JPH0579208B2 - - Google Patents

Info

Publication number
JPH0579208B2
JPH0579208B2 JP63156861A JP15686188A JPH0579208B2 JP H0579208 B2 JPH0579208 B2 JP H0579208B2 JP 63156861 A JP63156861 A JP 63156861A JP 15686188 A JP15686188 A JP 15686188A JP H0579208 B2 JPH0579208 B2 JP H0579208B2
Authority
JP
Japan
Prior art keywords
molded product
panel
heat
mold
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63156861A
Other languages
Japanese (ja)
Other versions
JPH026107A (en
Inventor
Hiroshi Hasegawa
Noriaki Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63156861A priority Critical patent/JPH026107A/en
Publication of JPH026107A publication Critical patent/JPH026107A/en
Publication of JPH0579208B2 publication Critical patent/JPH0579208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/001Producing articles with hollow walls formed of hollow ridges or ribs, e.g. separate ridges; continuous corrugated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、たとえば航空機の樹脂系複合材料と
しての繊維強化プラスチツクのマイクロ波による
加熱、硬化方法に関する。 (従来の技術) 樹脂系複合材料の加熱硬化はオートクレーブ内
で行なうのが一般的である(たとえば、特開昭58
−62018号公報参照)が、オートクレーブ内での
加熱の代わりにマイクロ波の照射により行なう可
能性が考えられる。 (発明が解決しようとする課題) しかしながら、マイクロ波照射による発熱によ
る加熱、硬化は、マイクロ波の電磁波としての性
質から複合材料にむら焼けを起し易い。これを防
ぐために、ターンテーブル、モードスターラー等
を用いたとしても複合材料を均一に加熱すること
は難かしい。樹脂系複合材料のように均一な加
熱、硬化を必要とする場合には、むら焼けは絶対
避けけなければならない。 本発明は、マイクロ波照射による方法を用いな
がら、繊維強化プラスチツクを均一に加熱、硬化
することができる方法を得ることを目的とする。 (課題を解決するための手段) 本発明の繊維強化プラスチツクのマイクロ波に
よる加熱、硬化方法によれば、繊維強化プラスチ
ツク成形物を、マイクロ波で発熱する材質で構成
した型枠内に当接固定し、該成形物および型枠の
両者にマイクロ波を照射し、型枠をも発熱させつ
つ成形物の加熱、硬化を行なう。 また、本発明では、上記方法において、マイク
ロ波を所定時間照射した後、それより低い出力で
間隔ををおいて複数回のマイクロ波照射を行な
う。 (作 用) マイクロ波照射により、繊維強化プラスチツク
成形物が内部発熱し、一方、それを囲む型枠も内
部発熱し、その熱は外側から成形物へ伝達され
る。この熱の伝達は型枠と成形物の接触のために
良好になされる。このように、内外から受熱する
成形物はマイクロ波照射により均一に昇温し、む
ら焼けが生じることがない。 (実施例) 以下、図面を参照しつつ本発明の実施例を説明
する。 第3図は、本発明の加熱、硬化方法により処理
する繊維強化プラスチツク材の一例としての航空
機部品のハツトセクシヨン・ストリンガーパネル
1を示す。このパネル1は、平板部2と台形断面
隆起条部3とから一体的に成形されている。各隆
起条部3は中空状をなし、内部空間4を有してい
る。パネル1は、例ええばケブラー繊維強化エポ
キシ樹脂系プリプレグ、シリコンカーバイド繊維
強化エポキシ樹脂系プリプレグ等から構成され
る。 以上に一例として述べたパネル1の加熱、硬化
のためには、パネルを第1図に示すように、治具
すなわち型枠6内に入れて固定する。型枠6は、
例えば下型6aおよび上型6bからなる分割型と
することができる。図示の例では、下型6aは、
第2図に示すようにパネル1の平板部2を載置収
容する支持面7と、両側縁の位置決め突縁8と、
パネル1の隆起条部3を受ける溝9とを有してい
る。パネル1を下型6a内に第1図に示すように
位置決めして収容し、上型6bを下型6a上に載
置すると、パネル1は型枠6の内面に当接しつつ
固定される。 型枠6の上型6bおよび下型6aは、いずれ
も、加熱硬化すべきパネル1とほぼ同じ材質で構
成される。型枠6は、たとえばケブラー繊維強化
エポキシ樹脂系プリプレグまたはシリコンカーバ
イド繊維強化エポキシ樹脂系プリプレグで作るこ
とができる。 一方、パネル1の隆起条部3の内部空間4内に
は、第1図に示すようにパネルを型枠6内にセツ
トする前に電波透過材料10を充填しておくのが
好ましい。 第1図の状態に型枠6内にパネル1をセツトし
た後、パネルを型枠と一緒にマイクロ波照射装置
(電子レンジ)内に収容してマイクロ波を照射す
る。マイクロ波照射装置は、オーブン方式でも導
波管方式でもよい。マイクロ波照射によつて、繊
維強化プラスチツク材のハツトセクシヨン・スト
リンガーパネル1は内部発熱により昇温する。一
方、パネル1を収容している枠型6もパネルと同
種の材質よりなるため同様に内部発熱して昇温
し、その熱がパネルに伝達される。これにより、
パネル1は内部から発熱するとともに外側から熱
を与えられるので、均一に昇温しむら焼けするこ
とがない。 第4図はマイクロ波照射時における型枠6の温
度上昇の一例を示す。なお、パラメータはマイク
ロ波照射出力(kw)である。 マイクロ波の照射は、第5図に示すように時間
によつて出力が変化するように行なう。すなわ
ち、同図に示すように、例えば最初の40分間は照
射を連続して行ない、次いで最初の照射より低い
出力で2分間の停止時間をおいて10分ずつ間欠的
に照射を行う。このような間欠マイクロ波照射に
より、パネルは第6図に示すような温度変化を示
す。なお、同図中、Kはケブラー繊維エポキシ樹
脂プリプレグの場合を、Siはシリコンカーバイド
繊維強化エポキシ樹脂プリプレグの場合をそれぞ
れ示す。 第7図はマイクロ波の照射によつて硬化が進行
する状態を示し、第8図は第7図と同様に硬化率
の変化を示す。マイクロ波出力の変化は必ずしも
第5図の通りに行なわなくてもよい。マイクロ波
の出力変化は、マイクロ波照射装置内に、電磁場
中でも温度を測定できる温度センサーを挿入し
て、センサーの検出値に応じて行なわせるように
する。いずれにしても、マイクロ波出力の変化や
オン・オフにより、内部発熱により生じた熱の移
動が促進され、温度上昇が均一化し、かつ均一な
一定温度が維持される。 次の表は、従来のオートクレーブ成形の場合と
マイクロ波照射成形の場合の比較を示す。なお、
この表で、SiCF/EPOXYはシリコンカーバイ
ド繊維強化エポキシ樹脂プリプレグを、KF/
EPOXYはケブラー繊維強化エポキシ樹脂プリプ
レグを意味する。
(Field of Industrial Application) The present invention relates to a method of heating and curing fiber-reinforced plastic as a resin-based composite material for, for example, an aircraft using microwaves. (Prior art) Resin-based composite materials are generally heat-cured in an autoclave (for example, Japanese Patent Laid-Open No. 58
-62018) may be performed by microwave irradiation instead of heating in an autoclave. (Problems to be Solved by the Invention) However, heating and curing due to heat generated by microwave irradiation tends to cause uneven burns on the composite material due to the electromagnetic nature of the microwave. Even if a turntable, mode stirrer, etc. are used to prevent this, it is difficult to uniformly heat the composite material. In cases where uniform heating and curing are required, such as resin-based composite materials, uneven tanning must be avoided at all costs. An object of the present invention is to provide a method that can uniformly heat and harden fiber-reinforced plastics using microwave irradiation. (Means for Solving the Problems) According to the method of heating and curing fiber-reinforced plastic using microwaves of the present invention, a fiber-reinforced plastic molded product is abutted and fixed in a formwork made of a material that generates heat with microwaves. Then, both the molded product and the mold are irradiated with microwaves, and the molded product is heated and cured while also generating heat in the mold. Further, in the present invention, in the above method, after irradiating the microwave for a predetermined time, the microwave irradiation is performed a plurality of times at intervals with a lower output. (Function) Microwave irradiation causes the fiber-reinforced plastic molded product to internally generate heat, while the formwork surrounding it also generates internal heat, and that heat is transferred from the outside to the molded product. Good heat transfer is achieved due to the contact between the mold and the molded product. In this way, the temperature of the molded product, which receives heat from the inside and outside, is raised uniformly by microwave irradiation, and uneven burns do not occur. (Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 3 shows a heart section stringer panel 1 for an aircraft component as an example of a fiber-reinforced plastic material treated by the heating and curing method of the present invention. This panel 1 is integrally formed from a flat plate part 2 and a raised strip part 3 with a trapezoidal cross section. Each raised strip 3 is hollow and has an internal space 4 . The panel 1 is made of, for example, Kevlar fiber-reinforced epoxy resin prepreg, silicon carbide fiber-reinforced epoxy resin prepreg, or the like. In order to heat and harden the panel 1 described above as an example, the panel is placed in a jig or formwork 6 and fixed as shown in FIG. The formwork 6 is
For example, it can be a split mold consisting of a lower mold 6a and an upper mold 6b. In the illustrated example, the lower die 6a is
As shown in FIG. 2, a support surface 7 on which the flat plate portion 2 of the panel 1 is placed and accommodated, and positioning protrusions 8 on both side edges;
It has a groove 9 for receiving the raised strip 3 of the panel 1. When the panel 1 is positioned and housed in the lower mold 6a as shown in FIG. 1, and the upper mold 6b is placed on the lower mold 6a, the panel 1 is fixed while coming into contact with the inner surface of the mold 6. Both the upper mold 6b and the lower mold 6a of the formwork 6 are made of substantially the same material as the panel 1 to be heated and cured. The formwork 6 can be made of, for example, Kevlar fiber-reinforced epoxy resin prepreg or silicon carbide fiber-reinforced epoxy resin prepreg. On the other hand, it is preferable that the internal space 4 of the raised strip 3 of the panel 1 is filled with a radio wave transmitting material 10 before the panel is set in the formwork 6 as shown in FIG. After setting the panel 1 in the formwork 6 in the state shown in FIG. 1, the panel is housed together with the formwork in a microwave irradiation device (microwave oven) and irradiated with microwaves. The microwave irradiation device may be of an oven type or a waveguide type. By microwave irradiation, the temperature of the fiber-reinforced plastic heart section stringer panel 1 increases due to internal heat generation. On the other hand, since the frame 6 housing the panel 1 is also made of the same material as the panel, it similarly generates internal heat and rises in temperature, and the heat is transferred to the panel. This results in
Since the panel 1 generates heat from the inside and is given heat from the outside, the temperature rises uniformly and there is no uneven burning. FIG. 4 shows an example of the temperature rise of the formwork 6 during microwave irradiation. Note that the parameter is the microwave irradiation output (kw). Microwave irradiation is performed so that the output changes with time as shown in FIG. That is, as shown in the figure, irradiation is performed continuously for, for example, the first 40 minutes, and then irradiation is performed intermittently for 10 minutes at a lower output than the first irradiation with a 2-minute pause. Due to such intermittent microwave irradiation, the panel exhibits temperature changes as shown in FIG. In the figure, K indicates the case of Kevlar fiber epoxy resin prepreg, and Si indicates the case of silicon carbide fiber reinforced epoxy resin prepreg. FIG. 7 shows the progress of curing by microwave irradiation, and FIG. 8 shows changes in the curing rate similarly to FIG. 7. The microwave output does not necessarily have to be changed as shown in FIG. A temperature sensor capable of measuring temperature even in an electromagnetic field is inserted into the microwave irradiation device, and the output of the microwave is changed in accordance with the detected value of the sensor. In any case, changing the microwave output or turning it on/off promotes the movement of heat generated by internal heat generation, equalizes the temperature rise, and maintains a uniform constant temperature. The following table shows a comparison between conventional autoclave molding and microwave irradiation molding. In addition,
In this table, SiCF/EPOXY refers to silicon carbide fiber reinforced epoxy resin prepreg, and KF/EPOXY refers to silicon carbide fiber reinforced epoxy resin prepreg.
EPOXY means Kevlar fiber reinforced epoxy resin prepreg.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、成形物を型枠内に当接固定し
てマイクロ波を照射し、成形物の内部発熱により
その加熱硬化を行なうとともに、成形物の外側に
接触している型枠自体をも内部発熱させてその熱
を成形物に与えるようにするので、温度分布が均
一化し、むら焼けを防止することができる。ま
た、マイクロ波照射は、オートクレーブによる加
熱硬化に比しわずかなエネルギーによる加熱硬化
を可能にする。
According to the present invention, the molded product is fixed in contact with the mold and irradiated with microwaves, and the molded product is heated and hardened by internal heat generation, and the mold itself that is in contact with the outside of the molded product is heated. Since heat is generated internally and the heat is applied to the molded product, the temperature distribution becomes uniform and uneven burning can be prevented. Further, microwave irradiation enables heat curing with a small amount of energy compared to heat curing using an autoclave.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は成形物を型枠内に収容した状態を示す
断面図、第2図は第1図に示す型枠の一部の斜視
図、第3図は繊維強化プラスチツク成形物の一例
の斜視図、第4図はマイクロ波による型枠の昇温
を示すグラフ、第5図はマイクロ波照射の一態様
を示すグラフ、第6図は成形物の温度変化を示す
グラフ、第7図は成形物の硬化の進行状態を示す
図、第8図は成形物の硬化率の変化を示す図であ
る。 1…成形物(パネル)、3…隆起条部、4…内
部空間、6…型枠、6a…下型、6b…上型、9
…溝、10…電波透過材料。
Fig. 1 is a sectional view showing a molded product housed in a mold, Fig. 2 is a perspective view of a part of the mold shown in Fig. 1, and Fig. 3 is a perspective view of an example of a fiber-reinforced plastic molded product. Figure 4 is a graph showing the temperature rise of the formwork due to microwaves, Figure 5 is a graph showing one mode of microwave irradiation, Figure 6 is a graph showing the temperature change of the molded product, and Figure 7 is the graph showing the molding. FIG. 8 is a diagram showing the progress of hardening of a molded product, and is a diagram showing changes in the curing rate of a molded product. 1... Molded product (panel), 3... Raised strip, 4... Internal space, 6... Formwork, 6a... Lower mold, 6b... Upper mold, 9
...Groove, 10...Radio wave transparent material.

Claims (1)

【特許請求の範囲】 1 繊維強化プラスチツク成形物を、マイクロ波
で発熱する材質で構成した型枠内に当接固定し、
該成形物および型枠の両者にマイクロ波を照射
し、型枠をも発熱させつつ成形物の加熱、硬化を
行なう、繊維強化プラスチツクのマイクロ波によ
る加熱、硬化方法。 2 マイクロ波を所定時間照射した後、それより
低い出力で間隔をおいて複数回のマイクロ波照射
を行なう請求項1記載の繊維強化プラスチツクの
マイクロ波による加熱、硬化方法。
[Claims] 1. A fiber-reinforced plastic molded product is fixed in contact with a mold made of a material that generates heat using microwaves,
A method for heating and curing fiber-reinforced plastics using microwaves, in which both the molded product and the mold are irradiated with microwaves, and the molded product is heated and cured while also generating heat in the mold. 2. The method of heating and curing fiber-reinforced plastic using microwaves according to claim 1, wherein after irradiating the microwave for a predetermined time, the microwave is irradiated a plurality of times at intervals with a lower output.
JP63156861A 1988-06-27 1988-06-27 Heating and curing process of fiber reinforced plastic by microwave Granted JPH026107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156861A JPH026107A (en) 1988-06-27 1988-06-27 Heating and curing process of fiber reinforced plastic by microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156861A JPH026107A (en) 1988-06-27 1988-06-27 Heating and curing process of fiber reinforced plastic by microwave

Publications (2)

Publication Number Publication Date
JPH026107A JPH026107A (en) 1990-01-10
JPH0579208B2 true JPH0579208B2 (en) 1993-11-01

Family

ID=15636989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156861A Granted JPH026107A (en) 1988-06-27 1988-06-27 Heating and curing process of fiber reinforced plastic by microwave

Country Status (1)

Country Link
JP (1) JPH026107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149973A1 (en) 2011-05-04 2012-11-08 Toyota Motor Europe Nv/Sa Method and device for curing a thermosetting polymer
WO2012149972A1 (en) 2011-05-04 2012-11-08 Toyota Motor Europe Nv/Sa Method for heating a fiber-reinforced polymer article
WO2012149974A1 (en) 2011-05-04 2012-11-08 Toyota Motor Europe Nv/Sa Method for heating a fiber-reinforced polymer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856989B2 (en) * 1992-09-01 1999-02-10 株式会社リコー Inner / outer loop identification method for region boundaries
NZ515097A (en) * 2001-10-29 2004-03-26 Blue Marble Polymers Ltd Improvements in and relating to bio-degradable foamed products
DE102008029056A1 (en) * 2008-06-18 2009-12-31 GKN Aerospace Services Limited, East Cowes Manufacturing method of fiber reinforced composite components with microwaves
DE102008029058A1 (en) * 2008-06-18 2009-12-24 GKN Aerospace Services Limited, East Cowes Method and mold for making fiber reinforced composite components with microwaves
GB201207230D0 (en) 2012-04-25 2012-06-06 Airbus Operations Ltd Microwave curing of composite material
US9267480B1 (en) 2013-05-10 2016-02-23 The Boeing Company Electrical power generating engine flywheel with active torque control
US9469087B2 (en) 2013-07-09 2016-10-18 The Boeing Company Thermoplastic and titanium sandwich structures
US9662742B2 (en) 2013-07-09 2017-05-30 The Boeing Company Metallic bladders
US9358703B2 (en) 2013-07-09 2016-06-07 The Boeing Company Thermoplastic sandwich structures
US10029398B2 (en) 2013-07-09 2018-07-24 The Boeing Company Consolidation of complex contoured thermoplastic structures
US10618230B2 (en) 2013-07-09 2020-04-14 The Boeing Company Thermoplastic structures
JP6429614B2 (en) * 2014-12-11 2018-11-28 国立研究開発法人産業技術総合研究所 Method for producing fiber-reinforced cured resin
JP6668675B2 (en) * 2015-10-21 2020-03-18 住友ゴム工業株式会社 Method for producing fiber-reinforced resin molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149973A1 (en) 2011-05-04 2012-11-08 Toyota Motor Europe Nv/Sa Method and device for curing a thermosetting polymer
WO2012149972A1 (en) 2011-05-04 2012-11-08 Toyota Motor Europe Nv/Sa Method for heating a fiber-reinforced polymer article
WO2012149974A1 (en) 2011-05-04 2012-11-08 Toyota Motor Europe Nv/Sa Method for heating a fiber-reinforced polymer
US8968835B2 (en) 2011-05-04 2015-03-03 Toyota Motor Europe Nv/Sa Method for heating a fiber-reinforced polymer article
US9486945B2 (en) 2011-05-04 2016-11-08 Toyota Motor Europe Nv/Sa Method and device for curing a thermosetting polymer

Also Published As

Publication number Publication date
JPH026107A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
JPH0579208B2 (en)
US4423191A (en) High frequency electric field curing of polymeric composites
US7815988B2 (en) Joining element and method for its attachment on a surface
EP0019947B1 (en) Process for the manufacture of objects from thermosetting resin
US4544339A (en) Apparatus for vulcanization of rubber by dielectric heating
DE69719172T2 (en) HEATING COMPOSITE MATERIALS USING MICROWAVE ENERGY
JP4950340B2 (en) Method for controlling and optimizing microwave heating of plastic sheets
KR890015847A (en) Method and device for reinforcing member adhesion to FRP panel
WO1997036965A1 (en) Conductive insert for bonding components with microwave energy
WO2012149973A1 (en) Method and device for curing a thermosetting polymer
EP0420632B1 (en) Apparatus for continuously vulcanizing rubber molding
KR100491868B1 (en) Apparatus and method for curing for silicone rubber
JPH10188707A (en) Molding method of compound insulator and metal mold device used therefor
JP2018167528A (en) Molding method for fiber reinforced plastic, and molding apparatus for fiber reinforced plastic
JPH02182438A (en) Method for heat-curing of fiber reinforced plastic having conductivity by microwave
US5609891A (en) Method to treat materials by microwave
JPH03231816A (en) Heat curing process for high temperature curing type fiber reinforced plastic
Durairaj et al. Analysis of pulsed microwave processing of polymer slabs supported with ceramic plates
JP2591242Y2 (en) Microwave heating equipment
JPS5528803A (en) Hot molding apparatus
JPH0665545A (en) Panel-bonding apparatus by using thermosetting adhesive
JPH01208101A (en) Method of molding fiber board
JPS62299309A (en) Method for molding laminated composite body
JPS58188541A (en) Forming mold for microwave heating
JPH11296643A (en) Ic card and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term