JPH0579963B2 - - Google Patents

Info

Publication number
JPH0579963B2
JPH0579963B2 JP62004146A JP414687A JPH0579963B2 JP H0579963 B2 JPH0579963 B2 JP H0579963B2 JP 62004146 A JP62004146 A JP 62004146A JP 414687 A JP414687 A JP 414687A JP H0579963 B2 JPH0579963 B2 JP H0579963B2
Authority
JP
Japan
Prior art keywords
optical transmitter
array
guide plate
optical
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62004146A
Other languages
Japanese (ja)
Other versions
JPS63173003A (en
Inventor
Kenichi Sakunaga
Yoshiro Nieda
Masaji Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62004146A priority Critical patent/JPS63173003A/en
Publication of JPS63173003A publication Critical patent/JPS63173003A/en
Publication of JPH0579963B2 publication Critical patent/JPH0579963B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多数の屈折率分布型の円柱状光伝送
体を列状に並設した構造からなり、画像の光学的
伝送に用いられる屈折率分布型光伝送体アレイの
製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a refractive index device comprising a structure in which a large number of refractive index distribution type cylindrical light transmitting bodies are arranged in parallel, and is used for optical transmission of images. The present invention relates to a method of manufacturing a rate distribution type optical transmitter array.

より詳しくは、V溝付きガイドプレートと光伝
送体供給ホツパーとを用いて、ガイドプレートの
V溝上に屈折率分布型の円柱状光伝送体を連続的
かつ正確に並設し、そのようにして並設された光
伝送体列の上側に板部材を接着して光伝送体列付
き板部材を形成し、次にこの光伝送体列付き板部
材の光伝送体列の他方の側に他の板部材を接着す
るか、あるいは光伝送体列付き板部材どうしを2
枚接着して、2枚の板部材間に光伝送体列を挟着
する工程を有する屈折率分布型光伝送体アレイの
製造方法に関する。
More specifically, by using a guide plate with a V-groove and an optical transmitter supply hopper, the refractive index distribution type cylindrical optical transmitters are continuously and accurately arranged side by side on the V-groove of the guide plate, and in this way. A plate member is bonded to the upper side of the optical transmitter array arranged in parallel to form a plate member with an optical transmitter array, and then another plate member is attached to the other side of the optical transmitter array of this plate member with an optical transmitter array. Either glue the plate members together or connect two plate members with optical transmitter rows together.
The present invention relates to a method of manufacturing a gradient index optical transmitter array, which includes a step of adhering two plate members and sandwiching an array of optical transmitters between two plate members.

〔従来の技術〕[Conventional technology]

画像伝送の分野で近年注目を集めているのが、
等倍正立像が得られる光伝送体アレイであり、複
写機、フアクシミリ、電子黒板等の画像情報の光
学的な伝送部分に用いられている。
What has been attracting attention in recent years in the field of image transmission is
This is an optical transmission array that can obtain a 1-size erect image, and is used in the optical transmission part of image information in copying machines, facsimile machines, electronic blackboards, etc.

この光伝送体アレイは、代表的には、中間部材
によつて所定の間隔で接合された、例えばFRP
(ガラスクロス樹脂積層板)などからなる2枚の
板部材間に、一方の面から他方の面に各々の両端
面が達する多数の円柱状光伝送体が正確に列状に
組込まれた構造を有している。なお、この光伝送
体アレイに組込む光伝送体としては、円柱状のレ
ンズや光学繊維からなるものが使用されている。
This optical transmitter array typically consists of, for example, FRPs joined at predetermined intervals by an intermediate member.
A structure in which a large number of cylindrical optical transmitters are precisely assembled in a row between two plate members made of (glass cloth resin laminate) etc., each end surface reaching from one surface to the other. have. Note that the optical transmission bodies incorporated in this optical transmission body array are made of cylindrical lenses or optical fibers.

このような光伝送体アレイの従来の組立方法を
図面を参照しつつ以下に説明する。
A conventional method of assembling such an optical transmission body array will be described below with reference to the drawings.

第9図〜第11図は従来の光伝送体アレイの組
立方法の主要工程である。
9 to 11 show the main steps of a conventional method for assembling an optical transmitter array.

まず、第9図に示すとおり、研削盤のテーブル
1上に定盤2または真空チヤツク定盤3を置き、
その上に板部材4,4−1,4−2を固定する。
なお、この板部材4の固定にあたつては、定盤の
場合は接着剤によつて、真空チヤツク定盤の場合
は吸引力によつて板部材4を固定し、その反りを
なくす。
First, as shown in Fig. 9, place the surface plate 2 or vacuum chuck surface plate 3 on the table 1 of the grinding machine,
The plate members 4, 4-1, 4-2 are fixed thereon.
When fixing the plate member 4, in the case of a surface plate, the plate member 4 is fixed by adhesive, and in the case of a vacuum chuck surface plate, it is fixed by suction force to eliminate warpage.

次に、板部材4の表面を例えば立軸型平面研削
盤の砥石5により平面研削し、板部材の一方の面
を所定の平面度に仕上げる。
Next, the surface of the plate member 4 is subjected to surface grinding using, for example, a grindstone 5 of a vertical shaft type surface grinder to finish one surface of the plate member to a predetermined flatness.

このようにして平面研削処理された板部材4−
1を第10図に示すように光伝送体並設作業台6
上に置いた定盤2若しくは真空チヤツク定盤3上
に、平面研削処理された面4−1aがうえになる
ようにして、上述の平面研削処理時と同様の方法
によつて反りがないように固定する。
Plate member 4- subjected to surface grinding treatment in this way
As shown in FIG.
Place it on the surface plate 2 or vacuum chuck surface plate 3 placed above so that the surface 4-1a that has undergone the surface grinding process is facing up, and use the same method as in the surface grinding process described above to avoid warping. Fixed to.

ここで、板部材4−1の両端部に中間部材7を
接着剤で固定するとともに、研削面4−1a上に
所定数の円柱状光伝送体8を列状に並設し、光伝
送体列を形成する。
Here, the intermediate member 7 is fixed to both ends of the plate member 4-1 with adhesive, and a predetermined number of cylindrical light transmitting bodies 8 are arranged in a row on the ground surface 4-1a. form a line.

次いで、第11図に示すように上述と同様にし
て平面研削処理した板部材4−2を、その研削面
4−2aが光伝送体列上に重ね合されるように、
これを中間部材7に接着する。なお、この接着時
には、光伝送体列と板部材4−2の間及び光伝送
体列を形成する各円柱状光伝送体8の隙間にも接
着樹脂を含浸充填して、これを乾燥させる。
Next, as shown in FIG. 11, the plate member 4-2 subjected to surface grinding in the same manner as described above is placed so that its ground surface 4-2a is superimposed on the optical transmission body array.
This is adhered to the intermediate member 7. At the time of this bonding, the adhesive resin is also impregnated and filled between the optical transmitter array and the plate member 4-2 and the gaps between the columnar optical transmitters 8 forming the optical transmitter array, and then dried.

最後に、各円柱状光伝送体8の端面が位置する
両面を鏡面研磨することによつて、各光伝送体8
の両端面も一緒に鏡面研磨して、光伝送体アレイ
を得る。
Finally, by mirror-polishing both surfaces of each cylindrical light transmitting body 8 on which the end surfaces are located, each light transmitting body 8 is
Both end surfaces of the optical fibers are also mirror-polished to obtain an optical transmitter array.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したような従来法による光伝送体アレイの
組み立て方法では、円柱状光伝送体を整列させる
際の基準面が板部材表面であるため、円柱状光伝
送体を配列精度良く並設するには該表面の平滑度
が極めて重要となる。しかしながら、十分な平滑
度を得るための精密平面研削処理には高度な技術
や多くの労力が必要とされる上に、並設のための
ガイド類は全く用いずに円柱状光伝送体を1本1
本手作業で板部材上に並設するので、例えば正確
な光伝送体の俵積みを形成させることが非常に困
難であり、作業性、生産性及び組立て精度をより
向上させる上での障害となつていた。
In the conventional method of assembling an optical transmitter array as described above, the reference surface when arranging the cylindrical optical transmitters is the surface of the plate member. The smoothness of the surface is extremely important. However, the precision surface grinding process to obtain sufficient smoothness requires advanced technology and a lot of labor, and the cylindrical optical transmitters are assembled in one piece without using any guides for parallel installation. Book 1
Since they are arranged side by side on a plate member manually, it is very difficult to form accurate bales of optical transmitters, which is an obstacle to further improving workability, productivity, and assembly accuracy. I was getting used to it.

本発明は、このような問題点に鑑みなされたも
のであり、その目的は、円柱状光伝送体の並設に
おける1本ずつ手で並べる上述のような作業を不
要とし、また、精密平面研削処理されていない板
部材でもそのまま使用できる光伝送体アレイの製
造方法を提供することにある。
The present invention was made in view of these problems, and its purpose is to eliminate the above-mentioned work of manually arranging columnar optical transmitters one by one when they are arranged side by side, and to eliminate the need for precision surface grinding. It is an object of the present invention to provide a method for manufacturing an optical transmitter array in which even untreated plate members can be used as they are.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する本発明の屈折率分布型光伝
送体アレイの製造方法は、屈折率分布型の円柱状
伝送体を列状に並設した光伝送体列を2枚の板部
材で挟着して屈折率分布型光伝送体アレイを製造
する方法において、前記円柱状光伝送体の直径に
等しいピツチでV溝が配設されたガイドプレート
と、前記円柱状光伝送体を配列供給する機能のエ
ツジ部を備えたホツパーとを相対的に並設し、V
溝上に前記円柱状光伝送体の多数を連続的に移動
させ、これら円柱状光伝送体の列を形成する工程
(a)と、該ガイドプレート上に形成された前記光伝
送体列に板部材を接着する工程(b)と、該工程(b)で
得た光伝送体列付き板部材に他の板部材を接着す
るか、または前記工程(b)で得た光伝送体列付き板
部材の2枚を接着して、2枚の板部材間に該光伝
送体列を挟着する工程(c)とを有することを特徴と
するものである。
A method of manufacturing a refractive index distribution type optical transmission body array of the present invention that achieves the above object is to sandwich an optical transmission body array in which refractive index distribution type cylindrical transmission bodies are arranged in a row between two plate members. In the method of manufacturing a refractive index gradient optical transmission body array, a guide plate in which V grooves are arranged at a pitch equal to the diameter of the cylindrical optical transmission body, and a function of arranging and supplying the cylindrical optical transmission body. hoppers with edge portions are relatively arranged side by side, and V
A step of continuously moving a large number of the cylindrical light transmitting bodies on the groove to form a row of these cylindrical light transmitting bodies.
(a), a step (b) of bonding a plate member to the optical transmitter array formed on the guide plate, and a step (b) of adhering a plate member to the optical transmitter array obtained in step (b); or bonding two of the plate members with the optical transmitter array obtained in the step (b), and sandwiching the optical transmitter array between the two plate members; It is characterized by having the following.

本発明の方法においては、従来の方法のように
平滑に精密研磨された板部材上に直接屈折率分布
型の円柱状光伝送体(以下単に光伝送体という)
を手作業で並設するのではなく、光伝送体の所定
の配列に対応するように配置されたV溝を有する
ガイドプレートを用い、このV溝上に光伝送体を
供給するという簡単な操作で、V溝の配列に従つ
た光伝送体の所定の配列が常に正確に得られる。
しかも、この操作は光伝送体供給ホツパによつて
連続的に、かつ容易に行なえるので、本発明によ
れば作業性、生産性及び組立て精度の向上が計れ
る。また、ガイドプレートは繰り返し使用可能で
あり、配列精度の良い光伝送体列をバラツキなく
常に得ることができる。
In the method of the present invention, unlike the conventional method, a refractive index distribution type cylindrical optical transmission body (hereinafter simply referred to as an optical transmission body) is directly placed on a plate member that has been precisely polished to a smooth surface.
Instead of manually arranging the optical transmitters side by side, a guide plate with V-grooves arranged to correspond to the predetermined arrangement of the optical transmitters can be used, and the optical transmitters can be supplied onto the V-grooves using a simple operation. , the predetermined arrangement of the light transmission bodies according to the arrangement of the V-grooves can always be accurately obtained.
Furthermore, since this operation can be performed continuously and easily using the optical transmission body supply hopper, the present invention can improve workability, productivity, and assembly accuracy. Further, the guide plate can be used repeatedly, and it is possible to always obtain an array of optical transmitters with high alignment accuracy without variation.

更に、本発明の方法においては、光伝送体の配
列精度がガイドプレートのV溝の配列によつて自
動的に決定され、すなわち従来の方法のように板
部材の表面を整列の基準面としないので、板部材
表面に高い平滑性が要求されず、板部材の精密平
面研削処理を省略できる。
Furthermore, in the method of the present invention, the alignment accuracy of the optical transmitters is automatically determined by the arrangement of the V-grooves of the guide plate, that is, the surface of the plate member is not used as a reference plane for alignment, as in the conventional method. Therefore, high smoothness is not required on the surface of the plate member, and precision surface grinding of the plate member can be omitted.

また、ガイドプレート上に並設された各光伝送
体は、V溝内に置かれることによつて、あるいは
必要に応じてそこに仮固定されることによつて、
並設工程及び並設後の板部材との接着工程でその
配列を乱すことがなく、これらの工程の作業性が
向上するばかりか、光伝送体の配列精度もこれら
の工程を通して維持される。
In addition, each of the optical transmission bodies arranged in parallel on the guide plate can be placed in a V-groove or temporarily fixed there as necessary.
The arrangement is not disturbed in the juxtaposition process and the adhesion process with the plate members after juxtaposition, and not only the workability of these processes is improved, but also the alignment accuracy of the optical transmission bodies is maintained throughout these processes.

しかも、複数段の俵積みを行なう場合でも上記
と同様にして、良好な作業性、生産性及び組立て
精度が得られる。
Moreover, even when stacking bales in multiple stages, good workability, productivity, and assembly accuracy can be obtained in the same manner as described above.

以下、本発明の方法を図面を用いて更に詳細に
説明する。
Hereinafter, the method of the present invention will be explained in more detail using the drawings.

第1図は、本発明の方法に用いることのできる
装置の主要部を断面図で表した概略図である。
FIG. 1 is a schematic cross-sectional view of the main parts of an apparatus that can be used in the method of the present invention.

この装置は、屈折率分布型で円柱状の光伝送体
チツプ8の配列に対応するように配置されたV溝
9aを有するガイドプレート9と、該プレート上
を移動しつつ円柱状の光伝送体チツプ8をV溝9
aに供給する供給ホツパー10とを有して構成さ
れている。
This device includes a guide plate 9 having a V-groove 9a arranged so as to correspond to the arrangement of cylindrical light transmitting chips 8 of a refractive index distribution type, and a guide plate 9 having a V-groove 9a arranged to correspond to the arrangement of cylindrical light transmitting chips 8, and a guide plate 9 having a V-groove 9a arranged to correspond to the arrangement of cylindrical light transmitting chips 8. Tip 8 to V groove 9
A supply hopper 10 for supplying to a.

V溝付きガイドプレート9は、鉄、アルミ等の
金属などの材料から形成することができ、互いに
平行に設けられたV溝9aのピツチは光伝送体チ
ツプ8の径に合せられている。なお、V溝9aの
加工精度は光伝送体チツプ8の所定の配列精度に
応じて十分に高いものとされる。また、V溝9a
表面は、そこにテフロンコーテイングを施してお
く、あるいは一般に用いられている離型剤を供給
しておくなどして、後述するガイドプレート上で
の板部材と光伝送体チツプの接着後の光伝送体列
付き板部材のガイドプレート上からの取りはずし
作業時に、光伝送体列付き板部材とガイドプレー
トとの離型性を良くしておくと良い。
The V-grooved guide plate 9 can be formed from a material such as metal such as iron or aluminum, and the pitch of the V-grooves 9a provided parallel to each other is matched to the diameter of the optical transmitter chip 8. The processing accuracy of the V-groove 9a is set to be sufficiently high in accordance with the predetermined arrangement accuracy of the optical transmitter chips 8. In addition, the V groove 9a
The surface is coated with Teflon or a commonly used mold release agent is applied to the surface to facilitate optical transmission after bonding the plate member and the optical transmitter chip on the guide plate, which will be described later. When removing the plate member with arrays of bodies from the guide plate, it is preferable to improve the releasability of the plate member with arrays of light transmitting bodies and the guide plate.

供給ホツパー10には、所定の長さの多数の光
伝送体チツプ8を同一方向に配列した状態で留め
ておく貯留部と、その下部に設けられた光伝送体
チツプ8が1本通る程度に絞り込まれた絞り構造
と、そこからガイドプレート9への光伝送体チツ
プ8の供給口11まで伸びた通路が形成されてい
る。これら貯留部、通路及び供給口の大きさは、
所定の光伝送体チツプ8の長さや幅に合せてあ
る。
The supply hopper 10 includes a storage section that holds a large number of optical transmission chips 8 of a predetermined length arranged in the same direction, and a storage section provided at the bottom of the storage section that holds a large number of optical transmission chips 8 of a predetermined length so that one optical transmission chip 8 can pass through. A constricted diaphragm structure and a passage extending therefrom to a supply opening 11 for the light transmitting chips 8 to the guide plate 9 are formed. The sizes of these reservoirs, passages and supply ports are as follows:
It is matched to the length and width of a predetermined optical transmission chip 8.

ここで、貯留部内に供給された各光伝送体チツ
プ8は、供給口11から光伝送体チツプが排出さ
れるのに伴なつて、重力の作用によつて順に貯留
部内を下方に移動し、更に絞り構造を経て通路内
では一列に並び、最終的に各光伝送体チツプ8に
作用する重力と、通路に斜めの角度をつけた効果
とが相まつて、供給口11からガイドプレート9
のV溝9aへ、あるいはすでにガイドプレート上
に並設されている互いに隣接した光伝送体チツプ
によつて形成された溝にスムーズに供給される。
供給口11は、供給ホツパー10の移動方向(矢
印)における前後にエツジ12,13を有し、こ
れらエツジの高さの差によつて、方向性の良いス
ムーズな光伝送体チツプ8の供給が実現される。
Here, as the optical transmitter chips 8 supplied into the reservoir are discharged from the supply port 11, they are sequentially moved downward within the reservoir by the action of gravity. Furthermore, through the aperture structure, they are arranged in a line in the passage, and finally the gravity acting on each optical transmission chip 8 and the effect of the oblique angle of the passage combine to cause the chips to flow from the supply port 11 to the guide plate 9.
or into a groove formed by mutually adjacent light transmitting chips already arranged in parallel on the guide plate.
The supply port 11 has edges 12 and 13 at the front and rear in the moving direction (arrow) of the supply hopper 10, and the difference in height of these edges allows for smooth supply of the optical transmitter chip 8 with good directionality. Realized.

すなわち、供給ホツパー10の移動方向におけ
る後方側に位置するエツジ12のエツジ高さはV
溝9aに光伝送体チツプ8を配置した状態でのチ
ツプ8の最上部8aの頂点高さに、また供給ホツ
パー10の移動方向における前方側に位置するエ
ツジ13のエツジ高さはV溝9aの山の頂上部9
a−1高さに合わされる。なお、2段以上の俵積
みを行なう場合には、これらエツジは後述のよう
に調整される。このようなエツジ12,13の構
成によつて、各光伝送体チツプ8は供給ホツパー
10の移動方向における後方にのみ、方向性良く
かつ規制正しく押出されてV溝9aに配置され、
また一度V溝9aにセツトされた光伝送体チツプ
8がそこから飛び出すようなこともない。
That is, the edge height of the edge 12 located on the rear side in the moving direction of the supply hopper 10 is V
The peak height of the top 8a of the chip 8 when the optical transmitter chip 8 is placed in the groove 9a, and the edge height of the edge 13 located on the front side in the moving direction of the supply hopper 10 are equal to the height of the V-groove 9a. top of mountain 9
It is adjusted to the height of a-1. Note that when stacking bales in two or more stages, these edges are adjusted as described below. With such a configuration of the edges 12 and 13, each optical transmitter chip 8 is pushed out only backward in the moving direction of the supply hopper 10 with good directionality and regulation, and is placed in the V-groove 9a.
Furthermore, the optical transmitter chip 8 once set in the V-groove 9a will not fly out from there.

更に、供給ホツパー10には、これを振動させ
る振動器14が付設されており、これによつてガ
イドプレート9への設置前に供給ホツパー10を
振動させ、供給ホツパー10内での光伝送体チツ
プ8の詰まり、配列乱れなどを解消して、供給ホ
ツパー10内での光伝送体チツプ8の配列状態
を、これらがホツパー10内からスムーズに流出
できるのに適したものとすることができる。な
お、この振動操作に際しては、供給口11に蓋1
5を設けて、それを閉じるなどの手段によつて、
供給口11をふさいでおいて、光伝送体チツプ8
が供給ホツパー11からこぼれ出ないようにして
おくと良い。
Further, the supply hopper 10 is provided with a vibrator 14 for vibrating the supply hopper 10, which vibrates the supply hopper 10 before installing it on the guide plate 9, thereby causing the light transmitting material chips in the supply hopper 10 to vibrate. By eliminating clogging, disordered arrangement, etc. of the optical fiber chips 8, the arrangement state of the optical transmitter chips 8 in the supply hopper 10 can be made suitable for allowing them to flow out smoothly from the hopper 10. Note that during this vibration operation, the lid 1 must be placed on the supply port 11.
5, and by means such as closing it,
With the supply port 11 blocked, the optical transmission chip 8
It is better to prevent the liquid from spilling out of the supply hopper 11.

第2図は、供給ホツパー10をガイドプレート
9上に設置した状態を示す図であり、第2図Aは
その側面図、第2図Bはその平面図である。
FIG. 2 is a view showing the supply hopper 10 installed on the guide plate 9, with FIG. 2A being a side view thereof and FIG. 2B being a plan view thereof.

供給ホツパー10の支え部は、V溝付きガイド
プレート9の幅に対応して設けられており、ガイ
ドプレート9を両側から挟み込むようにしてガイ
ドプレート9上に設置され、それによつて供給ホ
ツパー10の供給口11とガイドプレート9のV
溝9aとの直線性が出され、これらの方向が一致
するようになつている。
The support portion of the supply hopper 10 is provided corresponding to the width of the V-grooved guide plate 9, and is installed on the guide plate 9 so as to sandwich the guide plate 9 from both sides, thereby allowing the support portion of the supply hopper 10 to V of supply port 11 and guide plate 9
Linearity with the groove 9a is achieved so that these directions coincide.

なお、供給ホツパー10とガイドプレート9と
は、例えば、固定されたガイドプレート9上を供
給ホツパー10が移動する、または固定された供
給ホツパー11に対してガイドプレート9が移動
する、あるいはこれら両方が移動するなど、これ
らが相対的に移動できるように設けられおり、こ
れらの移動のための構成には通常の搬送技術等で
用いられているものを適宜選択して用いれば良
い。
Note that the supply hopper 10 and the guide plate 9 are arranged so that, for example, the supply hopper 10 moves on the fixed guide plate 9, or the guide plate 9 moves with respect to the fixed supply hopper 11, or both. These are provided so that they can be moved relative to each other, such as moving, and the structure for moving these may be appropriately selected from those used in normal conveyance techniques.

また、供給ホツパー10の支え構造は、上述の
構造に限定されず、第1図に示したような状態で
ガイドプレート9のV溝9aに光伝送体チツプ8
が供給できるならばどのような構造も取り得る。
Further, the supporting structure of the supply hopper 10 is not limited to the above-described structure, and the optical transmitter chip 8 is inserted into the V-groove 9a of the guide plate 9 in the state shown in FIG.
Any structure is possible as long as it can be supplied.

次に、このような構成の装置を用いた本発明の
方法について説明する。
Next, a method of the present invention using an apparatus having such a configuration will be explained.

[工程(a)] まず、供給ホツパー10の供給口11の蓋15
を閉じ、供給ホツパー10内に長さの揃つた光伝
送体チツプ8の必要数を方向を揃えて入れ、振動
器14を作動させて供給ホツパー10に振動を与
え、供給ホツパー10内の光伝送体の並びを整え
る。
[Step (a)] First, cover 15 of supply port 11 of supply hopper 10
, put the required number of optical transmitter chips 8 of the same length into the supply hopper 10 in the same direction, and operate the vibrator 14 to give vibration to the supply hopper 10 to reduce the optical transmission inside the supply hopper 10. Align your body.

次に、供給ホツパー10を、その供給口11が
光伝送体チツプ8を最初に供給するガイドプレー
ト9のV溝上に、その移動方向の前方にエツジ1
3が位置するように配置し、蓋15を開けてか
ら、供給ホツパー10をV溝9aの配列方向へ移
動させる。すると、重力の作用と、供給ホツパー
10の横方向への移動との連係、及び供給口11
の前述したような特徴的な構造の複合的な作用に
よつて、V溝9aに光伝送体チツプ8が1本ずつ
順次スムーズに供給され、これらがV溝9aの配
列に対応して正確に並設される。
Next, the supply hopper 10 is placed on the V-groove of the guide plate 9, where the supply port 11 first supplies the optical transmitter chips 8, and the edge 1 is placed in front of the guide plate 9 in the direction of movement.
After opening the lid 15, the supply hopper 10 is moved in the direction in which the V grooves 9a are arranged. Then, the action of gravity and the lateral movement of the supply hopper 10 are linked, and the supply port 11
Due to the combined effect of the above-mentioned characteristic structure, the optical transmitter chips 8 are smoothly supplied one by one to the V-groove 9a, and these are accurately arranged in accordance with the arrangement of the V-groove 9a. Installed in parallel.

なお、光伝送体列を数段に設ける場合には、供
給口11のエツジ12,13の高さを例えば治具
等により調節できる構造としておき、1つの光伝
送体列を形成し終え段階で、エツジ12の高さを
先に並設し終えた光伝送体列の互いに隣合つた2
つの光伝送体によつて形成された溝の次の列を構
成する光伝送体チツプを配置した際の該光伝送体
チツプの頂上高さに合せ、またエツジ13の高さ
を先に並列し終えた光伝送体列を構成する光伝送
体の頂上高さに合せ、上記と同様の操作を繰返せ
ば良く、そのようにして前段の互いの隣合つた2
つの光伝送体の間に次段の光伝送体を載せて、精
密で配列精度の優れた俵積みが可能である。
In addition, when the optical transmission element array is provided in several stages, the height of the edges 12 and 13 of the supply port 11 can be adjusted using a jig, etc., and the height of the edges 12 and 13 of the supply port 11 can be adjusted by using a jig or the like, and when one optical transmission element array is completed, , the height of the edge 12 is set to 2 adjacent to each other in the optical transmitter rows that have been arranged in parallel.
The height of the edges 13 should be adjusted to match the top height of the optical transmitter chips constituting the next row of grooves formed by the two optical transmitters when they are arranged, and the height of the edges 13 should be aligned first. The same operation as above can be repeated to match the height of the top of the optical transmitters constituting the completed optical transmitter array.
By placing the next stage of optical transmission bodies between two optical transmission bodies, it is possible to stack bales with high precision and excellent alignment accuracy.

なお、以後の板部材への光伝送体列の接着固定
作業が完了するまで、一度整列させた光伝送体の
並びが動いてその配列に乱れが生じる恐れがある
場合には、ガイドプレート上に各光伝送体チツプ
を仮固定、すなわち光伝送体列と板部材のとの接
着固定完了後に、光伝送体列がガイドプレートか
ら破損等を引き起すことなく容易に除去可能なよ
うな手段で仮固定しておくと良い。この仮固定に
は、例えば、第3図A及びBに示すように、粘着
テープ16をガイドプレート9のV溝9aの両端
の延長部分に設けた縁部に配置しておき、各光伝
送体チツプの両端部がこれによつて仮固定できる
ようにする方法がある。この場合、粘着テープ
(あるいは粘着剤層)は、少なくともV溝中心線
上部分に1箇所配置されていれば良く、またV溝
を分断するような形で設けられていても良い。
In addition, if there is a risk that the array of optical transmitters that have been aligned will move and become disordered until the subsequent process of gluing and fixing the array of optical transmitters to the plate member is completed, do not place the array of optical transmitters on the guide plate. After temporarily fixing each optical transmitter chip, that is, adhering and fixing the optical transmitter array to the plate member, temporarily fix the optical transmitter chip by a means that allows the optical transmitter array to be easily removed from the guide plate without causing damage. It is best to keep it fixed. For this temporary fixing, for example, as shown in FIGS. 3A and 3B, adhesive tape 16 is placed on the edges provided at both ends of the V-groove 9a of the guide plate 9. There is a method in which both ends of the chip can be temporarily fixed by this. In this case, the adhesive tape (or adhesive layer) may be disposed at least in one location above the center line of the V-groove, or may be provided in a manner that divides the V-groove.

また、別法としては、第4図A〜Gで示すよう
にガイドプレートに、真空チヤツク式のガイドプ
レート101を用い、各V溝9aに設けた吸気孔
102aで光伝送体チツプ8を吸わせて仮固定す
る方法が適用できる。真空チヤツク式のガイドプ
レート101は第4図に示したように、既に述べ
たガイドプレートの底から表面へ向つて、各V溝
の山部分9a−1の途中まで達するような矩形等
の断面形状の溝102を、全V溝を横断する形で
刻めば良い。そうすれば、V溝の谷部分にそれぞ
れ角形の真空吸気孔102aの列が形成される。
なお、真空吸気孔は、少なくともV溝中心線上部
分に一箇所配置されていれば良い。また、吸気孔
の溝102の断面形状は必ずしも矩形である必要
はなく、U字形など適宜選択すれば良い。
Another method is to use a vacuum chuck type guide plate 101 as the guide plate, as shown in FIGS. A temporary fixing method can be applied. As shown in FIG. 4, the vacuum chuck type guide plate 101 has a cross-sectional shape such as a rectangle that extends from the bottom to the surface of the guide plate halfway up the peak portion 9a-1 of each V-groove. The groove 102 may be cut across the entire V-groove. By doing so, rows of rectangular vacuum intake holes 102a are formed in the valley portions of the V-grooves.
Note that it is sufficient that the vacuum intake hole is disposed at least at one location above the center line of the V-groove. Further, the cross-sectional shape of the groove 102 of the intake hole does not necessarily have to be rectangular, and may be appropriately selected such as a U-shape.

実際に、真空吸気孔102aを用いてガイドプ
レートのV溝9aに光伝送体チツプ8を配列する
場合は、第4図E〜Gに示すような光伝送体チツ
プ供給ホツパー103を使用する。ホツパー上部
の構造は先に述べたホツパーと同様であるが、こ
こで使用するホツパーは、その下部に、上部と連
動して真空吸気孔102aの開閉の役割りを果た
す真空調節部104を持つ。この真空調節部10
4は、吸気孔溝102を丁度ふさぐような断面形
状を持つており、この調節部104が吸気孔溝1
02に入り込んでいない部分についてのみ吸気孔
102aが開き、真空吸気が効く。従つて、ホツ
パーの光伝送体供給口のエツジ13付近に調節部
先端104aを合わせ、供給口部分11と真空調
節部先端104aとが連動するようにすれば、既
に光伝送体チツプ8が並んだ部分だけについて吸
気孔102aが開き、光伝送体チツプは真空吸引
によつて確実に仮固定される。
Actually, when the optical transmitter chips 8 are arranged in the V-groove 9a of the guide plate using the vacuum suction hole 102a, an optical transmitter chip supply hopper 103 as shown in FIGS. 4E to 4G is used. The structure of the upper part of the hopper is similar to the above-described hopper, but the hopper used here has a vacuum adjustment part 104 at its lower part that works in conjunction with the upper part to open and close the vacuum intake hole 102a. This vacuum adjustment section 10
4 has a cross-sectional shape that just closes the intake hole groove 102, and this adjusting portion 104 closes the intake hole groove 1.
The air intake hole 102a opens only in the portion that does not enter the air hole 02, and vacuum air intake is effective. Therefore, by aligning the tip 104a of the adjusting section near the edge 13 of the optical transmitter supply port of the hopper so that the supply port portion 11 and the tip 104a of the vacuum adjusting section are interlocked, the optical transmitter chips 8 are already lined up. The air intake hole 102a is opened only in that portion, and the optical transmitter chip is reliably temporarily fixed by vacuum suction.

このように光伝送体チツプ8をガイドプレート
9または101上に仮固定することによつてより
正確な並列作業を行なうことができるとともにそ
の配列の乱れを防止することができ、特に数段に
光伝送体列を俵積みする際に効果的である。
By temporarily fixing the optical transmitter chip 8 on the guide plate 9 or 101 in this way, more accurate parallel work can be performed and disturbances in the arrangement can be prevented. Effective when stacking transmission bodies in bales.

以上のようにして光伝送体チツプ8の並設が終
了し、ガイドプレート9上に所望の構成の光伝送
体列が形成されたところで、形成された光伝送体
列と板部材4−1との接着が行なわれる。
When the juxtaposition of the optical transmitter chips 8 is completed as described above and the optical transmitter array of the desired configuration is formed on the guide plate 9, the formed optical transmitter array and the plate member 4-1 are connected. Adhesion is performed.

[工程(b)] この板部材4−1と光伝送体列との接着固定に
は、通常用いられている比較的低粘度の接着剤な
どを、第5図に示すように、板部材4−1と各光
伝送体チツプ8と接触部分のみならず、板部材4
−1と各光伝送体チツプ8との間の、更には各光
伝送体チツプ間に形成された隙間21にも供給充
填し、更にこれを乾燥開口固化させて、これらを
接着固定する方法などによつて行なうことができ
る。
[Step (b)] To bond and fix the plate member 4-1 and the optical transmitter array, a commonly used relatively low viscosity adhesive or the like is applied to the plate member 4-1 as shown in FIG. -1 and each optical transmitter chip 8 and the contact portion as well as the plate member 4.
-1 and each optical transmitter chip 8, and furthermore, a method of supplying and filling the gap 21 formed between each optical transmitter chip, drying and solidifying the aperture, and fixing them with adhesive, etc. This can be done by

また、光伝送体列が一段の場合には、第6図に
示すような装置による粘着シートを用いた方法
が、接着剤を用いることによる種々の操作を省く
ことができるので便利である。
Further, when there is only one row of optical transmitters, a method using an adhesive sheet using an apparatus as shown in FIG. 6 is convenient because it can omit various operations using adhesives.

すなわち、供給ホツパー10と連動して動くロ
ーラー18を介して両面粘着シート19を繰り出
し、ガイドプレート上に形成されている光伝送体
列に接着する。両面粘着シート19のローラー1
8側には剥離シート20が一体化されていて、粘
着シート19とローラー18とが接着しないよう
になつている。光伝送体列に粘着シート19を接
着し終つたら、剥離シート20をはがし、露出し
た粘着面に板部材4−1を接着する。
That is, the double-sided adhesive sheet 19 is fed out via the roller 18 that moves in conjunction with the supply hopper 10, and is adhered to the light transmitting body array formed on the guide plate. Roller 1 of double-sided adhesive sheet 19
A release sheet 20 is integrated on the 8 side to prevent adhesive sheet 19 and roller 18 from adhering to each other. After adhering the adhesive sheet 19 to the optical transmitter array, the release sheet 20 is peeled off and the plate member 4-1 is adhered to the exposed adhesive surface.

[工程(c)] 上述のようにして光伝送体付き板部材4−1が
得られたら、これをV溝付きプレート9から取り
はずし、第7図に示すように端部に中間部材7を
接着する 次に、他の板部材4−2をこの光伝送体付き板
部材4−1に第7図に示すように接着して、2枚
の板部材4−1,4−2間に挟着固定する。
[Step (c)] Once the plate member 4-1 with the optical transmitter is obtained as described above, it is removed from the V-grooved plate 9, and the intermediate member 7 is glued to the end as shown in FIG. Next, another plate member 4-2 is adhered to this plate member 4-1 with optical transmission body as shown in FIG. 7, and is sandwiched between the two plate members 4-1 and 4-2. Fix it.

また他の方法として、第8図に示すように光伝
送体付き板部材4−1どうしを2枚、光伝送体列
を介して接着して、2枚の板部材4−1間に挟持
固定する。なお、光伝送体付き板部材4−1同志
を接着する場合には、例えば第8図の板部材4−
1−1と4−1−2に接着されたそれぞれの光伝
送体列におけるように、この段階で接着される2
つの光伝送体列の配列が対応するように、前記工
程(a)及び(b)で適宜調整しておくと良い。なお、こ
れらの接着には、通常用いられている接着剤を用
いれば良い。
As another method, as shown in FIG. 8, two plate members 4-1 with optical transmitters are glued together via a row of optical transmitters, and fixed by sandwiching between the two plate members 4-1. do. In addition, when bonding the plate members 4-1 with optical transmitters, for example, the plate members 4-1 in FIG.
2 to be bonded at this stage, as in the respective optical transmitter arrays bonded to 1-1 and 4-1-2.
It is preferable to make appropriate adjustments in the steps (a) and (b) so that the two optical transmitter arrays correspond to each other. Note that a commonly used adhesive may be used for bonding these.

最後に各光伝送体チツプの端面が位置する2面
を鏡面研磨して光伝送体アレイを完成する。な
お、接着固定はクランプ等を用いることによつて
より確実なものとなる。
Finally, the two surfaces on which the end faces of each optical transmitter chip are located are mirror polished to complete the optical transmitter array. Note that adhesive fixation can be made more reliable by using a clamp or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、円柱状光
伝送体の並設時にV溝付きガイドプレートを用い
ることにより、従来の如く板部材表面を予め精密
研削する作業や手作業による光伝送体の並設が不
要となり、また、光伝送体の配列精度も飛躍的に
向上する。従つて、作業性・生産効率は大幅に改
善され、光伝送体アレイの品質も高性能かつ安定
したものとなる。
As explained above, according to the present invention, by using a V-grooved guide plate when cylindrical light transmitting bodies are arranged side by side, the light transmitting bodies can be assembled by hand instead of the work of precision grinding the plate member surface in advance as in the past. Parallel installation is no longer necessary, and the alignment accuracy of the optical transmission bodies is also dramatically improved. Therefore, workability and production efficiency are greatly improved, and the quality of the optical transmission body array becomes high performance and stable.

〔実施例〕〔Example〕

以下、実施例により更に本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in further detail with reference to Examples.

実施例 1 弗化ビニリデン80モル%とテトラフルオロエチ
レン20モル%からなる共重合体(屈折率nD1.400)
33重量部、連続塊状重合法で得たポリメチルメタ
クリレート(屈折率nD1.492)33重量部、メチル
メタクリレート単量体33重量部、ベンジルジメチ
ルケタール0.1重量部、ハイドロキノン0.1重量部
を、80℃に加熱し、混練部を通して、径が2.0mm
のノズルより押し出し、続いて押し出したフアイ
バを、80℃に加熱され、窒素ガスが10ml/minの
速度で流れる揮発部を8分で通過させてから、6
本の円状に等間隔に設置された400Wの高圧水銀
灯の中心にフアイバを通過させ約5分間光を照射
し、20cm/minの速度でニツプローラーで引き取
つた。
Example 1 Copolymer consisting of 80 mol% vinylidene fluoride and 20 mol% tetrafluoroethylene (refractive index n D 1.400)
33 parts by weight of polymethyl methacrylate (refractive index n D 1.492) obtained by continuous bulk polymerization, 33 parts by weight of methyl methacrylate monomer, 0.1 part by weight of benzyl dimethyl ketal, and 0.1 part by weight of hydroquinone at 80°C. Heat and pass through the kneading section to a diameter of 2.0mm.
The extruded fiber was extruded through a nozzle of
The fiber was passed through the center of a 400W high-pressure mercury lamp placed at equal intervals in a circle around the book, irradiated with light for about 5 minutes, and then pulled off with a nip roller at a speed of 20cm/min.

得られたフアイバの径は800μmであり、イン
ターフアコ干渉顕微鏡により測定した屈折率分布
は、中心部が1.460、周辺部が1.451であり、中心
部から周辺部に向つて連続的に減少していた。最
後に、これを所定の長さに切断し、屈折率分布型
レンズチツプを得た。
The diameter of the obtained fiber was 800 μm, and the refractive index distribution measured using an interfaco interference microscope was 1.460 at the center and 1.451 at the periphery, which decreased continuously from the center to the periphery. . Finally, this was cut into a predetermined length to obtain a gradient index lens chip.

なお、得られたフアイバの核磁気共鳴法
(NMR)による組成分析の結果は、中心部には
弗化ビニリデンとテトラフルオロエチレンの共重
合体が33重量%、周辺部には43重量%それぞれ含
まれていた。メチルメタクリレート単量体の残留
分は、全体として0.9重量%であつた。
The composition analysis of the obtained fiber by nuclear magnetic resonance (NMR) revealed that the core contained 33% by weight of a copolymer of vinylidene fluoride and tetrafluoroethylene, and the peripheral part contained 43% by weight. It was The residual content of methyl methacrylate monomer was 0.9% by weight overall.

これとは別に、アルミ製の板(326mm×35mm)
の一方の表面をNC加工し、その横手方向に対し
て直角な方向に両端一杯に伸び、先に形成したレ
ンズチツプの直径と等しいピツチで正確に平行な
250本のV溝を形成し、V溝付きガイドプレート
を得た。
Apart from this, an aluminum plate (326mm x 35mm)
One surface of the is NC machined, and it extends to the full extent of both ends in the direction perpendicular to the transverse direction, and is precisely parallel with a pitch equal to the diameter of the previously formed lens chip.
250 V-grooves were formed to obtain a guide plate with V-grooves.

次に、先に形成したレンズチツプの多数を供給
口を蓋で塞いだ状態の第1図に示す構造の供給ホ
ツパーに方向を揃えて入れてから、ホツパーに付
設された振動器を振動させ、ホツパー内のレンズ
チツプの並びを整えた後、この供給ホツパーの下
部に上記のようにして得たV溝付ガイドプレート
を先に詳述したような位置関係でセツトした。
Next, a large number of the previously formed lens chips are placed in the same direction into the supply hopper having the structure shown in FIG. After arranging the lens chips inside, the V-grooved guide plate obtained as described above was set at the bottom of this supply hopper in the positional relationship as described in detail above.

次に、供給ホツパーの蓋を開け、ホツパーをガ
イドプレートに対して供給口の長い方のエツジが
前方となる方向に不図示の駆動手段によつて自動
的に20cm/sの速度で移動させた。
Next, the lid of the supply hopper was opened, and the hopper was automatically moved at a speed of 20 cm/s by a driving means (not shown) in a direction with the longer edge of the supply port facing forward relative to the guide plate. .

すると、レンズチツプが供給ホツパーの供給口
から次々と、ガイドプレートのV溝に供給され
た。
Then, lens chips were supplied one after another from the supply port of the supply hopper to the V-groove of the guide plate.

V溝の全てにレンズチツプが配置されたところ
で、すなわち第1段目が並設されたところで、供
給口の蓋を閉じ、その状態で、供給口の両エツジ
の高さを並設されたレンズチツプ列と付に並設さ
れる第2段目のレンズチツプ列の高さに応じて前
述のように調節してから、供給ホツパーを、その
供給口がすでに並設した第1段目のレンズチツプ
列の第1番面と第2番目のレンズチツプの間に位
置するようにセツトした。
When the lens chips are arranged in all of the V-grooves, that is, when the first row of lens chips are arranged in parallel, close the cover of the supply port, and in this state, adjust the height of both edges of the supply port to the rows of lens chips arranged in parallel. After adjusting the height as described above according to the height of the second row of lens chips that are arranged in parallel with It was set so that it was located between the first and second lens chips.

次に、蓋を開けて、第1段目と同様にして供給
ホツパーを移動させた。すると、第1段目の各レ
ンズチツプの間に、更に第2段目のレンズチツプ
列が形成され、精度良い俵積みが形成された。
Next, the lid was opened and the supply hopper was moved in the same manner as in the first stage. Then, a second row of lens chips was further formed between the lens chips of the first row, and a highly accurate bale stack was formed.

このようにしてレンズチツプの並設が終了した
ところで、レンズチツプ列の上にアルミ製板部材
を当て、該板部材とレンズチツプとの隙間及びレ
ンズチツプ同志の隙間に、黒色軟質エポキシ樹脂
を充填し、これを固化させ、板部材とレンズチツ
プ列との接着を完了した。
When the arrangement of lens chips is completed in this way, an aluminum plate member is placed on top of the row of lens chips, and the gaps between the plate member and the lens chips and the gaps between the lens chips are filled with black soft epoxy resin. After solidification, the bonding between the plate member and the lens chip array was completed.

次に2段のレンズチツプ列が接着された板部材
をV溝付きガイドプレートから取外し、このレン
ズ付き板部材の両端にアクリル樹脂製の中間部材
を黒色軟質エポキシ樹脂で接着した後、板部材と
同一サイズのアルミ製板部材の中間部材に黒色軟
質エポキシ樹脂で接着するとともに、該板部材と
レンズチツプとの隙間にも黒色軟質エポキシ樹脂
を充填して固化させた。
Next, remove the plate member to which the two rows of lens chips are glued from the V-grooved guide plate, and glue intermediate members made of acrylic resin to both ends of this plate member with lenses using black soft epoxy resin. The intermediate member of the aluminum plate member of the same size was adhered with a black soft epoxy resin, and the gap between the plate member and the lens chip was also filled with the black soft epoxy resin and solidified.

最後に、各レンズチツプの端面が位置する2面
を鏡面加工して、光伝送体アレイを得た。
Finally, the two surfaces on which the end surfaces of each lens chip were located were mirror-finished to obtain an optical transmitter array.

以上の操作を繰返して得られた光伝送体アレイ
の多数についてその品質を検査したところ、各ア
レイのレンズチツプは、ガイドプレートに形成さ
れたV溝の配列に対応して板部材上に配列精度良
く並設されており、また各光伝送体アレイを、1
mm当り6.4本のスリツト像を用いるMTF測定装置
に組み込んでその特性を評価したところ、各光伝
送体アレイのいずれにおいても、伝送された像
は、コントラスト良く、鮮明であり、良好な解像
特性か得られ、またレンズ周辺部の光散乱も非常
に小さくなつていた。
When we inspected the quality of a large number of optical transmitter arrays obtained by repeating the above operations, we found that the lens chips of each array were arranged with good precision on the plate member in accordance with the arrangement of the V grooves formed on the guide plate. They are arranged in parallel, and each optical transmission body array is
When we incorporated it into an MTF measuring device that uses 6.4 slit images per mm and evaluated its characteristics, the transmitted images were clear with good contrast, and had good resolution characteristics for each optical transmitter array. was obtained, and the light scattering around the lens periphery was also extremely small.

実施例 2 まず、光伝送体列を一段のみ形成する以外は実
施例1と同様にして2種の光伝送体列付きガイド
プレートを、光伝送体列と板部材との位置関係が
それぞれ第8図に示すようになるように注意しな
がら形成した。
Example 2 First, two types of guide plates with optical transmitter rows were prepared in the same manner as in Example 1 except that only one stage of the optical transmitter row was formed. It was formed with care so that it would look as shown in the figure.

次に、得られた2種の光伝送体列付き板部材の
一方に中間部材を接着した後、第8図に示すよう
に光伝送体列を対応させながら2枚の光伝送体付
き板部材を合せて、黒色軟質エポキシ樹脂で接着
するとともに、各レンズチツプ間の隙間にも黒色
軟質エポキシ樹脂を充填して固化させた。
Next, after bonding an intermediate member to one of the obtained two types of plate members with optical transmitter rows, as shown in FIG. They were then glued together with black soft epoxy resin, and the gaps between each lens chip were also filled with black soft epoxy resin and allowed to solidify.

最後に、各レンズチツプの端面が位置する2面
を鏡面加工して、光伝送体アレイを得た。
Finally, the two surfaces on which the end surfaces of each lens chip were located were mirror-finished to obtain an optical transmitter array.

以上の操作を繰返して得られた光伝送体アレイ
の多数について実施例1と同様にして、その品質
を検査したところ、各アレイのレンズチツプは、
ガイドプレートに形成されたV溝の配列に従つて
配列精度良く並設されており、各光伝送体アレイ
を、1mm当り6.4本のスリツト像を用いるMTF測
定装置に組み込んでその特性を評価したところ、
各光伝送体アレイのいずれにおいても、伝送され
た像は、コントラスト良く、鮮明であり、良好な
解像特性が得られ、またレンズ周辺部の光散乱も
非常に小さくなつていた。
When the quality of a large number of optical transmitter arrays obtained by repeating the above operations was inspected in the same manner as in Example 1, the lens chips of each array were found to be
They are arranged side by side with good alignment accuracy according to the arrangement of the V-grooves formed on the guide plate, and each optical transmitter array was incorporated into an MTF measurement device that uses 6.4 slit images per 1 mm to evaluate its characteristics. ,
In each of the optical transmitter arrays, the transmitted images had good contrast and clarity, good resolution characteristics were obtained, and light scattering around the lens was also very small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法に用いることができる
装置の主要部を断面図で表した概略図である。第
2図A及びB並びに第3図A及びBは本発明の方
法の各種態様を示す図であり、各図Aは装置の主
要部の側面図であり、各図Bは装置の主要部の平
面図である。第4図A〜Dは本発明の方法に用い
ることのできる真空チヤツク式ガイドプレートの
一態様例を示す図であり、第4図Aはその平面
図、第4図Bはその底面図、第4図Cはその縦断
面図、第4図Dはその側面図である。第4図E〜
Gは真空チヤツク式ガイドプレートを使用した本
発明の方法を示した図であり、第4図Eはその使
用状態を示す平面図、第4図Fはその側面図、第
4図Gはその断面図である。第5図は本発明の方
法の工程(b)の一例を示した組立て体の側面図であ
り、第6図は本発明の方法の工程(b)の他の例に用
いることのできる装置の主要部を断面図で表した
概略図であり、第7図及び第8図は本発明の方法
の工程(c)を示した組立て体の側面図である。第9
図〜第11図は従来の方法の主要工程を示す組立
て体の側面側から見た模式図である。 1……研削盤テーブル、2……定盤、3……真
空チヤツク定盤、4,4−1,4−2,4−1−
1,4−1−2……板部材、4−1a,4−2a
……研削面、5……砥石、6……作業台、7……
中間部材、8……光伝送体チツプ、8a……チツ
プ頂上部、9……ガイドプレート、9a……V
溝、9a−1……V溝頂上部、10……供給ホツ
パー、11……供給口、12,13……エツジ、
14……振動器、15……蓋、16……粘着テー
プ、18……ローラー、19……両面粘着シー
ト、20……剥離シート、21……隙間、101
……真空チヤツク式ガイドプレート、101a…
…真空チヤツク式ガイドプレート表面、101b
……真空チヤツク式ガイドプレート裏面、102
……真空吸気孔溝、102a……真空吸気孔、1
03……真空調節部付き光伝送体チツプ供給ホツ
パー、104……真空調節部、104a……真空
調節部先端、105……真空吸引ホース、106
……ガイドプレート蓋。
FIG. 1 is a schematic cross-sectional view of the main parts of an apparatus that can be used in the method of the present invention. Figures 2A and B and Figures 3A and B are diagrams showing various aspects of the method of the present invention, with each figure A being a side view of the main part of the apparatus, and each figure B being a side view of the main part of the apparatus. FIG. 4A to 4D are views showing an example of an embodiment of a vacuum chuck type guide plate that can be used in the method of the present invention, FIG. 4A is a plan view thereof, FIG. 4B is a bottom view thereof, and FIG. FIG. 4C is a longitudinal sectional view thereof, and FIG. 4D is a side view thereof. Figure 4 E~
G is a diagram showing the method of the present invention using a vacuum chuck type guide plate, FIG. 4E is a plan view showing its usage state, FIG. 4F is a side view thereof, and FIG. 4G is a cross section thereof. It is a diagram. FIG. 5 is a side view of an assembly showing an example of step (b) of the method of the present invention, and FIG. 6 is a side view of an apparatus that can be used in another example of step (b) of the method of the present invention. FIG. 7 is a schematic cross-sectional view of the main parts, and FIGS. 7 and 8 are side views of the assembly showing step (c) of the method of the present invention. 9th
Figures 1 to 11 are schematic views of the assembly seen from the side, showing the main steps of the conventional method. 1... Grinding machine table, 2... Surface plate, 3... Vacuum chuck surface plate, 4, 4-1, 4-2, 4-1-
1, 4-1-2...Plate member, 4-1a, 4-2a
... Grinding surface, 5 ... Grindstone, 6 ... Workbench, 7 ...
Intermediate member, 8... Optical transmission chip, 8a... Chip top, 9... Guide plate, 9a... V
Groove, 9a-1... V groove top, 10... Supply hopper, 11... Supply port, 12, 13... Edge,
14... Vibrator, 15... Lid, 16... Adhesive tape, 18... Roller, 19... Double-sided adhesive sheet, 20... Release sheet, 21... Gap, 101
...Vacuum chuck type guide plate, 101a...
...Vacuum chuck type guide plate surface, 101b
...Back side of vacuum chuck type guide plate, 102
...Vacuum intake hole groove, 102a...Vacuum intake hole, 1
03... Optical transmission body chip supply hopper with vacuum adjustment section, 104... Vacuum adjustment section, 104a... Vacuum adjustment section tip, 105... Vacuum suction hose, 106
...Guide plate lid.

Claims (1)

【特許請求の範囲】 1 屈折率分布型の円柱状光伝送体を列状に並設
した光伝送体列を2枚の板部材で挟着して屈折率
分布型光伝送体アレイを製造する方法において、
前記円柱状光伝送体の直径に等しいピツチでV溝
が配設されたガイドプレートと、前記円柱状光伝
送体を配列供給する機能のエツジ部を備えたホツ
パーとを相対的に移動させ、V溝上に前記円柱状
光伝送体の多数を連続的に並設し、これら円柱状
光伝送体の列を形成する工程(a)と、該ガイドプレ
ート上に形成された前記光伝送体列に板部材を接
着する工程(b)と、該工程(b)で得た光伝送体列付き
板部材に他の板部材を接着するか、または前記工
程(b)で得た光伝送体列付き板部材の2枚を接着し
て、2枚の板部材間に該光伝送体列を挟着する工
程(c)とを有することを特徴とする屈折率分布型光
伝送体アレイの製造方法。 2 前記ガイドプレートとして、前記円柱状光伝
送体の並設面に粘着テープを配置したものを用
い、前記工程(a)における円柱状光伝送体の並設時
に、該円柱状光伝送体を該粘着テープで該ガイド
プレート上に仮固定し、その状態で前記工程(b)を
実施する特許請求の範囲第1項記載の屈折率分布
型光伝送体アレイの製造方法。 3 前記ガイドプレートとして、吸気孔を形成し
た真空チヤツク式V溝付きガイドプレートを用
い、前記工程(a)における前記円柱状光伝送体の並
設時に、該円柱状光伝送体を真空で引いて前記V
溝に密着させて仮固定し、その状態で前記工程(b)
を実施する特許請求の範囲第1項記載の屈折率分
布型光伝送体アレイの製造方法。 4 前記工程(b)において、前記光伝送体列上に粘
着シートを供給し、該粘着シートによつて該光伝
送体列と前記板部材とを接着する特許請求の範囲
第1項記載の屈折率分布型光伝送体アレイの製造
方法。
[Claims] 1. A gradient index optical transmission array is manufactured by sandwiching an optical transmission array in which gradient index cylindrical optical transmission bodies are arranged in parallel between two plate members. In the method,
A guide plate in which V grooves are arranged at a pitch equal to the diameter of the cylindrical light transmitting body and a hopper having an edge portion having a function of arranging and supplying the cylindrical light transmitting body are relatively moved; Step (a) of arranging a large number of the cylindrical light transmitting bodies in succession on the groove to form a row of these cylindrical light transmitting bodies; Step (b) of bonding the members, and bonding another plate member to the plate member with the optical transmitter array obtained in step (b), or bonding the plate member with the optical transmitter array obtained in the step (b). A method for manufacturing a gradient index optical transmitter array, comprising the step of (c) gluing two members together and sandwiching the optical transmitter array between the two plate members. 2. As the guide plate, use is made of an adhesive tape arranged on the surface of the cylindrical light transmitting bodies, and when the cylindrical light transmitting bodies are arranged side by side in the step (a), the cylindrical light transmitting bodies are 2. The method of manufacturing a gradient index optical transmission body array according to claim 1, wherein the optical fiber array is temporarily fixed on the guide plate with an adhesive tape, and the step (b) is carried out in this state. 3. As the guide plate, a vacuum chuck type V-grooved guide plate with an air intake hole is used, and when the cylindrical optical transmission bodies are arranged side by side in the step (a), the cylindrical optical transmission bodies are pulled in a vacuum. Said V
Temporarily fix it in close contact with the groove, and then proceed to step (b) in that state.
A method for manufacturing a refractive index gradient type optical transmission body array according to claim 1, which carries out the following. 4. The refraction method according to claim 1, wherein in the step (b), an adhesive sheet is provided on the optical transmitter array, and the optical transmitter array and the plate member are bonded by the adhesive sheet. A method for manufacturing a rate distribution type optical transmitter array.
JP62004146A 1987-01-13 1987-01-13 Manufacture of optical transmission body array Granted JPS63173003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004146A JPS63173003A (en) 1987-01-13 1987-01-13 Manufacture of optical transmission body array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004146A JPS63173003A (en) 1987-01-13 1987-01-13 Manufacture of optical transmission body array

Publications (2)

Publication Number Publication Date
JPS63173003A JPS63173003A (en) 1988-07-16
JPH0579963B2 true JPH0579963B2 (en) 1993-11-05

Family

ID=11576637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004146A Granted JPS63173003A (en) 1987-01-13 1987-01-13 Manufacture of optical transmission body array

Country Status (1)

Country Link
JP (1) JPS63173003A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586840A (en) * 1981-06-30 1983-01-14 Yasui Tekkosho:Kk Straw hopper with stirring roller
JPS5878104A (en) * 1981-11-04 1983-05-11 Mitsubishi Rayon Co Ltd Laminating method of optical fiber
JPS58114005A (en) * 1981-12-28 1983-07-07 Mitsubishi Rayon Co Ltd Manufacture of optical fiber sheet
JPS61217420A (en) * 1985-03-22 1986-09-27 Shigeo Kiyama Distributing device of piecemeal wires

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586840A (en) * 1981-06-30 1983-01-14 Yasui Tekkosho:Kk Straw hopper with stirring roller
JPS5878104A (en) * 1981-11-04 1983-05-11 Mitsubishi Rayon Co Ltd Laminating method of optical fiber
JPS58114005A (en) * 1981-12-28 1983-07-07 Mitsubishi Rayon Co Ltd Manufacture of optical fiber sheet
JPS61217420A (en) * 1985-03-22 1986-09-27 Shigeo Kiyama Distributing device of piecemeal wires

Also Published As

Publication number Publication date
JPS63173003A (en) 1988-07-16

Similar Documents

Publication Publication Date Title
US6839474B2 (en) Optical assembly for coupling with integrated optical devices and method for making
US5689599A (en) Optical fiber connector with enhanced bonding
JP5522587B2 (en) Method for manufacturing two-stage rod lens array
JPH0579964B2 (en)
JPH0579963B2 (en)
WO2023165623A1 (en) Optical device manufacturing method
US6771867B2 (en) Optical memory device and method for fabricating optical memory device, and method and apparatus for lamination with filmy member
JP2589765Y2 (en) Coupling structure between optical waveguide and optical fiber
JP2007148324A (en) Manufacturing method of plate lens
JP2008065318A (en) Manufacturing method of optical transmission article array
JP4218682B2 (en) Manufacturing method of optical waveguide module
JP3886746B2 (en) Manufacturing method of optical transmission body
JPS63186209A (en) Light transmission body array
JP2004109778A (en) Optical fiber array and its manufacturing method
JPS63173004A (en) Method and device for manufacturing optical transmission body array
JPH09316399A (en) Method and apparatus for laminating substrate
JP2002341121A (en) Method of manufacturing reflecting mirror and reflecting mirror, image reading device using the same and image forming device
JP2003215381A (en) Method for manufacturing optical fiber array and optical fiber array
JP3847825B2 (en) Manufacturing method of optical transmitter array
JPH09145947A (en) Fixing jig and method for adhesion and fixation
CN114558755B (en) Multilayer window curing device and method for high parallel requirements and assembly method
CN100504449C (en) Method for manufacturing light transmission body array
NL1016513A1 (en) Method of and manufacturing device for optical recording disc.
JPH0552481B2 (en)
JP2001110188A (en) Method for manufacturing optical memory element and resin core/clad member for optical memory element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees