JPH0579315B2 - - Google Patents

Info

Publication number
JPH0579315B2
JPH0579315B2 JP60061248A JP6124885A JPH0579315B2 JP H0579315 B2 JPH0579315 B2 JP H0579315B2 JP 60061248 A JP60061248 A JP 60061248A JP 6124885 A JP6124885 A JP 6124885A JP H0579315 B2 JPH0579315 B2 JP H0579315B2
Authority
JP
Japan
Prior art keywords
glucose
solid content
branched
enzyme
branched oligosaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60061248A
Other languages
Japanese (ja)
Other versions
JPS61219392A (en
Inventor
Eihachiro Yasuda
Hajime Takaku
Hiroshi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Sangyo Co Ltd
Original Assignee
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Sangyo Co Ltd filed Critical Showa Sangyo Co Ltd
Priority to JP60061248A priority Critical patent/JPS61219392A/en
Publication of JPS61219392A publication Critical patent/JPS61219392A/en
Publication of JPH0579315B2 publication Critical patent/JPH0579315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は低甘味で菓子等の飲食物の老化防止効
果、保存性向上効果を有し、特にう蝕防止効果の
ある甘味料として、飲食物あるいは医薬品等の用
途に利用しうる分岐オリゴ糖シラツプの製造方法
に関する。 〔従来の技術〕 近年、人々の嗜好の多様化に伴つていわゆる甘
味ばなれの現象が生じ、あわせて健康への関心が
増大するに従い、砂糖が敬遠されてそれ以外の低
カロリー甘味料が話題にのぼる様になつた。 このような低カロリー甘味料には天然、合成と
りまぜて種々のものが出まわつているが、分岐オ
リゴ糖は難消化性、低う蝕性、その他の生理特性
を有し、飲食物、医薬品等、広範囲の用途に供し
うるものである。このような糖類はこれまで工業
的な生産はなされておらず、イソマルトース等が
高価な試薬として供給されるに留まつていた。 本発明者等はイソマルトースなど、ぶどう糖分
子のα−1,6結合を含む、いわゆる分岐オリゴ
糖に着目し、先にその工業的、経済的な製法を説
明して出願した(特願昭59−245470号)。 本発明者等が発明した前記の工業的製法によれ
ば、糖類の縮合反応を利用することによつて、分
岐オリゴ糖を約40%(固形分中)も含む製品をシ
ラツプの形で得ることができ、このシラツプを更
に精製することによつて分岐オリゴ糖の濃度を約
90%(固形分中)まで高めた高濃度シラツプをも
得ることができるようになつた。この中に含まれ
る分岐オリゴ糖はイソマルトースを主とし、これ
に次いでパノース、イソマルトトリオース等を含
むものである。 このような糖シラツプ製品な従来殆ど市場にな
かつたもので、前述の分岐オリゴ糖の諸性質によ
つて、用途、需要は拡大の一途を辿るものと予想
される。 〔発明が解決しようとする問題点〕 本発明は、前記本発明者等が発明した分岐オリ
ゴ糖シラツプの製法において、糖類の縮合反応を
より効果的に進め、より経済的に分岐オリゴ糖シ
ラツプを得るものである。 〔問題点を解決するための手段〕 本発明は、固形分濃度60%以上固形分のうちぶ
どう糖分70%以上のぶどう糖水溶液を基質とし、
これに糖類の縮合作用を有する酵素を55℃以上で
作用させ、該水溶液に分岐オリゴ糖を生成させた
のち、必要により更に分岐オリゴ糖以外の糖類を
分離、除去することによる分岐オリゴ糖シラツプ
の製造方法である。ここでいう分岐オリゴとは、
イソマルトース、パノース、イソマルトトリオー
ス等、ぶどう糖分子のα−1,6結合を有するオ
リゴ糖類の総称である。 この方法で用いる、糖類の縮合作用を有する酵
素としては、入手の容易さ、使いやすさ等の点か
ら通常グルコアミラーゼが選ばれる。グルコアミ
ラーゼとしては、アスペルギルス属、たとえばア
スペルギルス・ニガーを起源とするもの(たとえ
ばノボ社製AMG 300L)、リゾープス属微生物を
起源とするもの(たとえば新日本化学(株)製スミチ
ーム)等があるが、これらの酵素をその最も一般
的な用途である、ぶどう糖製造のためのでん粉加
水分解反応に用いるときは、アスペルギルス・ニ
ガー系のグルコアミラーゼでは60℃、リゾープス
系のそれでは55℃をそれぞれ越えると酵素の失活
が起こり、これ以上の温度では実用的に使用不可
能であつた。 しかしながら、本発明者等は、これらの酵素を
濃度の高い糖液に作用させるときは、意外にも前
記温度を越えても酵素の失活は起こらず、かえつ
て反応が促進されることを発見して本発明を完成
させた、すなわち、第1図に示すようにぶどう糖
濃度の高い水溶液に、たとえばアスペルギルス・
ニガー起源のグルコアミラーゼ(ノボ社製AMG
300L)を作用させると、60℃以上の高温でも酵
素は失活せず、更に温度を上げるに従い、かえつ
て分岐オリゴ糖の生成速度は速まる。酵素の失活
は80℃以上の温度で反応時間とともに起こつてく
る。 リゾープス属微生物起源のグルコアミラーゼの
場合も同様で、この酵素が失活するとされる55℃
以上の温度で分岐オリゴ糖の生成速度は速まり、
80℃以上でようやく失活しはじめる。 本発明におけるこのような酵素の挙動は、従来
予測しなかつたもので、これを利用することによ
る工業的利益は大きい。 すなわち、反応温度を上げることによる反応速
度の増大、液の粘度が低下することによる作業性
の良化、他の酵素の作用を抑制することによる好
ましくない副反応の防止、等々多くの効果をもた
らすのである。 酵素の添加量は0.05〜3.0%(対固形分)程度、
反応PHは4.0〜6.0であり、これらの条件はこれら
酵素の通常の使用法によつてよい。 基質失として用いるぶどう糖水溶液は固形分濃度
60%以上が必須であり、固形分濃度を高めるに従
い、分岐オリゴ糖の生成量は増大する。固形分濃
度が85%では分岐オリゴの生成量は60%以上(対
固形分)にも達する。 また、固形分濃度を高めるに従い、酵素の耐熱
性は向上する。そして80℃を越えて失活しはじめ
ることは前述のとおりである。 基質の前記固形分は、ぶどう糖としては70%以
上含まれれば好適で、他に2糖類、3糖類等を含
んでいて差支えない。実用上利用しうるこのよう
な基質の例としては、ぶどう糖結晶溶解液、精製
ぶどう糖液等の他、たとえば従来ぶどう糖製造に
おいて副産物とされている、ぶどう糖結晶採取後
の蜜、異性化糖液から果糖を分離した後のラフイ
ネート等があげられる。これらはそのまま、ある
いは所定の固形分、ぶどう糖分含むよう調整して
本発明の原料に用いられる。 このようにして得られた糖液は、イソマルトー
ス、パノース、イソマルトトリオース等の分岐オ
リゴ糖の他、ぶどう糖、マルトース等を含む混合
糖液である。これはそのまま分岐オリゴ糖シラツ
プとして利用されるほか、必要により、更に以下
のような方法で処理して更に高濃度の分岐オリゴ
糖シラツプとすることができる。 (1) 糖液を濃縮、徐冷してぶどう糖等を晶出除去
する方法。 (2) 糖液に食塩を添加して、ぶどう糖−食塩の複
塩結晶を晶出させ、除去する方法。 (3) 糖液にアルコール類、アセトン等の有機溶媒
を添加して分岐オリゴ糖以外の糖類を沈澱させ
除去する方法。 (4) 活性炭カラム、ゲルろ過等の分子分画クロマ
トグラフイー、またはイオン交換体によるイオ
ン交換クロマトグラフイーを用いて分岐オリゴ
糖以外の糖類を除去する方法。 (5) 糖液に酵母を作用させ、分岐オリゴ糖以外の
糖類を資化させる方法。 〔実施例〕 実施例 1 濃度75%の高純度ぶどう糖液(DE97.5、昭和
産業(株)製)にアスペルギルス・ニガー起源の市販
のグルコアミラーゼ(ノボ社製、AMG 300L)
を対固形分0.6%(v/w)加え、PH4.5、反応温
度は60、65、70、75、80℃の各温度で72時間反応
させ下表に示したような反応生成物を得た。
[Industrial Field of Application] The present invention has a low sweetness and has an effect of preventing aging and improving the shelf life of foods and drinks such as confectionery, and is particularly suitable for use as a sweetener with an anti-caries effect, such as in foods and drinks or medicines. The present invention relates to a method for producing a branched oligosaccharide syrup that can be used. [Conventional technology] In recent years, as people's tastes have diversified, a so-called sweet taste phenomenon has occurred.At the same time, as interest in health has increased, sugar has been avoided and other low-calorie sweeteners have become a hot topic. It started to look like it was climbing. There are a variety of low-calorie sweeteners available, both natural and synthetic, but branched oligosaccharides are indigestible, have low cariogenicity, and have other physiological properties, and are used in foods, drinks, pharmaceuticals, etc. , which can be used in a wide range of applications. Until now, such saccharides have not been industrially produced, and isomaltose and the like have only been supplied as expensive reagents. The present inventors focused on so-called branched oligosaccharides containing α-1,6 bonds of glucose molecules, such as isomaltose, and first explained and applied for an industrial and economical manufacturing method (Patent Application No. −245470). According to the above-mentioned industrial production method invented by the present inventors, a product containing about 40% (solid content) of branched oligosaccharides can be obtained in the form of syrup by utilizing the condensation reaction of saccharides. By further purifying this syrup, the concentration of branched oligosaccharides can be reduced to approximately
It is now possible to obtain highly concentrated syrup with a concentration of up to 90% (based on solids). The branched oligosaccharides contained therein mainly include isomaltose, followed by panose, isomaltotriose, and the like. Such sugar syrup products have hardly ever been available on the market, and it is expected that their uses and demand will continue to expand due to the properties of branched oligosaccharides mentioned above. [Problems to be Solved by the Invention] The present invention aims to more effectively advance the condensation reaction of saccharides in the method for producing branched oligosaccharide syrup invented by the present inventors, and to produce branched oligosaccharide syrup more economically. It's something you get. [Means for Solving the Problems] The present invention uses a glucose aqueous solution having a solid content concentration of 60% or more and a glucose content of 70% or more of the solid content as a substrate,
An enzyme capable of condensing saccharides is applied to this at 55°C or higher to produce branched oligosaccharides in the aqueous solution, and then, if necessary, saccharides other than branched oligosaccharides are further separated and removed to form a branched oligosaccharide syrup. This is the manufacturing method. What is the branched oligo here?
It is a general term for oligosaccharides having α-1,6 bonds of glucose molecules, such as isomaltose, panose, and isomaltotriose. As the enzyme having the action of condensing sugars used in this method, glucoamylase is usually selected from the viewpoint of easy availability and ease of use. Examples of glucoamylase include those originating from the genus Aspergillus, such as Aspergillus niger (for example, AMG 300L manufactured by Novo), and those originating from microorganisms of the genus Rhizopus (for example, Sumitym, manufactured by Shin Nihon Kagaku Co., Ltd.). When these enzymes are used in their most common use, the starch hydrolysis reaction for glucose production, the enzymes are activated at temperatures exceeding 60°C for Aspergillus niger glucoamylase and 55°C for Rhizopus glucoamylase. Deactivation occurred, making it practically unusable at higher temperatures. However, the present inventors surprisingly discovered that when these enzymes are made to act on a highly concentrated sugar solution, the enzymes do not deactivate even if the temperature exceeds the above range, but rather the reaction is accelerated. In other words, as shown in Fig. 1, for example, Aspergillus
Glucoamylase of niger origin (AMG manufactured by Novo)
300L), the enzyme is not inactivated even at high temperatures of 60°C or higher, and as the temperature is further increased, the production rate of branched oligosaccharides actually accelerates. Enzyme deactivation occurs at temperatures above 80°C and with reaction time. The same is true for glucoamylase originating from microorganisms of the genus Rhizopus.
At temperatures above the rate of branched oligosaccharide production increases,
It finally begins to lose its activity at temperatures above 80°C. Such behavior of the enzyme in the present invention has not been predicted in the past, and the industrial benefits of utilizing this behavior are large. In other words, it brings about many effects such as increasing the reaction rate by raising the reaction temperature, improving workability by reducing the viscosity of the liquid, and preventing undesirable side reactions by suppressing the actions of other enzymes. It is. The amount of enzyme added is approximately 0.05 to 3.0% (based on solid content).
The reaction PH is between 4.0 and 6.0, and these conditions may depend on the usual usage of these enzymes. The glucose aqueous solution used for substrate loss has a solid content concentration.
60% or more is essential, and as the solid content concentration increases, the amount of branched oligosaccharides produced increases. When the solid content concentration is 85%, the amount of branched oligos produced reaches 60% or more (relative to solid content). Furthermore, as the solid content concentration increases, the heat resistance of the enzyme improves. As mentioned above, it begins to lose its activity when the temperature exceeds 80°C. The solid content of the substrate preferably contains 70% or more of glucose, and may also contain other disaccharides, trisaccharides, etc. Examples of such substrates that can be used practically include glucose crystal dissolution solution, purified glucose solution, etc., as well as nectar after collecting glucose crystals, fructose from isomerized sugar solution, etc., which are conventionally considered by-products in glucose production. Examples include roughinate after separating. These can be used as raw materials for the present invention as they are, or after being adjusted to contain predetermined solid content and glucose content. The sugar solution thus obtained is a mixed sugar solution containing branched oligosaccharides such as isomaltose, panose, and isomaltotriose, as well as glucose, maltose, and the like. This can be used as it is as a branched oligosaccharide syrup, or, if necessary, can be further processed by the following method to obtain a branched oligosaccharide syrup with a higher concentration. (1) A method of concentrating and slowly cooling a sugar solution to crystallize and remove glucose, etc. (2) A method of adding salt to a sugar solution to crystallize and remove glucose-salt double salt crystals. (3) A method in which an organic solvent such as alcohol or acetone is added to a sugar solution to precipitate and remove sugars other than branched oligosaccharides. (4) A method of removing sugars other than branched oligosaccharides using molecular fractionation chromatography such as an activated carbon column or gel filtration, or ion exchange chromatography using an ion exchanger. (5) A method of assimilating sugars other than branched oligosaccharides by allowing yeast to act on a sugar solution. [Example] Example 1 Commercially available glucoamylase originating from Aspergillus niger (manufactured by Novo, AMG 300L) was added to a high-purity glucose solution (DE97.5, manufactured by Showa Sangyo Co., Ltd.) with a concentration of 75%.
was added at a solid content of 0.6% (v/w) and reacted for 72 hours at a pH of 4.5 and a reaction temperature of 60, 65, 70, 75, and 80°C to obtain the reaction products shown in the table below. Ta.

【表】 析せず。
実施例 2 濃度75%の高純度ぶどう糖液(DE97.6、昭和
産業(株)製)にリゾプス属起源の市販のグルコアミ
ラーゼ(新日本化学(株)製、スミチーム)を対固形
分0.9%(w/w)加え、PH4.8にして反応温度は
55、60、65、70、75℃の各温度で120時間反応さ
せ下表に示したような反応生成物を得た。
[Table] Not analyzed.
Example 2 A commercially available glucoamylase originating from the genus Rhizopus (Sumizyme, manufactured by Shin Nihon Kagaku Co., Ltd.) was added to a high-purity glucose solution (DE97.6, manufactured by Showa Sangyo Co., Ltd.) at a concentration of 75% with a solid content of 0.9% (solid content: 0.9%). w/w), the pH was set to 4.8, and the reaction temperature was
The reaction was carried out at temperatures of 55, 60, 65, 70, and 75°C for 120 hours to obtain the reaction products shown in the table below.

【表】【table】

【表】 析せず。分析は高速液体クロマトグラフイー
で分析した。
実施例 3 下記の4種類の基質を濃度75%に調製し、市販
のグルコアミラーゼ(ノボ社製、AMG 300L)
を0.6%(v/w)添加し、70℃、PH4.5で120時
間反応させ下表のような分岐オリゴ糖シラツプを
得た。 の種類(各基質とも昭和産業(株)製を用いた (1) 結晶ぶどう糖溶解液(ぶどう糖純度99.8%) (2)精製 生成ぶどう糖液(ぶどう糖純度95.0%) (3) 結晶を分蜜した蜜(ぶどう糖純度92.1%) (4) 異性化糖をクロマト分離した時のラフイネー
ト(ぶどう糖純度83.6%)
[Table] Not analyzed. Analysis was performed using high performance liquid chromatography.
Example 3 The following four types of substrates were prepared at a concentration of 75%, and commercially available glucoamylase (manufactured by Novo, AMG 300L) was used.
0.6% (v/w) was added and reacted at 70°C and PH4.5 for 120 hours to obtain a branched oligosaccharide syrup as shown in the table below. (1) Crystalline glucose solution (glucose purity 99.8%) (2) Purification Produced glucose solution (glucose purity 95.0%) (3) Honey obtained by separating the crystals (Glucose purity 92.1%) (4) Roughinate from chromatographic separation of isomerized sugar syrup (glucose purity 83.6%)

【表】 せず。
実施例 4 ぶどう糖結晶を取つた残りの蜜(昭和産業(株)
製)を濃度75%にし、アスペルギルス・ニガー起
源の市販のグルコアミラーゼ(ノボ社製、AMG
300L)を対固形分0.5%加え、PH4.5、70℃で96時
間反応させ下表のような生成物を得た。
[Table] None.
Example 4 Remaining honey after removing glucose crystals (Showa Sangyo Co., Ltd.)
commercially available glucoamylase (manufactured by Novo, AMG) originating from Aspergillus niger.
300L) was added at a solid content of 0.5% and reacted at pH 4.5 and 70°C for 96 hours to obtain the products shown in the table below.

【表】 この反応生成物を活性炭、イオン交換樹脂で精
製して濃度60%まで濃縮したのち、スチレン系強
酸性のNa型陽イオン交換樹脂(アンバーライト
CG−20)を充填したカラムを用いた分配クロマ
トグラフイーによつて単糖類を主として除去し
て、次のような高純度分岐オリゴ糖シラツプを得
た。
[Table] After this reaction product was purified using activated carbon and ion exchange resin and concentrated to a concentration of 60%, it was purified using a styrene-based strongly acidic Na-type cation exchange resin (Amberlite).
Monosaccharides were mainly removed by partition chromatography using a column packed with CG-20) to obtain the following highly pure branched oligosaccharide syrup.

【表】 実施例 5 含水結晶ぶどう糖(昭和産業(株)製)を溶解して
濃度を60、70、75、80、85%に調製し、アスペル
ギルス・ニガー起源の市販のグルコアミラーゼ
(ノボ社製、AMG 300L)を対固形分1.0%
(v/w)加え、PH4.5、75℃で120時間反応させ、
下表に示したような反応生成物を得た。
[Table] Example 5 Hydrous crystalline glucose (manufactured by Showa Sangyo Co., Ltd.) was dissolved to adjust the concentration to 60, 70, 75, 80, and 85%, and commercially available glucoamylase originating from Aspergillus niger (manufactured by Novo) was dissolved. , AMG 300L) with a solid content of 1.0%
(v/w) and reacted at PH4.5 and 75°C for 120 hours.
The reaction products shown in the table below were obtained.

【表】【table】

【表】 の含量を表す。
〔発明の効果〕 本発明は分岐オリゴ糖シラツプを効率的に製造
する工業的製法を提出するものである。 このようにして得らる分岐オリゴ糖シラツプは
砂糖より低甘味でさわやかな甘味を有し、老化防
止効果保存性向上効果があるので種々の食品の甘
味料あるいは風味改良剤として多方面の用途があ
る。そのうえ、う蝕防止効果があるので、虫歯予
防を目的とする甘味料としても広く利用しうるも
のである。この他分岐オリゴ糖には糖類の晶出抑
制効果があるため砂糖、ぶどう糖、異性化糖、マ
ルトース等の糖液に少量添加することにより、晶
出防止剤としても利用できる。
[Table] represents the content of.
[Effects of the Invention] The present invention provides an industrial method for efficiently producing branched oligosaccharide syrup. The branched oligosaccharide syrup obtained in this way has a refreshing sweetness that is lower than sugar, has anti-aging effects, and improves shelf life, so it has a wide range of uses as a sweetener or flavor improver for various foods. be. Furthermore, since it has an anti-caries effect, it can be widely used as a sweetener for the purpose of preventing dental caries. In addition, since branched oligosaccharides have the effect of inhibiting the crystallization of sugars, they can also be used as a crystallization inhibitor by adding a small amount to a sugar solution such as sugar, glucose, high fructose sugar, or maltose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固形分濃度75%(ぶどう糖95%)の基
質にアスペルギルス・ニガー起源のグルコアミラ
ーゼ0.6%(対固形分)を作用させたときの、各
反応温度における反応時間に対する分岐オリゴ糖
の生成量を示したグラフである。
Figure 1 shows the production of branched oligosaccharides versus reaction time at each reaction temperature when 0.6% glucoamylase (based on solid content) originating from Aspergillus niger is applied to a substrate with a solid content concentration of 75% (glucose 95%). It is a graph showing the amount.

Claims (1)

【特許請求の範囲】 1 固形分濃度60%以上固形分のうちぶどう糖分
70%以上のぶどう糖水溶液に、糖類の縮合作用を
有する酵素を55℃以上で作用させて、該水溶液に
分岐オリゴ糖を生成せしめることを特徴とする高
温度縮合反応による分岐オリゴ糖シラツプの製造
方法。 2 糖類の縮合作用を有する酵素がアスペルギル
ス属の微生物起源のグルコアミラーゼである特許
請求の範囲第1項記載の分岐オリゴ糖シラツプの
製造方法。 3 糖類の縮合作用を有する酵素がリゾープス属
の微生物起源のグルコアミラーゼである特許請求
の範囲第1項又は第2項記載の分岐オリゴ糖シラ
ツプの製造方法。
[Scope of Claims] 1. Glucose in solid content with a solid content concentration of 60% or more
A method for producing a branched oligosaccharide syrup by a high-temperature condensation reaction, which comprises causing an enzyme having a saccharide condensation action to act on a 70% or more glucose aqueous solution at 55°C or higher to produce a branched oligosaccharide in the aqueous solution. . 2. The method for producing a branched oligosaccharide syrup according to claim 1, wherein the enzyme having the action of condensing saccharides is glucoamylase derived from a microorganism of the genus Aspergillus. 3. The method for producing a branched oligosaccharide syrup according to claim 1 or 2, wherein the enzyme having the action of condensing sugars is glucoamylase derived from a microorganism of the genus Rhizopus.
JP60061248A 1985-03-25 1985-03-25 Production of branched oligosaccharide syrup by condensation reaction at elevated temperature Granted JPS61219392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061248A JPS61219392A (en) 1985-03-25 1985-03-25 Production of branched oligosaccharide syrup by condensation reaction at elevated temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061248A JPS61219392A (en) 1985-03-25 1985-03-25 Production of branched oligosaccharide syrup by condensation reaction at elevated temperature

Publications (2)

Publication Number Publication Date
JPS61219392A JPS61219392A (en) 1986-09-29
JPH0579315B2 true JPH0579315B2 (en) 1993-11-02

Family

ID=13165736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061248A Granted JPS61219392A (en) 1985-03-25 1985-03-25 Production of branched oligosaccharide syrup by condensation reaction at elevated temperature

Country Status (1)

Country Link
JP (1) JPS61219392A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608436B2 (en) 2006-01-25 2009-10-27 Tate & Lyle Ingredients Americas, Inc. Process for producing saccharide oligomers
US8993039B2 (en) 2006-01-25 2015-03-31 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US8057840B2 (en) * 2006-01-25 2011-11-15 Tate & Lyle Ingredients Americas Llc Food products comprising a slowly digestible or digestion resistant carbohydrate composition
GB201312713D0 (en) 2013-03-22 2013-08-28 Weaver Connie M Uses of soluble corn fibre for increasing colonic bacteria populations and increasing mineral absorption
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them

Also Published As

Publication number Publication date
JPS61219392A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
AU666073B2 (en) Sweetener, process for the preparation thereof and the use thereof
US4613377A (en) Production of fructose syrup
KR100497749B1 (en) Preparation method of isomalto-oligosaccharide-containing syrup
US5403727A (en) Process for preparing neotrehalose and its uses
US4675293A (en) Preparation of maltose and maltitol syrups
US5714368A (en) Thermostable non-reducing saccharide-forming enzyme its production and uses
US5585480A (en) Hydrogenated fructooligosaccharides
Lloyd et al. Glucose-and fructose-containing sweetners from starch
US4758660A (en) Crystalline erlose
US5578469A (en) Process for preparing neotrehalose, and its uses
JPH0579315B2 (en)
US5728225A (en) Viscous liquid compositions of xylitol and a process for preparing them
JP2881431B2 (en) Method for producing high conversion syrup containing isomaltose
US7592160B2 (en) Processes for producing isomaltose and isomaltitol and use thereof
JPH0614872B2 (en) Method for producing branched oligosaccharide syrup
JP3614172B2 (en) Xylitol-based viscous liquid mixture and method for producing the same
JPH02163092A (en) Production of saccharide compound
JPH0669385B2 (en) Method for producing sugar with high content of branched oligosaccharide
US4217413A (en) Novel maltulose-containing syrups and process for making the same
JPH0427818B2 (en)
JPH0242997A (en) Production of powdery maltose and powdery maltitol
JPH04237497A (en) Production of slightly digestible dextrin
JP3062264B2 (en) Method for producing high purity maltose aqueous solution
JPS61124389A (en) Production of syrup containing large amount of branched oligosaccharide
JPS63109791A (en) Continuous production of branched oligosaccharide syrup

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term