能が高い精密な断層像を
取得し、これによって欠陥の存在を確認するようにな
る。
In the actual inspection work, taking an asphalt pavement as an example, the ultrasonic flaw detector of the present invention equipped with the tire probe 5 is first pulled relatively quickly by an automobile or the like. The flaw detection work is performed at a high speed, a defect is found from the tomographic image obtained by this flaw detection work, and then a worker or the like slowly runs the tire probe 5 at a position where there is a possibility that there is a defect and the horizontal resolution is obtained. A high-accuracy tomographic image is acquired to confirm the existence of defects.

【0019】このため、CRT表示装置16における水
平掃引位置を決める水平掃引信号を作り出す水平掃引回
路15にあっては、走行距離に対する水平掃引位置の対
応関係を多段階に切換え可能としている。また、精度の
高い断層像を得るためにはタイヤ探触子5のタイヤ25
と検査面4との間に水を散布して水膜を形成することで
超音波の減衰を防ぎ、検出感度を高めるようにしてもよ
い。
Therefore, in the horizontal sweep circuit 15 which produces a horizontal sweep signal for determining the horizontal sweep position in the CRT display device 16, the correspondence relationship between the horizontal sweep position and the traveling distance can be switched in multiple stages. In order to obtain a highly accurate tomographic image, the tire 25 of the tire probe 5 is
Water may be sprayed between the inspection surface 4 and the inspection surface 4 to form a water film to prevent the ultrasonic wave from being attenuated and to enhance the detection sensitivity.

【0020】また、本願発明者等が既に提案しているポ
リウレタンゲルシートをタイヤ25の接地面に設けるこ
とで検査面4との接触を密にして検出感度を高めるよう
にしてもよい。また、CRT表示装置16に加えてハー
ドコピー等の記憶装置を設け、連続的な断層像を記録用
紙に検査データとして記録できるようにしてもよい。勿
論、画像記憶装置18としては、半導体メモリ以外にV
TR等の適宜の画像記録装置を用いることができる。
Further, the polyurethane gel sheet already proposed by the inventors of the present application may be provided on the ground contact surface of the tire 25 to close the contact with the inspection surface 4 to enhance the detection sensitivity. Further, in addition to the CRT display device 16, a storage device such as a hard copy may be provided so that continuous tomographic images can be recorded on a recording sheet as inspection data. Of course, as the image storage device 18, other than the semiconductor memory, V
An appropriate image recording device such as TR can be used.

【0021】[0021]

【発明の効果】以上説明してきたように本発明によれ
ば、タイヤ探触子の走行により走行方向に沿った断層像
を連続的に得ることができ、断層像を見ることによって
空洞等の欠陥の存在が直ちに分かり、測定に熟練や時間
を要することなく効率の良い土木建築構造物の非破壊検
査を行うことができる。
As described above, according to the present invention, a tomographic image along the traveling direction can be continuously obtained by traveling of the tire probe, and by observing the tomographic image, defects such as cavities can be obtained. It is possible to immediately recognize the existence of the above, and to perform efficient nondestructive inspection of civil engineering and building structures without requiring skill and time for measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明でCRTに表示される断層像の説明図FIG. 2 is an explanatory view of a tomographic image displayed on a CRT according to the present invention.

【図3】従来装置の説明図FIG. 3 is an explanatory view of a conventional device.

【符号の説明】 1:送信用超音波探触子 2:受信用超音波探触子 3:検査対象物 4:検査面 5:タイヤ探触子 6:制御回路 7:トリガ回路 8:送信回路 9:受信回路 10:信号処理回路 11:輝度変調回路 12:垂直掃引回路 13:タイヤ回転数検出器 14:走行距離演算回路 15:水平掃引回路 16:CRT表示装置 18:画像記憶装置 30:マーカ 32:欠陥[Explanation of Codes] 1: Ultrasonic probe for transmission 2: Ultrasonic probe for reception 3: Inspection object 4: Inspection surface 5: Tire probe 6: Control circuit 7: Trigger circuit 8: Transmission circuit 9: Reception circuit 10: Signal processing circuit 11: Brightness modulation circuit 12: Vertical sweep circuit 13: Tire rotation speed detector 14: Running distance calculation circuit 15: Horizontal sweep circuit 16: CRT display device 18: Image storage device 30: Marker 32: Defect

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】媒質液の中に下向きに送受信用超音波探触
子を配置したタイヤ探触子と、 低周波送信信号により前記送信用超音波探触子を一定周
期毎に駆動して検査対象物に超音波を送信させる送信回
路部と、 前記受信用探触子の受信信号を受信し、受信レベルに応
じた輝度信号に変換する受信回路部と、 送信動作に同期して対象物における超音波の伝播速度に
基づく掃引速度で垂直掃引信号を発生する垂直掃引回路
と、 前記タイヤ探触子の回転数を検出する回転数検出器と、 該回転数検出器の検出回転数から走行距離を演算する走
行距離演算回路と、 該走行距離演算回路で求めた走行距離に応じてCRT画
面の水平軸での掃引位置を決める水平掃引回路と、 前記受信回路部からの輝度信号による画像を前記垂直掃
引信号と水平掃引信号に基づいて画面上に表示するCR
T表示装置と、 該CRT表示装置に表示された過去の画像を記憶し、リ
アルタイムで得られる画像と共に過去の画像を前記CR
T表示装置に表示させる画像記憶装置と、 を備えたことを特徴とする土木建築構造物の超音波探傷
装置。
1. A tire probe in which a transmitting / receiving ultrasonic probe is disposed downward in a medium liquid, and an inspection by driving the transmitting ultrasonic probe at a constant cycle by a low-frequency transmission signal. A transmission circuit unit that transmits ultrasonic waves to the target object, a reception circuit unit that receives the reception signal of the reception probe and converts it into a luminance signal according to the reception level, and in the target object in synchronization with the transmission operation. A vertical sweep circuit that generates a vertical sweep signal at a sweep speed based on the propagation speed of ultrasonic waves, a rotation speed detector that detects the rotation speed of the tire probe, and a travel distance based on the detected rotation speed of the rotation speed detector. And a horizontal sweep circuit that determines a sweep position on the horizontal axis of the CRT screen according to the travel distance obtained by the travel distance calculation circuit, and an image based on a brightness signal from the reception circuit unit. For vertical and horizontal sweep signals CR to display on the screen based on
The T display device and the past image displayed on the CRT display device are stored, and the past image and the image obtained in real time are stored in the CR.
An ultrasonic flaw detector for civil engineering and building structures, comprising: an image storage device for displaying on a T display device.
【請求項2】土木建築構造物の超音波探傷装置に於い
て、 前記タイヤ探触子は、送信用超音波探触子と受信用超音
波探触子の2つを備えたことを特徴とする土木建築構造
物の超音波探傷装置。
2. An ultrasonic flaw detector for a civil engineering building structure, wherein the tire probe includes two transmitter ultrasonic probes and one receiving ultrasonic probe. Ultrasonic flaw detector for civil engineering structures.
JP3242945A 1991-09-24 1991-09-24 Ultrasonic flaw detector for civil engineering and building structures Expired - Lifetime JP2931453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3242945A JP2931453B2 (en) 1991-09-24 1991-09-24 Ultrasonic flaw detector for civil engineering and building structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3242945A JP2931453B2 (en) 1991-09-24 1991-09-24 Ultrasonic flaw detector for civil engineering and building structures

Publications (2)

Publication Number Publication Date
JPH0580035A true JPH0580035A (en) 1993-03-30
JP2931453B2 JP2931453B2 (en) 1999-08-09

Family

ID=17096564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3242945A Expired - Lifetime JP2931453B2 (en) 1991-09-24 1991-09-24 Ultrasonic flaw detector for civil engineering and building structures

Country Status (1)

Country Link
JP (1) JP2931453B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021214821A1 (en) * 2020-04-20 2021-10-28
CN114858921A (en) * 2022-05-18 2022-08-05 江苏恒尚节能科技股份有限公司 Building curtain wall health monitoring damage identification method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021214821A1 (en) * 2020-04-20 2021-10-28
WO2021214821A1 (en) * 2020-04-20 2021-10-28 日本電信電話株式会社 Tire with built-in antenna
CN114858921A (en) * 2022-05-18 2022-08-05 江苏恒尚节能科技股份有限公司 Building curtain wall health monitoring damage identification method and system

Also Published As

Publication number Publication date
JP2931453B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP2987065B2 (en) Ultrasonic flaw detector
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
Hoegh et al. Evaluation of ultrasonic technique for detecting delamination in asphalt pavements
Hoegh et al. Correlation analysis of 2D tomographic images for flaw detection in pavements
US20070095139A1 (en) Method and apparatus for non-destructive testing of concrete structures
JP4094464B2 (en) Nondestructive inspection method and nondestructive inspection device
CN107870202A (en) A kind of detection method of cable connector internal flaw
KR101936849B1 (en) System and method for detecting cavity to non-contact type
JP2931453B2 (en) Ultrasonic flaw detector for civil engineering and building structures
JP4577957B2 (en) Tunnel diagnostic equipment
JP2000241397A (en) Method and apparatus for detecting surface defect
US5929338A (en) Thickness measurement of in-ground culverts
JPH05188043A (en) Ultrasonic flaw detecting device
JP2002267639A (en) Apparatus and method for ultrasonically examining concrete structure
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
JP6735727B2 (en) Corrosion inspection method and corrosion inspection device for non-exposed part of inspection object
JP4500391B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JP4632474B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
RU2368870C1 (en) Method for detection of length and corrosion condition of grounding device vertical components
JPS61133857A (en) Method and apparatus for diagnosing corrosion of underground pipeline
JPH03102258A (en) Method and apparatus for ultrasonic inspection
Celaya et al. Field Verification of Nondestructive Testing Technologies for Condition Assessment of Concrete Bridge Decks: A Case Study
Azari et al. Use of portable seismic property analyzer to assess Colorado's Hanging Lake tunnel liner
JPS6258103A (en) Method for ultrasonic flaw detection