JPH057998A - Mold for continuously casting lead battery grid body - Google Patents
Mold for continuously casting lead battery grid bodyInfo
- Publication number
- JPH057998A JPH057998A JP16296491A JP16296491A JPH057998A JP H057998 A JPH057998 A JP H057998A JP 16296491 A JP16296491 A JP 16296491A JP 16296491 A JP16296491 A JP 16296491A JP H057998 A JPH057998 A JP H057998A
- Authority
- JP
- Japan
- Prior art keywords
- drum
- oil
- mold
- porous material
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、安価で安定した品質の
格子体を供給する鉛蓄電池格子体の連続鋳造用鋳型に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for continuous casting of a lead-acid battery lattice body which supplies an inexpensive and stable lattice body.
【0002】[0002]
【従来の技術】図2は、格子体を連続鋳造により製造す
る方法の一例を示したものである。すなわち、回転する
ドラム1の円周上表面に形成した彫り込み2に給湯部4
を介して供給した鉛合金の溶湯3を、ドラムの一部に接
触してドラムと一体になって回転するベルト5と前記ド
ラムとの間で凝固させ、ベルト状に連なった格子体6と
してドラム表面から剥離させるものである。2. Description of the Related Art FIG. 2 shows an example of a method for producing a lattice by continuous casting. That is, the engraving 2 formed on the circumferential surface of the rotating drum 1 is attached to the hot water supply unit 4
The melt 3 of the lead alloy supplied via the drum is solidified between the belt 5 which comes into contact with a part of the drum and rotates integrally with the drum, and the drum, thereby forming a lattice body 6 connected in a belt shape. It is to be peeled from the surface.
【0003】一般に金型鋳造の場合には、鋳物の離型を
容易にするために鋳型には抜き勾配なるものを設定する
が、上記格子体の場合には鋳物の強度が小さいために、
離型をさらに容易にするために、ドラム表面に離型剤
(一般的にはピーナッツオイル等の油)を塗布すること
が行なわれている。特開昭59−76846号公報に於
ては、スプレー7によってドラム表面(彫り込み部内
面)に油を吹付ける方法が示されている。Generally, in the case of die casting, a mold having a draft is set in order to facilitate the release of the casting, but in the case of the above lattice, the strength of the casting is small,
In order to further facilitate mold release, a mold release agent (generally oil such as peanut oil) is applied to the drum surface. Japanese Unexamined Patent Publication No. 59-76846 discloses a method of spraying oil onto the drum surface (inner surface of the engraved portion) with the spray 7.
【0004】また、ドラムの円周上表面を所望の温度に
維持するためには、該内部に冷却媒体(図示せず)を通
すことが行なわれているが、円周上表面が所望の温度よ
りも高くなるような状態においては、同じく特開昭59
−76846号公報に示されているように、水をドラム
表面に噴霧する水供給用スプレー14を補助冷却として
使用している。Further, in order to keep the circumferential surface of the drum at a desired temperature, a cooling medium (not shown) is passed through the inside, but the circumferential surface has a desired temperature. In a state in which it becomes higher than the above, the same as in JP-A-59-59
As shown in JP-A-76846, a water supply spray 14 for spraying water on the drum surface is used as auxiliary cooling.
【0005】[0005]
【発明が解決しようとする課題】前述した如く、格子体
の強度が小さいことから、離型を容易にするための油の
使用は不可欠であるが、油は鋳造時に分解気化し、溶湯
中に取り込まれ、凝固に伴い格子体内部に気泡として残
留する。この気泡をブローホールと称している。図3
は、格子体断面の拡大模式図であり、多数のブローホー
ル12が存在している状況を示している。格子体中にブ
ローホールが存在すると、鉛蓄電池に使用された場合に
電解液に対して耐食性が劣り、実用上で大きな問題とな
る。上述したブローホールを格子体内部に残留させない
ためには、油を使用しないか或は使用しても極微量であ
ることが望まれる。しかしながら、前述した如く油の使
用は不可欠であり、ブローホールの発生を実用上問題の
ない程度まで抑えるために極微量の油を供給するという
ことがきわめて重要な技術となる。As mentioned above, since the strength of the lattice is small, it is essential to use oil for facilitating the mold release. However, the oil is decomposed and vaporized at the time of casting, and the oil remains in the molten metal. It is taken in and remains as bubbles inside the lattice due to solidification. This bubble is called a blow hole. Figure 3
[Fig. 4] is an enlarged schematic view of a cross section of the lattice body, showing a situation in which a large number of blow holes 12 are present. If blowholes are present in the grid, corrosion resistance to the electrolytic solution is poor when used in a lead storage battery, which poses a serious problem in practical use. In order to prevent the above-mentioned blowholes from remaining inside the lattice, it is desirable that oil is not used or that the amount of oil is very small. However, as described above, the use of oil is indispensable, and it is a very important technique to supply an extremely small amount of oil in order to suppress the generation of blowholes to the extent that there is no practical problem.
【0006】また、前述したドラム表面の温度制御のた
めの水の供給においても、容易に蒸発するとは言え油の
供給の場合と同じくブローホールの発生の原因となる可
能性があることは否定出来ない。Further, in the case of supplying water for controlling the temperature of the drum surface as described above, it can be denied that there is a possibility of causing blowholes as in the case of supplying oil, although it easily evaporates. Absent.
【0007】このような観点からみると、従来から行な
われているスプレーにより油を供給するという方法及び
水によるドラム表面の冷却という方法は好ましくない。From this point of view, the conventional method of supplying oil by spraying and the method of cooling the drum surface with water are not preferable.
【0008】[0008]
【課題を解決するための手段】油の分解気化によるブロ
ーホールを格子体内部に残留させないためには、極微量
の油を定量的に供給することが必要である。本発明では
従来のようにドラム外部から油を供給するのではなく、
ドラムの一部を微細な孔を適度に有する材料にし、この
細孔を通して油をドラム内部から供給する構造とし、極
微量の油を彫込み内に定量的に供給可能にしようという
ものである。その構造を図1を用いて説明する。すなわ
ち、ドラム1の表面側を多孔質材8で形成する。該部8
の孔は空孔9部とドラム1の表面間に連通している。そ
して、格子体を形成するための彫り込み2は多孔質材8
に形成する。離型剤として使用する油はオイルシールさ
れた回転軸11から流入し、中空のスポーク10を通り
空孔9に流入する。流入した油は該部を通りスポーク1
0′,回転軸11を経て排出される。この時、空孔9を
満たした油は、連続した孔を通して多孔質材8の表面に
供給される。ドラム外周表面に供給される油の量は、回
転軸11から流入する油の量と該部11から排出する油
の量を適宜調整することにより決定される。上述の方式
により極微量の油をドラム外周表面に供給することが可
能になる。[Means for Solving the Problems] In order to prevent blowholes due to the decomposition and vaporization of oil from remaining inside the lattice, it is necessary to quantitatively supply a very small amount of oil. In the present invention, instead of supplying oil from the outside of the drum as in the conventional case,
It is a structure in which a part of the drum is made of a material having appropriate fine holes and oil is supplied from the inside of the drum through the fine holes so that a very small amount of oil can be quantitatively supplied in the engraving. The structure will be described with reference to FIG. That is, the surface side of the drum 1 is formed of the porous material 8. The part 8
Is communicated between the hole 9 and the surface of the drum 1. And the engraving 2 for forming the lattice body is the porous material 8
To form. The oil used as the release agent flows in from the oil-sealed rotating shaft 11, passes through the hollow spokes 10, and flows into the holes 9. The inflowing oil passes through this part and spokes 1
0 ', is discharged via the rotating shaft 11. At this time, the oil filling the pores 9 is supplied to the surface of the porous material 8 through the continuous pores. The amount of oil supplied to the outer peripheral surface of the drum is determined by appropriately adjusting the amount of oil flowing from the rotary shaft 11 and the amount of oil discharged from the portion 11. With the above method, it becomes possible to supply a very small amount of oil to the outer peripheral surface of the drum.
【0009】どころで、一般にドラムには500℃近い
温度の溶湯が連続的に供給されるために、放置しておけ
ばドラムはベルトとドラムの間で溶湯が凝固しないよう
な温度に達してしまう。それ故ドラムは何らかの手段で
冷却しなければならない。通常、ドラム内部に冷却媒体
を導入し、これによって冷却する方法がとられるが、更
に水をドラム表面に噴霧し該部を冷却することが必要に
なる場合もある。この場合は言うまでもなく冷却媒体に
よるドラムの冷却が不完全であることによる。冷却媒体
には通常油が用いられるが、言うまでもなく冷却効率を
高めるためには彫込みに出来るだけ近い部分に油を流す
ことと、油とドラムとの接触面積をできるだけ多くかつ
油を適当な速度で流してやること等が必要である。しか
し、彫込みに出来るだけ近い部分に油を流すことは、ド
ラムの厚さが小さくなることから強度の面から問題が生
ずることもあり得る。また、油の流速を十分速くして
も、ドラムと冷却媒体との熱交換は、それらの間の熱伝
達係数により決定され、限りなく大きくできるものでは
ない。そこで、請求項2はこの様なことを特に考慮した
ものである。On the other hand, in general, since the molten metal having a temperature of about 500 ° C. is continuously supplied to the drum, if left unattended, the drum reaches a temperature at which the molten metal does not solidify between the belt and the drum. . Therefore the drum must be cooled by some means. Usually, a cooling medium is introduced into the drum to cool it, but it may be necessary to further spray water on the drum surface to cool the portion. In this case, needless to say, this is due to incomplete cooling of the drum with the cooling medium. Oil is usually used as the cooling medium. Needless to say, in order to improve the cooling efficiency, the oil should be made to flow as close as possible to the engraving, and the contact area between the oil and the drum should be as large as possible and the oil should be at an appropriate speed. It is necessary to flush it with. However, flowing the oil as close as possible to the engraving may cause a problem in terms of strength because the thickness of the drum becomes small. Even if the flow velocity of oil is sufficiently high, the heat exchange between the drum and the cooling medium is determined by the heat transfer coefficient between them, and cannot be increased infinitely. Therefore, the second aspect of the invention takes such a matter into consideration.
【0010】従来、冷却媒体によるドラムの冷却は上述
したように、ドラム内部に冷却媒体を導入し、ドラム間
と熱交換を行なわせた後にドラム外に排出し、適当な手
段により温度上昇した冷却媒体を冷却し、再度ドラム内
部に導入する方式である。つまり、冷却媒体は密閉系内
に存在しており、温度上昇した冷却媒体の冷却はドラム
外部のみで行なわねばならない。Conventionally, as described above, the cooling of the drum by the cooling medium is performed by introducing the cooling medium into the drum, exchanging heat between the drums, and then discharging the drum, and then discharging the drum by an appropriate means. In this method, the medium is cooled and then introduced again into the drum. That is, the cooling medium exists in the closed system, and the cooling medium whose temperature has risen must be cooled only outside the drum.
【0011】これに対して請求項2記載の鋳型に於いて
は、温度上昇した冷却媒体の冷却方法は基本的には同じ
であるが、更に、ドラム外周面に於ける冷却媒体、つま
り油の分解気化に伴う熱収支を付加的に利用できるとい
う利点を有している。On the other hand, in the mold according to the second aspect, the method of cooling the cooling medium whose temperature has risen is basically the same, but the cooling medium, that is, oil, on the outer peripheral surface of the drum is further added. It has the advantage that the heat balance associated with decomposition and vaporization can be used additionally.
【0012】更に請求項3記載の鋳型は、冷却媒体とド
ラムとの熱交換をそれらの接触面積を増加させることに
より促進するものである。これを図5を用いて説明す
る。図中多孔質材8′は、冷却媒体とドラムとの接触面
積をできるだけ多く且つ冷却媒体を適当な速度で流して
やるために、該部8′の孔径を適度に大きくしたもので
ある。ただしそのような部分に彫り込みを施し溶湯を注
入することは溶湯が孔に入り込んでしまう恐れがあるこ
とから、この外側に適度に孔径の小さい多孔質材8を配
置している。また、離型用油を極微量づつ供給するとい
う問題からも左記多孔質材8の孔径は適当に小さいこと
が必要である。Further, the mold according to claim 3 promotes heat exchange between the cooling medium and the drum by increasing the contact area between them. This will be described with reference to FIG. In the figure, the porous material 8'has an appropriately large hole diameter in order to increase the contact area between the cooling medium and the drum as much as possible and to allow the cooling medium to flow at an appropriate speed. However, since engraving such a portion and injecting the molten metal may cause the molten metal to enter the hole, the porous material 8 having an appropriately small hole diameter is arranged on the outside of this. Further, from the problem of supplying a very small amount of releasing oil, it is necessary that the pore diameter of the porous material 8 on the left is appropriately small.
【0013】請求項4記載の多孔質材8の彫込みがなさ
れていない表面を閉塞する理由は下記の通りである。極
微量づつ供給される油は、多孔質材8によりドラム表面
に排出されるが、格子体の離型のためには彫り込み2の
みに油が存在すればその目的は達せられる。つまり、彫
り込みがなされていない表面から排出される油は使用さ
れることなく、ベルト表面及びドラムと接する給湯部の
下部に付着し、ブローホール発生の原因となる恐れがあ
る。また、ベルトとの摩擦力を低下させ、両者が一体と
なって回転することの妨げになる。以上の様な理由か
ら、彫り込み部以外に油を供給しない構造として多孔質
層8の彫り込みがなされていない表面を閉塞層13によ
り閉塞するわけである。The reason why the non-engraved surface of the porous material 8 according to claim 4 is closed is as follows. The oil, which is supplied in a very small amount, is discharged to the drum surface by the porous material 8, but the purpose can be achieved if the oil exists only in the engraving 2 for releasing the lattice. In other words, the oil discharged from the non-engraved surface may adhere to the belt surface and the lower part of the hot water supply portion that contacts the drum without being used, and may cause blow holes. Further, the frictional force with the belt is reduced, which prevents the both from rotating together. For the above reasons, the non-engraved surface of the porous layer 8 is closed by the closing layer 13 as a structure in which oil is not supplied to other than the engraved portion.
【0014】[0014]
【作用】上記の如くの構造を有した連続鋳造用鋳型を用
いることにより、ドラムからの格子体の離型を容易にし
つつ、かつブローホールのない格子体を製造することが
可能であり、安価で信頼性の高い鉛蓄電池を供給するこ
とができる。By using the continuous casting mold having the above-mentioned structure, it is possible to easily release the grid body from the drum, and it is possible to manufacture the grid body without blowholes. It is possible to supply a highly reliable lead acid battery.
【0015】[0015]
【実施例】次に、本発明の実施例について述べる。図1
に本発明の鉛蓄電池格子体の連続鋳造用鋳型の構造を示
す。ドラムの外径は300mm,幅は145mm,厚さは5
0mmである。ドラムの材質はFCD35で、多孔質材8
は鉄を主成分とする焼結体であり、厚さ5.0mmであ
る。多孔質材8の中の孔の径は平均0.010mmで1cm
2 当たりの孔の数は8000ケ程度である。該部8に機
械加工により施した彫込み2は、厚さ0.8mm〜1.2
mmで彫込み断面積が0.49mm2〜2.00mm2のドラム
表面から格子体の剥離が可能な形状とした。左記の構造
の鋳型を用い溶湯温度480℃,鋳型温度130℃、鋳
型回転速度30rpmで格子体を鋳造した。尚、この時
のドラム表面に供給される油の量は4g/分となるよう
に調整したが、同時にドラムの温度も前述した如く13
0℃に調整できた。図4に製造した格子体の断面写真
を、表1に本発明として格子100枚についてブロー
ホールの発生状況を調べた結果を示す。EXAMPLES Next, examples of the present invention will be described. Figure 1
The structure of the mold for continuous casting of the lead storage battery grid of the present invention is shown in FIG. The outer diameter of the drum is 300mm, the width is 145mm, and the thickness is 5
It is 0 mm. The material of the drum is FCD35, and the porous material 8
Is a sintered body containing iron as a main component and has a thickness of 5.0 mm. The diameter of the holes in the porous material 8 is 0.010 mm on average and 1 cm.
The number of holes per 2 is about 8000. The engraving 2 machined on the portion 8 has a thickness of 0.8 mm to 1.2.
The engraved cross-sectional area in mm is 0.49 mm 2 to 2.00 mm 2 , and the shape is such that the lattice can be separated from the drum surface. Using the mold having the structure shown on the left, a lattice was cast at a melt temperature of 480 ° C., a mold temperature of 130 ° C., and a mold rotation speed of 30 rpm. The amount of oil supplied to the drum surface at this time was adjusted so as to be 4 g / min. At the same time, the drum temperature was adjusted to 13 g as described above.
The temperature could be adjusted to 0 ° C. FIG. 4 shows a cross-sectional photograph of the produced grating body, and Table 1 shows the results of examining the occurrence of blowholes for 100 lattices according to the present invention.
【0016】[0016]
【表1】 [Table 1]
【0017】ブローホールを直径が0.5mm未満のもの
と0.5mm以上のものとでわけて示したが、従来法によ
るものでは観察した半分以上の格子体においてブローホ
ールが存在していたのに対して、本発明によるものでは
直径0.5mm以上のブローホールは認められず、0.5
mm未満のものでもブローホールの発生率3%と僅かであ
った。The blowholes are shown divided into those having a diameter of less than 0.5 mm and those having a diameter of 0.5 mm or more. However, in the conventional method, the blowholes were present in more than half of the observed lattices. In contrast, according to the present invention, blowholes with a diameter of 0.5 mm or more are not recognized, and
Even if it was less than mm, the occurrence rate of blowholes was as small as 3%.
【0018】また、請求項3に示したドラムの断面の構
造を図5に示す。ドラムの外径,幅,厚さは上記実施例
とほぼ同じである。ドラム本体の材質はFCD35で、
多孔質材8′は孔径が平均0.81mmの連通孔を1cm2
当たり21.6カ有する鉄系の合金で、その幅は135
mm,厚さは10mmである。該部8′の上にはクロムを主
成分とする粉末をプラズマ溶射して厚さ1.5mmの多孔
質材8を形成した。多孔質材8の中の孔の数は1190
0ケ程度である。該部8に機械加工により施した彫り込
み及び鋳造条件も上記実施例とほぼ同じとした。評価結
果を本発明として表1に示した。上述本発明と同様
に、直径0.5mm以上のブローホールは認められず、
0.5mm未満のものでもブローホールの発生率4%と僅
かであった。また、ドラムの温度も所望の温度に設定で
きた。FIG. 5 shows the structure of the cross section of the drum shown in claim 3. The outer diameter, width and thickness of the drum are almost the same as in the above embodiment. The material of the drum body is FCD35,
Porous material 8'has a communication hole with an average pore diameter of 0.81 mm of 1 cm 2
It is an iron-based alloy with 21.6 pieces per piece, and its width is 135
mm, the thickness is 10 mm. A powder containing chromium as a main component was plasma sprayed on the portion 8'to form a porous material 8 having a thickness of 1.5 mm. The number of holes in the porous material 8 is 1190
It is about 0. The engraving and casting conditions applied to the portion 8 by machining were almost the same as those in the above-mentioned embodiment. The evaluation results are shown in Table 1 as the present invention. As in the above-mentioned present invention, no blowhole with a diameter of 0.5 mm or more is recognized,
Even if the thickness was less than 0.5 mm, the occurrence rate of blowholes was as small as 4%. Also, the temperature of the drum could be set to a desired temperature.
【0019】更に、請求項4に示した、ドラムの多孔質
材8表面の閉塞は、図6に示すように、図5の鋳型に
0.03mm〜0.05mmのクロムめっきを施すことによ
り実施した。格子体の鋳造条件等は上記実施例とほぼ同
等である。ブローホールの発生の状況を検体数500と
して実施した結果を本発明として表1に示す。この場
合、ブローホールの発生は極度に減少した。Further, as shown in FIG. 4, the surface of the porous material 8 of the drum is closed by performing chromium plating of 0.03 mm to 0.05 mm on the mold of FIG. 5 as shown in FIG. did. The casting conditions and the like of the lattice are almost the same as those in the above embodiment. The present invention is shown in Table 1 as a result of carrying out with the number of specimens 500 for the condition of blowhole generation. In this case, the occurrence of blowholes was extremely reduced.
【0020】[0020]
【発明の効果】図3,表1から明らかな如く本発明の鉛
蓄電池格子体の連続鋳造用鋳型を用いることにより、安
価で信頼性の高い鉛蓄電池を供給することが可能となっ
た。As is apparent from FIG. 3 and Table 1, by using the continuous casting mold for the lead-acid battery grid of the present invention, it is possible to supply a lead-acid battery that is inexpensive and highly reliable.
【図1】本発明による鉛蓄電池格子体の連続鋳造用鋳型
で、(a)は正面、(b)は(a)のA−A断面の説明
図である。FIG. 1 is a view for explaining a continuous casting mold for a lead storage battery grid according to the present invention, in which (a) is a front view and (b) is an AA cross-sectional view of (a).
【図2】従来の鉛蓄電池格子体の連続鋳造用鋳型で、
(a)は正面、(b)は側面の説明図である。FIG. 2 is a mold for continuous casting of a conventional lead storage battery grid,
(A) is a front view and (b) is a side view.
【図3】鉛蓄電池格子体の連続鋳造用鋳型を用いて製造
した格子体の断面模式図である。FIG. 3 is a schematic cross-sectional view of a grid body manufactured using a mold for continuously casting a lead storage battery grid body.
【図4】本発明の鉛蓄電池格子体の連続鋳造用鋳型を用
いて製造した格子体の断面模式図である。FIG. 4 is a schematic cross-sectional view of a grid body manufactured by using the mold for continuous casting of the lead storage battery grid body of the present invention.
【図5】本発明による鉛蓄電池格子体の連続鋳造用鋳型
の一部拡大図である。FIG. 5 is a partially enlarged view of a mold for continuous casting of a lead storage battery grid according to the present invention.
【図6】本発明による鉛蓄電池格子体の連続鋳造用鋳型
の一部拡大図である。FIG. 6 is a partially enlarged view of a mold for continuous casting of a lead storage battery grid according to the present invention.
1はドラム、2は彫込み、3は溶湯、4は給湯部、5は
ベルト、6は格子体、7は油供給溶スプレー、8,8′
は多孔質材、9は空孔、10はスポーク、11は回転
軸、12はブローホール、13は閉塞層、14は水供給
用スプレー1 is a drum, 2 is engraving, 3 is a molten metal, 4 is a hot water supply part, 5 is a belt, 6 is a lattice, 7 is an oil supply molten spray, and 8 '
Is a porous material, 9 is a hole, 10 is a spoke, 11 is a rotating shaft, 12 is a blow hole, 13 is a blocking layer, and 14 is a water supply spray.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 堂園 利徳 茨木県勝田市堀口832番地2号 株式会社 日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Doen Toritoku 832 Horiguchi, Katsuta City, Ibaraki Prefecture 2nd Co., Ltd. Hitachi Research Laboratory, Hitachi Ltd.
Claims (4)
り込みに溶湯を連続的に供給し、これを凝固させること
により格子体を形成する鋳造装置に使用するものであっ
て、前記彫り込みが形成されている部分が多孔質材で構
成されており、油のごとき液状の離型剤を前記多孔質材
を通して鋳型内部から外周表面に供給する構造を有する
ことを特徴とする鉛蓄電池格子体の連続鋳造用鋳型。1. A casting apparatus for forming a lattice by continuously supplying a molten metal to the engraving of the surface of a rotating cylindrical mold (drum) and solidifying the molten metal, which is used for the engraving. The formed portion is made of a porous material, and a liquid type release agent such as oil is supplied to the outer peripheral surface from the inside of the mold through the porous material to the outer peripheral surface of the lead storage battery grid. Continuous casting mold.
剤を兼ねる請求項1記載の連続鋳造用鋳型。2. The continuous casting mold according to claim 1, wherein the cooling medium used for controlling the temperature of the mold also serves as a release agent.
の異なる複数の多孔質材で構成されている請求項1記載
の連続鋳造用鋳型。3. The continuous casting mold according to claim 1, wherein the portion made of a porous material is made of a plurality of porous materials having different porosities and materials.
供給しない処理が施されている請求項1記載の連続鋳造
用鋳型。4. The continuous casting mold according to claim 1, wherein a portion of the outer peripheral surface other than the engraving is treated to prevent the release agent from being supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16296491A JPH057998A (en) | 1991-07-03 | 1991-07-03 | Mold for continuously casting lead battery grid body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16296491A JPH057998A (en) | 1991-07-03 | 1991-07-03 | Mold for continuously casting lead battery grid body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH057998A true JPH057998A (en) | 1993-01-19 |
Family
ID=15764630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16296491A Pending JPH057998A (en) | 1991-07-03 | 1991-07-03 | Mold for continuously casting lead battery grid body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH057998A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1294196C (en) * | 2001-07-19 | 2007-01-10 | 可乐丽股份有限公司 | Vinyl chloride-based polymer composition |
-
1991
- 1991-07-03 JP JP16296491A patent/JPH057998A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1294196C (en) * | 2001-07-19 | 2007-01-10 | 可乐丽股份有限公司 | Vinyl chloride-based polymer composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060157218A1 (en) | Casting steel strip with low surface roughness and low porosity | |
JPH057998A (en) | Mold for continuously casting lead battery grid body | |
JPH0366453A (en) | Twin roll type continuous casting machine | |
JP2001096350A (en) | Manufacturing method for composite roll | |
Blazek et al. | The development of a continuous rheocaster for ferrous and high melting point alloys | |
JPS6036857B2 (en) | Cylindrical, cylindrical wear-resistant castings and their manufacturing method | |
JPS59137155A (en) | In-mold inoculant | |
KR100514810B1 (en) | Apparatus for covering casting roll | |
JPH01254363A (en) | Production of roll for rolling | |
JPS58188543A (en) | Continuous casting device of steel plate | |
JPH01202344A (en) | Twin roll type casting device | |
JP2004017145A (en) | Chiller for casting | |
JPH01271042A (en) | Method for continuously casting double-layer cast slab | |
JPS6125456B2 (en) | ||
Tsatsulina | Super rate directional solidification of high-temperature alloys | |
JPH02200355A (en) | Twin-drums continuous casting machine | |
JP2001096351A (en) | Centrifugal casting mold, centrifugal casting equipment, and method for manufacturing composite rolling roll | |
JPH06142893A (en) | Manufacture of complex calender roll | |
JP2006312173A (en) | Twin roll casting machine | |
JPH10158760A (en) | Production of foam | |
JPS61276744A (en) | Method and apparatus for producing hollow steel ingot | |
Abramov | Ultrasonic Treatment of Liquid Metal Stream | |
JPS571825A (en) | Manufacture of white-metal bearing | |
JPS59130654A (en) | Device for producing fine wire | |
JPS6137353A (en) | Production of copper and copper plate |