JPH01271042A - Method for continuously casting double-layer cast slab - Google Patents

Method for continuously casting double-layer cast slab

Info

Publication number
JPH01271042A
JPH01271042A JP10055088A JP10055088A JPH01271042A JP H01271042 A JPH01271042 A JP H01271042A JP 10055088 A JP10055088 A JP 10055088A JP 10055088 A JP10055088 A JP 10055088A JP H01271042 A JPH01271042 A JP H01271042A
Authority
JP
Japan
Prior art keywords
molten metal
slab
cast slab
solidified shell
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10055088A
Other languages
Japanese (ja)
Other versions
JPH0464780B2 (en
Inventor
Eiichi Takeuchi
栄一 竹内
Takeshi Saeki
佐伯 毅
Hiroyuki Tanaka
宏幸 田中
Katsushi Kaneko
克志 金子
Hisashi Taniguchi
谷口 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Original Assignee
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamada Heavy Industries Co Ltd, Nippon Steel Corp filed Critical Hamada Heavy Industries Co Ltd
Priority to JP10055088A priority Critical patent/JPH01271042A/en
Publication of JPH01271042A publication Critical patent/JPH01271042A/en
Publication of JPH0464780B2 publication Critical patent/JPH0464780B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent inequality of solidified shell to circular direction and to obtain a double-layer cast slab under stable condition by giving molten metal discharged from a long submerged nozzle flowing component to horizontal side direction. CONSTITUTION:From discharging hole 8 opening at side face of the long submerged nozzle 2, the molten metal 4 is flowed to horizontal direction to uniformize temp. distribution on the plane at right angle to the casting direction. By this method, the solidified shell is grown under uniform temp. condition and the outer layer having uniform thickness is obtd. to the circular direction of the cast slab.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表面の一部又は複数個所に組成の異なる層を
形成した複層鋳片を、溶融状態から連続的に製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for continuously producing a multilayer slab in which layers of different compositions are formed on a portion or multiple locations of the surface from a molten state.

〔従来の技術〕[Conventional technology]

連続鋳造によって複合鋼材を製造する方法として、長さ
の異なる2本の浸漬ノズルを鋳型内にある溶融金属のプ
ールに挿入し、それぞれのノズルの吐出孔位置を鋳造方
向の異なる位置に設け、異種の溶融金属を注入する方法
が、特公昭44−27361号公報で提案されている。
As a method for manufacturing composite steel materials by continuous casting, two immersion nozzles of different lengths are inserted into a pool of molten metal in a mold, and the discharge holes of each nozzle are set at different positions in the casting direction. A method of injecting molten metal is proposed in Japanese Patent Publication No. 44-27361.

本発明者等も、鋳型内に注入された異種の溶融金属を静
磁場による制動力で仕切り、外層と内層との境界が明確
な複層鋳片を製造する方法を開発し、これ゛を特願昭6
1−252898号として出願した。
The present inventors have also developed a method for producing a multilayer slab with a clear boundary between the outer layer and the inner layer by partitioning different types of molten metal poured into a mold using the braking force of a static magnetic field. Gansho 6
The application was filed as No. 1-252898.

第4図は、この方法を説明する概略図である。FIG. 4 is a schematic diagram illustrating this method.

鋳型M内の鋳造空間に、長さの異なる浸漬ノズル1.2
を挿入し、これら浸漬ノズル1.2からそれぞれ溶融金
属3.4を供給している。外層となる溶融金属3Iま、
鋳型Mの壁面から抜熱されて凝固シェル5となる。他方
、内層となる溶融金@4は、この凝固シェル5を介した
抜熱によって冷却・凝固されて、凝固シェル6となる。
Immersion nozzles 1.2 of different lengths are placed in the casting space in the mold M.
are inserted, and molten metal 3.4 is supplied from each of these immersion nozzles 1.2. Molten metal 3I which becomes the outer layer,
Heat is removed from the wall surface of the mold M to form a solidified shell 5. On the other hand, the molten gold @ 4 forming the inner layer is cooled and solidified by heat removal through the solidified shell 5 and becomes a solidified shell 6 .

このとき、鋳型M内で溶融金@3.4が相互に混合する
ことを防止するため、鋳造方向に対して直角な方向に延
びる磁力線をもつ静磁場を、電磁石7又は永久磁石によ
って溶融金fi3.4に印加している。この静磁場によ
って、電磁ブレーキが働き、静磁場帯での溶融金属3.
4の流動が抑制され、混合が抑えられる。
At this time, in order to prevent the molten gold @3.4 from mixing with each other in the mold M, a static magnetic field with lines of magnetic force extending in a direction perpendicular to the casting direction is applied to the molten gold fi3 by an electromagnet 7 or a permanent magnet. .4 is applied. This static magnetic field causes an electromagnetic brake to work, causing the molten metal to melt in the static magnetic field.3.
4 flow is suppressed and mixing is suppressed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、凝固シェル5.6の成長に伴って、鋳型M内
で流体が流動する空間が狭くなる。また、長尺の浸漬ノ
ズル2と凝固シェル5.6との間の距離も小さくなる。
However, as the solidified shell 5.6 grows, the space in which the fluid flows within the mold M becomes narrower. The distance between the elongated submerged nozzle 2 and the solidified shell 5.6 is also reduced.

そのため、第4図に示すように浸漬ノズル2から溶融金
属4を吐出するとき、その溶融金属4で凝固シェル5.
6が洗われる。
Therefore, when the molten metal 4 is discharged from the immersion nozzle 2 as shown in FIG. 4, the molten metal 4 solidifies the shell 5.
6 is washed.

浸漬ノズル2を出た直後の溶融金[4は高温であるため
、浸漬ノズル2の吐出部近傍の凝固シェル5.6の再溶
解が生じ、周方向にシェル厚の不均一となり、ひいては
表層の厚みが周方向で不均一となった鋳片が得られるこ
とになる。
Since the molten metal [4 immediately after exiting the immersion nozzle 2] is at a high temperature, the solidified shell 5.6 near the discharge part of the immersion nozzle 2 re-melts, resulting in non-uniform shell thickness in the circumferential direction, and as a result, the surface layer becomes uneven. This results in a slab whose thickness is non-uniform in the circumferential direction.

そこで、本発明は、長尺の浸漬ノズルから吐出される溶
融金属に水平横方向の流動成分を与えることによって、
凝固シェルが周方向で不均一化することを防ぎ、安定し
た条件下で複層鋳片を製造することを目的とする。
Therefore, the present invention provides a horizontal lateral flow component to the molten metal discharged from a long immersion nozzle.
The purpose is to prevent the solidified shell from becoming non-uniform in the circumferential direction and to produce multilayer slabs under stable conditions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の連続鋳造方法は、その目的を達成するために、
鋳型に供給された溶融金属の湯面レベルよりも下方の位
置で、鋳片全幅にわたって磁力線が延在する静磁場を印
加し、この静磁場帯を境として上下に異なる金属を供給
することにより複層鋳片を連゛続鋳造する際に、前記静
磁場帯の下方に供給される溶融金属に対して水平方向の
流動成分を与えることを特徴とする。
In order to achieve the purpose of the continuous casting method of the present invention,
A static magnetic field with lines of magnetic force extending across the entire width of the slab is applied at a position below the level of the molten metal supplied to the mold, and different metals are supplied above and below the static magnetic field as a boundary. The present invention is characterized in that a horizontal flow component is applied to the molten metal supplied below the static magnetic field zone during continuous casting of layered slabs.

水平方向の流動成分を与える具体的な手段としては、側
面に吐出口を設けた浸漬ノズル、或いは鋳片又は鋳型の
回りに配置した電磁撹拌装置を使用することができる。
As a specific means for imparting a horizontal flow component, it is possible to use a submerged nozzle with a discharge port on the side, or an electromagnetic stirring device placed around the slab or mold.

〔作用〕[Effect]

第1図は、長尺の浸漬ノズル2の側面に開口した吐出口
8から、溶融金属4を水平方向に流出させている状態を
示す。また、第2図は、この吐出流9を水平断面図で表
した図である。
FIG. 1 shows a state in which molten metal 4 is flowing out in a horizontal direction from a discharge port 8 opened on the side surface of a long immersion nozzle 2. Moreover, FIG. 2 is a diagram showing this discharge flow 9 in a horizontal cross-sectional view.

このように、浸漬ノズル2から溶融金属4を水平方向に
吐出・旋回させることにより、鋳造方向に直交する面に
おける温度分布が均一化する。その結果、凝固シェル5
.6が均一な温度条件下で成長し、鋳片の周方向に関し
て均一な厚みをもつ外層が得られる。なお、浸漬ノズル
2からの吐出口8を必ずしも水平方向にする必要はなく
、第1図の点線で示すように若干下方に傾斜した吐出流
9となるような吐出口8を形成しても良い。
In this way, by discharging and swirling the molten metal 4 from the immersion nozzle 2 in the horizontal direction, the temperature distribution in the plane perpendicular to the casting direction is made uniform. As a result, the solidified shell 5
.. 6 grows under uniform temperature conditions, and an outer layer having a uniform thickness in the circumferential direction of the slab is obtained. Note that the discharge port 8 from the immersion nozzle 2 does not necessarily have to be in a horizontal direction, and the discharge port 8 may be formed so that the discharge flow 9 is slightly inclined downward as shown by the dotted line in FIG. .

第3図は、浸漬ノズル2から流出する溶融金属4に対し
て、電磁撹拌族!110によって水平方向Fの流動成分
を与える場合を示す。この電磁撹拌装置10は、鋳型M
の長辺Ml、  M2(第2図参照)にそれぞれ設けら
れており、溶融金*4を水平方向に流動させる。これに
よっても、第1.2図の場合と同様に、凝固シェルの鋳
片周方向に関して均一な成長を促し、周方向に均一な外
層をもつ複層鋳片が得られる。
FIG. 3 shows an electromagnetic stirring group for the molten metal 4 flowing out from the immersion nozzle 2. 110 gives a flow component in the horizontal direction F. This electromagnetic stirring device 10 has a mold M
They are provided on the long sides Ml and M2 (see Figure 2), respectively, and cause the molten gold *4 to flow horizontally. This also promotes uniform growth of the solidified shell in the circumferential direction of the slab, resulting in a multilayer slab having a uniform outer layer in the circumferential direction, as in the case of FIG. 1.2.

なお、第3図において、第1図に示したように側面に吐
出口8を開口させた浸漬ノズル2を使用することも可能
である。この場合には、電磁撹拌力の向きは、ノズル1
.2からの吐出流に逆られないように、鋳型Mの長辺M
+、M2両側でそれぞれ逆方向にすることが好ましい。
In addition, in FIG. 3, it is also possible to use the immersion nozzle 2 in which the discharge port 8 is opened on the side surface as shown in FIG. 1. In this case, the direction of the electromagnetic stirring force is
.. The long side M of the mold M is
It is preferable to reverse the direction on both sides of + and M2.

これによって、水平方向の旋回流を形成することができ
、より大きな効果が得られる。
This makes it possible to form a horizontal swirling flow, resulting in a greater effect.

また、浸漬ノズル2から吐出される溶融金fjli4が
垂直下方に流れないため、その反転流も少なくなる。ビ
たがって、溶融金属3.4の界面を乱す運動成分が減少
し、溶融金属3.4が互いに混じり合うことも抑えられ
る。その結果、得られた複層鋳片における外層と内層と
の境界も明確になり、この界面に遷移相が形成されるこ
ともない。
Moreover, since the molten gold fjli4 discharged from the immersion nozzle 2 does not flow vertically downward, the reverse flow thereof is also reduced. Therefore, the motion component that disturbs the interface of the molten metal 3.4 is reduced, and the molten metal 3.4 is also prevented from mixing with each other. As a result, the boundary between the outer layer and the inner layer in the obtained multilayer slab becomes clear, and no transition phase is formed at this interface.

〔実施例〕〔Example〕

側面に吐出口8をもつ浸漬ノズル2から普通鋼組成をも
つ溶融金属4(融点1496℃)を注入し、浸漬ノズル
1からS U 5304組成をもつ溶融金属4(融点1
450℃)を注入して、鋳造速度1m/分で肉厚200
(社)の複層鋳片を製造した。得られた複層鋳片は、平
均厚さ20+n+nの外層をもっていた。この外層の最
大厚さは21止で、最小厚さは19mmで、その肉厚偏
差は0.05%に過ぎなかった。
Molten metal 4 having a composition of ordinary steel (melting point 1496°C) is injected from the immersion nozzle 2 having a discharge port 8 on the side, and molten metal 4 having a composition S U 5304 (melting point 1) is injected from the immersion nozzle 1.
450℃) and cast at a casting speed of 1m/min to a wall thickness of 200℃.
(Company) manufactured multi-layer slabs. The obtained multilayer slab had an outer layer with an average thickness of 20+n+n. The maximum thickness of this outer layer was 21 mm, the minimum thickness was 19 mm, and the wall thickness deviation was only 0.05%.

これに対して、第4図に示した下端に吐出口をもつ浸漬
ノズル2を使用して、その他は同じ条件下で鋳造を行っ
たところ、得られた複層鋳片における外層の厚みは15
〜25mmの間で変動し、その肉厚偏差も±25%と大
きなものであった。
On the other hand, when casting was carried out using the immersion nozzle 2 having a discharge port at the lower end as shown in Fig. 4 under the same conditions, the thickness of the outer layer in the obtained multi-layer slab was 15 mm.
The wall thickness varied between ~25 mm, and the wall thickness deviation was as large as ±25%.

この対比から明らかなように、内層となる溶融金属4に
対して水平方向の流動成分を与えることにより、一定し
た品質の複層鋳片を製造することができた。
As is clear from this comparison, by giving a horizontal flow component to the molten metal 4 serving as the inner layer, it was possible to manufacture a multilayer slab of constant quality.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、長尺側の浸
漬ノズルから吐出される溶融金属流に対して水平方向の
流動成分を与えることにより、その溶融金属が高温状態
のままで凝固シェルに接触することを防止している。そ
のため、凝固シェルの再溶解が抑えられ、一定した厚み
の外層をもつ複層鋳片を製造することができる。また、
水平方向の流動成分をもつ吐出流は異種の溶融金属間の
界面を乱すことが少なくなるため、異種金属相互の混合
が少なくなり、外層と内層との間に生じる界面相も極め
て薄いものとなる。このように、本発明によるとき、優
れた品質をもつ複層鋳片を安定した条件下で製造するこ
とができる。
As explained above, in the present invention, by giving a horizontal flow component to the molten metal flow discharged from the long side immersion nozzle, the molten metal remains in a high temperature state and forms a solidified shell. Preventing contact. Therefore, remelting of the solidified shell is suppressed, and a multilayer slab having an outer layer of constant thickness can be manufactured. Also,
A discharge flow with a horizontal flow component is less likely to disturb the interface between different types of molten metals, so the mixing of different types of metals with each other is reduced, and the interfacial phase formed between the outer layer and the inner layer is also extremely thin. . As described above, according to the present invention, a multi-layer slab with excellent quality can be manufactured under stable conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は側面に吐出口を開口させた浸漬ノズルを使用し
て複層鋳片を製造している状態を示し、第2図11その
ときの溶融金属の流れを説明するための図であり、第3
図は電磁撹拌装置を使用して水平方向の流動成分をもつ
吐出流を形成している状態を示す。他方、第4図は、本
発明者等が先に提案した複層鋳片の製造方法を説明する
ための図である。 1.2:浸漬ノズル   3,4:溶融金属5.6:凝
固シェル   7:電磁石 8:吐出口      9:吐出流 10:電磁撹拌装置   M:鋳型 特許出願人    新日本製鐵 株式會社(ほか1名) 代  理  人      小  堀   益 (ほか
2名)第1図 第2図 第3図 第4図
Figure 1 shows the state in which a multilayer slab is manufactured using a submerged nozzle with a discharge port opened on the side, and Figure 2 (11) is a diagram for explaining the flow of molten metal at that time. , 3rd
The figure shows a state in which an electromagnetic stirring device is used to form a discharge flow with a horizontal flow component. On the other hand, FIG. 4 is a diagram for explaining a method for manufacturing a multilayer slab previously proposed by the present inventors. 1.2: Immersion nozzle 3, 4: Molten metal 5.6: Solidified shell 7: Electromagnet 8: Discharge port 9: Discharge flow 10: Electromagnetic stirring device M: Mold patent applicant Nippon Steel Corporation (and 1 other person) ) Agent Masu Kobori (and 2 others) Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、鋳型に供給された溶融金属の湯面レベルよりも下方
の位置で、鋳片全幅にわたって磁力線が延在する静磁場
を印加し、この静磁場帯を境として上下に異なる金属を
供給することにより複層鋳片を連続鋳造する際に、前記
静磁場帯の下方に供給される溶融金属に対して水平方向
の流動成分を与えることを特徴とする複層鋳片の連続鋳
造方法。
1. Applying a static magnetic field with lines of magnetic force extending across the entire width of the slab at a position below the level of the molten metal supplied to the mold, and supplying different metals above and below this static magnetic field zone. A continuous casting method for a multi-layer slab, characterized in that when continuously casting a multi-layer slab, a horizontal flow component is imparted to the molten metal supplied below the static magnetic field zone.
JP10055088A 1988-04-22 1988-04-22 Method for continuously casting double-layer cast slab Granted JPH01271042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10055088A JPH01271042A (en) 1988-04-22 1988-04-22 Method for continuously casting double-layer cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10055088A JPH01271042A (en) 1988-04-22 1988-04-22 Method for continuously casting double-layer cast slab

Publications (2)

Publication Number Publication Date
JPH01271042A true JPH01271042A (en) 1989-10-30
JPH0464780B2 JPH0464780B2 (en) 1992-10-16

Family

ID=14277052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10055088A Granted JPH01271042A (en) 1988-04-22 1988-04-22 Method for continuously casting double-layer cast slab

Country Status (1)

Country Link
JP (1) JPH01271042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012909A1 (en) * 1990-02-23 1991-09-05 Nippon Steel Corporation Continuous casting apparatus
CN108348989A (en) * 2015-10-30 2018-07-31 新日铁住金株式会社 The continuous casting apparatus and continuous casing of complex ingot blank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012909A1 (en) * 1990-02-23 1991-09-05 Nippon Steel Corporation Continuous casting apparatus
CN108348989A (en) * 2015-10-30 2018-07-31 新日铁住金株式会社 The continuous casting apparatus and continuous casing of complex ingot blank
US10987730B2 (en) 2015-10-30 2021-04-27 Nippon Steel Corporation Continuous casting apparatus and continuous casting method for multilayered slab

Also Published As

Publication number Publication date
JPH0464780B2 (en) 1992-10-16

Similar Documents

Publication Publication Date Title
JPH0320295B2 (en)
JPH01317658A (en) Method for continuously casting metal strip and nozzle for continuous casting
JPH01271042A (en) Method for continuously casting double-layer cast slab
JPH0366447A (en) Method for casting layered cast slab
JPH0339780B2 (en)
JP2652257B2 (en) Continuous casting method for composite metal materials
JPH01271031A (en) Method for continuously casting double-layer cast slab
JP2609676B2 (en) Continuous casting method and apparatus for multilayer slab
JPH05208244A (en) Method for continuously casting plural layer cast slab
JPH01271032A (en) Horizontal continuous casting apparatus for double-layer cast billet
JPH0255643A (en) Method and nozzle for continuously casting metal strip
JPH03198951A (en) Method and apparatus for continuously casting cast strip
JPH04309436A (en) Continuous casting method for double layer cast billet
JPH01271041A (en) Dummy bar for continuously casting double-layer cast slab
JPS6343748A (en) Molten metal pouring nozzle for shifting mold type continuous casting
JPH0255641A (en) Method for continuously casting complex metal material
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JPH0464768B2 (en)
JPH0464782B2 (en)
JPS61195753A (en) Continuous casting device
JPS60133967A (en) Production of composite roll
JPH0852544A (en) Production of non-defective cast slab
JPH0464779B2 (en)
JPH04187350A (en) Immersion nozzle for belt type continuous casting
JPH06335749A (en) Method for continuously casting double layer cast slab