JPH03231816A - Heat curing process for high temperature curing type fiber reinforced plastic - Google Patents

Heat curing process for high temperature curing type fiber reinforced plastic

Info

Publication number
JPH03231816A
JPH03231816A JP2028747A JP2874790A JPH03231816A JP H03231816 A JPH03231816 A JP H03231816A JP 2028747 A JP2028747 A JP 2028747A JP 2874790 A JP2874790 A JP 2874790A JP H03231816 A JPH03231816 A JP H03231816A
Authority
JP
Japan
Prior art keywords
reinforced plastic
microwaves
fiber
fiber reinforced
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2028747A
Other languages
Japanese (ja)
Other versions
JP3014399B2 (en
Inventor
Hirokazu Nakajima
宏和 中島
Noriaki Sugawara
菅原 憲明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2028747A priority Critical patent/JP3014399B2/en
Publication of JPH03231816A publication Critical patent/JPH03231816A/en
Application granted granted Critical
Publication of JP3014399B2 publication Critical patent/JP3014399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To equalize the temperature rise speed, shorten the curing time and heat cure fiber reinforced plastic impregnated with a resin material of high temperature curing resin base by increasing the output of microwaves by stages. CONSTITUTION:A conductive fiber reinforced plastic is impregnated with a material of high temperature curing resin base, and the fiber reinforced plastic immersed with said resin material is disposed in frames 5 and 6 composed of a material to be exothermic by means of microwaves irradiated from a generating device 9, and the fiber reinforced plastic is placed under the pressur ing condition applied by a pressurizing device 8. Then, microwaves are irradiat ed to the fiber reinforced plastic and the frames 5 and 6 for the given time. The irradiation of microwaves is discontinued at the output changing point after the given time has passed, and the output of microwaves is increased and the microwaves are irradiated for the given time, and irradiation of microwaves is discontinued at the output changing point after the given time has passed. Then, the output of microwaves is increased and the fiber reinforced plastic is heat cured.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、たとえば航空機の樹脂系複合材料として用い
られる高温硬化樹脂系を含浸した繊維強化プラスチック
のマイクロ波による加熱硬化方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention provides a method for heating and curing fiber-reinforced plastic impregnated with a high-temperature curing resin system using microwaves, which is used, for example, as a resin-based composite material for aircraft. Regarding.

(従来の技術) 航空機の樹脂系複合材料として用いられる繊維強化プラ
スチックを加熱硬化する場合には、たとえば特開昭58
−62018号公報に記載されているように繊維強化プ
ラスチックをオートクレーブ内に配置して行うのが一般
的であるが、最近オートクレーブ内で行う加熱硬化方法
に代えて、マイクロ波の照射による繊維強化プラスチッ
クの加熱硬化方法が提案されている。(特願昭63−8
8647号) (発明が解決しようとする課題) 上記マイクロ波の照射による繊維強化プラスチックの加
熱硬化方法では、マイクロ波の性質から繊維強化プラス
チツク材料にむら焼けが生じ易く、特に繊維強化プラス
チツク材料が、カーボン繊維のような導電性を有する繊
維強化プラスチックである場合には、マイクロ波照射時
に導電性繊維系内に電流が流れるので、繊維強化プラス
チックが異常発熱し、繊維強化プラスチックの均一な加
熱硬化を行うことが困難である。
(Prior art) When heating and curing fiber-reinforced plastics used as resin-based composite materials for aircraft, for example, Japanese Patent Laid-Open No. 58
As described in Publication No. 62018, fiber-reinforced plastics are generally cured by placing them in an autoclave, but recently, instead of heating in an autoclave, fiber-reinforced plastics are cured by microwave irradiation. A heat curing method has been proposed. (Special application 1986-8
No. 8647) (Problems to be Solved by the Invention) In the method of heating and curing fiber-reinforced plastics using microwave irradiation, uneven burning tends to occur in fiber-reinforced plastic materials due to the nature of microwaves, and in particular, fiber-reinforced plastic materials tend to suffer from uneven burning. In the case of conductive fiber-reinforced plastics such as carbon fibers, current flows through the conductive fiber system during microwave irradiation, causing abnormal heat generation in the fiber-reinforced plastics and preventing uniform heat curing of the fiber-reinforced plastics. Difficult to do.

またマイクロ波による均一な加熱硬化を行う技術手段と
しては、特開昭59−232861号公報に記載されて
いるように集成人工木を製造するために利用したものや
、特願昭64−984号の繊維強化プラスチックの加熱
硬化方法がある。
In addition, as a technical means for uniformly heating and hardening using microwaves, there is a method used to manufacture laminated artificial wood as described in Japanese Patent Application Laid-Open No. 59-232861, and a method used in Japanese Patent Application No. 64-984. There is a heat curing method for fiber reinforced plastics.

特開昭59−232861号公報に記載されている技術
手段は、処理すべき物品が異なるために繊維強化プラス
チックの加熱硬化処理に利用することができない。
The technical means described in Japanese Unexamined Patent Publication No. 59-232861 cannot be used for heat curing treatment of fiber-reinforced plastics because the articles to be treated are different.

また特願昭64−984号の繊維強化プラスチックの加
熱硬化方法は、中温硬化樹脂系の樹脂材料を含浸させた
繊維強化プラスチックを加熱硬化するためのものであり
、この種の繊維強化プラスチックの加熱硬化方法はでは
、高温領域での成形物の温度分布が広くなってしまうた
めに、この技術手段を航空機用−次構造部材に広く用い
られている高温硬化樹脂系の樹脂材料を含浸させた導電
性を有する繊維強化プラスチックに適用できないことが
実験的に分かった。
Furthermore, the heat curing method for fiber-reinforced plastics disclosed in Japanese Patent Application No. 64-984 is for heat-curing fiber-reinforced plastics impregnated with a medium-temperature curing resin material. Since the temperature distribution of the molded product becomes wide in the high-temperature region, the curing method uses this technical means to create a conductive material impregnated with a high-temperature curing resin material, which is widely used in structural components for aircraft. It was experimentally found that this method cannot be applied to fiber-reinforced plastics that have properties.

本発明は、高温硬化樹脂系の樹脂材料を含浸させた導電
性を有する繊維強化プラスチックをマイクロ波により均
一に加熱硬化する高温硬化型繊維強化プラスチックの加
熱硬化方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for heat-curing a high-temperature-curing fiber-reinforced plastic, which uniformly heat-cures a conductive fiber-reinforced plastic impregnated with a high-temperature-curable resin material using microwaves.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の高温硬化型繊維強化プラスチックの加熱硬化方
法は、導電性を有する繊維強化プラスチックに高温硬化
樹脂系の樹脂材料を含浸させ、その樹脂材料を含浸した
繊維強化プラスチックを、マイクロ波で発熱する材質で
構成した型枠内に配置し、繊維強化プラスチックを加圧
条件下に置き、ついで繊維強化プラスチックおよび型枠
に所定時間マイクロ波を照射し、所定時間経過した出力
変更時点でマイクロ波の照射を停止し、ついでマイクロ
波の出力を前回より増加して所定時間マイクロ波を照射
し、所定時間経過した出力変更時点でマイクロ波の照射
を停止し、ついでマイクロ波の出力を前回より増加する
ように段階的にマイクロ波の出力を増加して繊維強化プ
ラスチックを加熱硬化するように構成される。
(Means for Solving the Problems) The heat curing method for high temperature curing fiber reinforced plastic of the present invention involves impregnating conductive fiber reinforced plastic with a high temperature curing resin based resin material, and fabricating fibers impregnated with the resin material. The reinforced plastic is placed in a formwork made of a material that generates heat with microwaves, the fiber-reinforced plastic is placed under pressure, and then the fiber-reinforced plastic and the formwork are irradiated with microwaves for a predetermined period of time. The microwave irradiation is stopped when the output is changed, then the microwave output is increased from the previous time and the microwave is irradiated for a predetermined period of time, and the microwave irradiation is stopped when the output is changed after a predetermined period of time. The microwave output is increased stepwise to increase the wave output from the previous time to heat and harden the fiber reinforced plastic.

(作 用) 本発明の高温硬化型繊維強化プラスチックの加熱硬化方
法においては、マイクロ波で発熱する材質で構成した型
枠内に配置した高温硬化樹脂系の樹脂材料を含浸させた
導電性を有する繊維強化プラスチックを、加圧状態を保
って加熱することで繊維強化プラスチツク材料の端部の
繊維間の隙間がなくなって密着し、端部スパーク現象が
緩和され、またマイクロ波を照射して繊維強化プラスチ
ックを内部から発熱する際に、型枠も同時に発熱し、こ
の型枠からでる熱で繊維強化プラスチックを加熱し、内
部加熱の自己発熱と外部加熱の両者を同時に行うことで
繊維強化プラスチックを均一に加熱し、また出力変更時
点でマイクロ波を照射を停止しながら段階的にマイクロ
波の出力を増加することで、成形物の最高温度域と最低
温度域との差を少なくして、昇温湿度の均一化および硬
化時間の短縮化を図ることが可能になる。
(Function) In the heat curing method for high temperature curing fiber reinforced plastic of the present invention, a conductive material impregnated with a high temperature curing resin material is placed in a mold made of a material that generates heat with microwaves. By heating the fiber-reinforced plastic while keeping it under pressure, the gaps between the fibers at the ends of the fiber-reinforced plastic material are eliminated and they stick together, which alleviates the spark phenomenon at the ends, and by irradiating microwaves to strengthen the fibers. When the plastic generates heat from within, the formwork also generates heat, and the heat emitted from the formwork heats the fiber-reinforced plastic, and by simultaneously performing both self-heating from internal heating and external heating, the fiber-reinforced plastic is uniformly heated. By heating the molded product to It becomes possible to equalize the humidity and shorten the curing time.

(実施例) 以下本発明の一実施例を図面につき説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による高温硬化型繊維強化プラスチック
の加熱硬化方法により処理する繊維強化プラスチツク材
の一例としての航空機部品のハツトセクションストリン
ガ−パネル成形品を示すものであり、このハツトセクシ
ョンストリンガ−パネル1は、断面台形をなし中空部2
を有するハツト部3と平板部4とから形成されている。
FIG. 1 shows a molded product of a hat section stringer panel for an aircraft part as an example of a fiber reinforced plastic material treated by the heat curing method for high temperature curing fiber reinforced plastic according to the present invention. 1 has a trapezoidal cross section and a hollow part 2
It is formed from a hat part 3 and a flat plate part 4.

上記ハツトセクションストリンガ−パネル1はたとえば
導電性を有する繊維強化プラスチックに高温硬化樹脂系
の樹脂材料を含浸させた繊維強化プラスチツクプリプレ
グで構成されている。
The hat section stringer panel 1 is made of, for example, a fiber-reinforced plastic prepreg in which conductive fiber-reinforced plastic is impregnated with a high-temperature curing resin material.

一方上記ハットセクションストリンガーバネル1を加熱
硬化するために使用される型枠は、第2図に示すように
下型枠5と上型枠6とから形成され、これら下型枠5と
上型枠6はそれぞれマイクロ波で発熱する材質で構成さ
れている。下型枠5にはハツトセクションストリンガ−
パネル1に対応した凹部が形成されている。
On the other hand, the formwork used to heat and harden the hat section stringer panel 1 is formed of a lower formwork 5 and an upper formwork 6, as shown in FIG. 6 are each made of a material that generates heat with microwaves. The lower formwork 5 has a hat section stringer.
A recess corresponding to the panel 1 is formed.

つぎにハツトセクションストリンガ−パネル1のマイク
ロ波による加熱硬化方法について説明する。
Next, a method of heating and curing the hat section stringer panel 1 using microwaves will be explained.

まずハツトセクションストリンガ−パネル1のハツト部
3に設けた中空部2に、テフロンで作った中子7を装着
し、ついでこのハツトセクションストリンガ−パネル1
を下型枠5の凹部に装着し、下型枠5に上型枠6を被せ
る。
First, the core 7 made of Teflon is attached to the hollow part 2 provided in the hat part 3 of the hat section stringer panel 1, and then the
is attached to the recessed part of the lower formwork 5, and the lower formwork 5 is covered with the upper formwork 6.

ついでハツトセクションストリンガ−パネル1を装着し
た型枠を、第3図に示すように加圧装置8およびマイク
ロ波発生装置9を備えた加熱硬化処理装置10に、加圧
装置8に支持するように配置する。この場合マイクロ波
発生装置9から照射されるマイクロ波をか効率良く照射
されるように、型枠と加圧装置8の間に電波透過性にす
ぐれたテフロン板11.11を配置する。
Next, the formwork with the hat section stringer panel 1 attached thereto is placed in a heat curing device 10 equipped with a pressure device 8 and a microwave generator 9, as shown in FIG. 3, so as to be supported by the pressure device 8. Deploy. In this case, a Teflon plate 11, 11 having excellent radio wave transparency is placed between the formwork and the pressurizing device 8 so that the microwave irradiated from the microwave generator 9 can be efficiently irradiated.

つぎに加圧装置8を作動して、型枠を0.8MPa程度
(第5図)の加圧条件下に置いたら、マイクロ波発生装
置9を作動して、型枠に設けたハツトセクションストリ
ンガ−パネル1にマイクロ波を照射する。このマイクロ
波の照射により、ハツトセクションストリンガ−パネル
1は、内部発熱により昇温し、これと同時にマイクロ波
で発熱する材質で構成した下型枠5および上型枠6も昇
温し、ハツトセクションストリンガ−パネル1は、内部
発熱およびその下型枠5および上型枠6からでる熱によ
り加熱される。
Next, the pressurizing device 8 is activated to place the formwork under a pressurized condition of approximately 0.8 MPa (Fig. 5), and then the microwave generator 9 is activated to remove the hat section stringers provided in the formwork. - Irradiate panel 1 with microwaves. By this microwave irradiation, the temperature of the hat section stringer panel 1 rises due to internal heat generation, and at the same time, the temperature of the lower formwork 5 and upper formwork 6, which are made of materials that generate heat by microwaves, also rises, and the temperature of the hat section stringer panel 1 rises. The stringer panel 1 is heated by internal heat generation and heat emitted from its lower formwork 5 and upper formwork 6.

すなわち高温硬化樹脂系の樹脂材料を含浸させた導電性
を有する繊維強化プラスチツク材は、加圧状態を保つこ
とで繊維強化プラスチツク材の端部の繊維間の隙間がな
くなって密着し、端部スバ−り現象が緩和され、マイク
ロ波を照射して繊維強化プラスチツク材を内部から発熱
する際に、型枠も同時に発熱するので、この型枠からで
る熱によっても繊維強化プラスチツク材が加熱され、し
たがって繊維強化プラスチツク材は、内部加熱の自己発
熱と外部加熱の両者によりを同時に加熱される。
In other words, when a conductive fiber-reinforced plastic material impregnated with a high-temperature curing resin material is kept under pressure, the gaps between the fibers at the ends of the fiber-reinforced plastic material disappear and the fibers come into close contact, resulting in smooth edges. When the fiber-reinforced plastic material is heated from inside by irradiating microwaves, the formwork also generates heat at the same time, so the heat emitted from the formwork also heats the fiber-reinforced plastic material. Fiber-reinforced plastic materials are heated simultaneously by both internal heating (self-heating) and external heating.

マイクロ波発生装置9からでるマイクロ波の照射は、第
5図に示すように、比較的低い温度域で所定時間経過し
た出力変更時点でマイクロ波の照射を停止し、ここでマ
イクロ波の出力を増加して所定時間マイクロ波を照射す
るように、段階的にマイクロ波の出力を増加するように
設定されている。第5図に示す実施例では、マイクロ波
の出力は4段階で増加している。このように出力変更時
点でマイクロ波を照射を停止しながら段階的にマイクロ
波の出力を増加することで、昇温速度の均一化および硬
化時間の短縮化を図ることが可能になる。また出力変更
時点でマイクロ波を照射を停止することで、繊維強化プ
ラスチツク材や型枠の熱の平準化が起こり、また高温領
域では外部への熱の放散が顕著に起こり、温度分布差が
小さくなる。これら一連の技術によりマイクロ波による
加熱硬化が難しいとされる高温硬化樹脂系を含浸させた
導電性を有する繊維強化プラスチックのマイクロ波によ
る加熱硬化が可能になった。
As shown in FIG. 5, the microwave irradiation from the microwave generator 9 is stopped when the output is changed after a predetermined time has elapsed in a relatively low temperature range, and the microwave output is changed at this point. The output of the microwave is set to be increased in stages so that the microwave is irradiated for a predetermined period of time. In the embodiment shown in FIG. 5, the microwave output increases in four steps. In this way, by increasing the microwave output in stages while stopping the microwave irradiation at the time of changing the output, it is possible to equalize the heating rate and shorten the curing time. In addition, by stopping microwave irradiation when changing the output, the heat of the fiber-reinforced plastic material and formwork is leveled out, and in high-temperature areas, heat dissipates significantly to the outside, reducing the difference in temperature distribution. Become. These series of techniques have made it possible to heat-cure electrically conductive fiber-reinforced plastics impregnated with high-temperature curing resin systems, which are difficult to heat-cure using microwaves.

第4図はハツトセクションストリンガ−パネルに対して
マイクロ波を照射した場合の温度変化を示す図であり、
点線aを連続してマイクロ波を照射した時の最高温度域
、点線すを同最低温度域、実線Cを段階的にマイクロ波
を照射した時の最高温度域、実線dを同最低温度域をそ
れぞれ示す。
FIG. 4 is a diagram showing the temperature change when the hat section stringer panel is irradiated with microwaves.
The dotted line a is the highest temperature range when microwaves are irradiated continuously, the dotted line is the lowest temperature range, the solid line C is the highest temperature range when microwaves are irradiated stepwise, and the solid line d is the lowest temperature range. Each is shown below.

同図によれば、ハツトセクションストリンガ−パネルに
対して段階的にマイクロ波を照射したものが、連続して
マイクロ波を照射したものに比べて最高温度域と最低温
度域の差が硬化温度領域において少ないことが分かる。
According to the same figure, when the hat section stringer panel was irradiated with microwaves in stages, the difference between the highest and lowest temperature ranges was lower in the curing temperature range than when irradiated with microwaves continuously. It can be seen that there are few

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、繊維強化プラスチッ
クおよび型枠に所定時間マイクロ波を照射し、所定時間
経過した出力変更時点でマイクロ波の照射を停止し、つ
いでマイクロ波の出力を増加して所定時間マイクロ波を
照射し、段階的にマイクロ波の出力を増加することで、
昇温速度の均一化および硬化時間の短縮化を図りながら
、高温硬化樹脂系の樹脂材料を含浸させた繊維強化プラ
スチックの加熱硬化が可能になる。
As described above, according to the present invention, the fiber-reinforced plastic and the formwork are irradiated with microwaves for a predetermined time, the microwave irradiation is stopped when the output is changed after the predetermined time has elapsed, and then the microwave output is increased. By irradiating microwaves for a predetermined period of time and gradually increasing the microwave output,
It becomes possible to heat-cure fiber-reinforced plastic impregnated with a high-temperature curing resin material while uniformizing the heating rate and shortening the curing time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はハツトセクションストリンガ−パネルを示す斜
視図、第2図はハツトセクションストリンガ−パネルを
型枠にセットした状態を示す図、第3図は本発明の繊維
強化プラスチックの加熱硬化方法を示す図、第4図はハ
ツトセクションストリンガ−パネルに対してマイクロ波
を照射した場合の温度変化を示す図、第5図は本発明の
繊維強化プラスチックの加熱硬化方法によるマイクロ波
の出力を段階的に増加する状態を示す図である。 1・・・ハツトセクションストリンガ−パネル、3・・
・ハツト部、5・・・下型枠、6・・・上型枠、8・・
・加圧装置、 9・・・マイクロ波発生装置。
Fig. 1 is a perspective view showing a hat section stringer panel, Fig. 2 is a view showing a state in which the hat section stringer panel is set in a formwork, and Fig. 3 shows a heat curing method for fiber reinforced plastic of the present invention. Figure 4 shows the temperature change when the hat section stringer panel is irradiated with microwaves, and Figure 5 shows the stepwise change in microwave output according to the heat curing method for fiber-reinforced plastic of the present invention. It is a figure which shows the state which increases. 1... Hat section stringer panel, 3...
- Hat part, 5... Lower formwork, 6... Upper formwork, 8...
- Pressure device, 9... microwave generator.

Claims (1)

【特許請求の範囲】[Claims] 導電性を有する繊維強化プラスチックに高温硬化樹脂系
の樹脂材料を含浸させ、その樹脂材料を含浸した繊維強
化プラスチックを、マイクロ波で発熱する材質で構成し
た型枠内に配置し、繊維強化プラスチックを加圧条件下
に置き、ついで繊維強化プラスチックおよび型枠に所定
時間マイクロ波を照射し、所定時間経過した出力変更時
点でマイクロ波の照射を停止し、ついでマイクロ波の出
力を前回より増加して所定時間マイクロ波を照射し、所
定時間経過した出力変更時点でマイクロ波の照射を停止
し、ついでマイクロ波の出力を前回より増加するように
段階的にマイクロ波の出力を増加して繊維強化プラスチ
ックを加熱硬化することを特徴とする高温硬化型繊維強
化プラスチックの加熱硬化方法。
Conductive fiber-reinforced plastic is impregnated with a high-temperature curing resin material, and the fiber-reinforced plastic impregnated with the resin material is placed in a formwork made of a material that generates heat using microwaves. The fiber-reinforced plastic and the formwork are placed under pressurized conditions, and then the fiber reinforced plastic and the formwork are irradiated with microwaves for a predetermined period of time, and the microwave irradiation is stopped when the output is changed after the predetermined period of time has elapsed, and then the microwave output is increased from the previous time. Microwave irradiation is performed for a predetermined period of time, the microwave irradiation is stopped when the output is changed after a predetermined period of time, and then the microwave output is increased stepwise to increase the microwave output from the previous time. A heat curing method for high temperature curing fiber reinforced plastics, which is characterized by curing by heating.
JP2028747A 1990-02-08 1990-02-08 Heat curing method of high temperature curing type fiber reinforced plastic Expired - Fee Related JP3014399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2028747A JP3014399B2 (en) 1990-02-08 1990-02-08 Heat curing method of high temperature curing type fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2028747A JP3014399B2 (en) 1990-02-08 1990-02-08 Heat curing method of high temperature curing type fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JPH03231816A true JPH03231816A (en) 1991-10-15
JP3014399B2 JP3014399B2 (en) 2000-02-28

Family

ID=12257003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2028747A Expired - Fee Related JP3014399B2 (en) 1990-02-08 1990-02-08 Heat curing method of high temperature curing type fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP3014399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524825A (en) * 2008-06-18 2011-09-08 ゲーカーエン エアロスペース サービシズ リミテッド Method for producing structural part made of fiber reinforced composite material using microwave and molding tool
JP2016113495A (en) * 2014-12-11 2016-06-23 国立研究開発法人産業技術総合研究所 Method for producing fiber-reinforced curable resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524825A (en) * 2008-06-18 2011-09-08 ゲーカーエン エアロスペース サービシズ リミテッド Method for producing structural part made of fiber reinforced composite material using microwave and molding tool
JP2016113495A (en) * 2014-12-11 2016-06-23 国立研究開発法人産業技術総合研究所 Method for producing fiber-reinforced curable resin

Also Published As

Publication number Publication date
JP3014399B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
JP5705725B2 (en) Method for producing structural parts made of fiber reinforced composites using microwave polymerization
KR101822207B1 (en) Method for producing a component from a fiber-reinforced material
KR101317848B1 (en) Flexible membrane for the production of parts made from composite materials
US9457494B2 (en) Method and apparatus for microwave and convection composite curing
JPH03213310A (en) Method and device for manufacture of preformed product
US10245761B2 (en) Mould for a wind turbine component
US20140138872A1 (en) Method and device configured to produce at least two products including fiber reinforced resin
JP6742697B2 (en) Curing device for resin composite material and curing method
US9486945B2 (en) Method and device for curing a thermosetting polymer
JPH0579208B2 (en)
EP3313638B1 (en) Method of making a wind turbine blade
White et al. A simultaneous lay-up and in situ cure process for thick composites
JPH02196625A (en) Manufacture of moldings using composite material and products manufactured by said method
JPH03231816A (en) Heat curing process for high temperature curing type fiber reinforced plastic
JPH02182438A (en) Method for heat-curing of fiber reinforced plastic having conductivity by microwave
JP7227342B2 (en) Mold with thermally conductive flange
EP3300872A1 (en) Fiber-reinforced composite member molding device
JPH0140722B2 (en)
Wang et al. Cure processing modeling and cure cycle simulation of epoxy‐terminated poly (phenylene ether ketone). IV. Cure cycle simulation
RU2421334C2 (en) Two-cycle method of producing parts from composite materials
JPH0195614A (en) Cavity forming method for piezoelectric resonator
JPH10272634A (en) Manufacture of resin molded body and curing device
JPS61144332A (en) Molding device of fiber reinforced plastic
JPH01208101A (en) Method of molding fiber board
JPS58215315A (en) Molding method of composite material molded article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees