JPH0579009B2 - - Google Patents

Info

Publication number
JPH0579009B2
JPH0579009B2 JP8018886A JP8018886A JPH0579009B2 JP H0579009 B2 JPH0579009 B2 JP H0579009B2 JP 8018886 A JP8018886 A JP 8018886A JP 8018886 A JP8018886 A JP 8018886A JP H0579009 B2 JPH0579009 B2 JP H0579009B2
Authority
JP
Japan
Prior art keywords
molding
cavity
mold
substrate
molten resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8018886A
Other languages
Japanese (ja)
Other versions
JPS62246709A (en
Inventor
Akihiro Inotsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP8018886A priority Critical patent/JPS62246709A/en
Publication of JPS62246709A publication Critical patent/JPS62246709A/en
Publication of JPH0579009B2 publication Critical patent/JPH0579009B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光デイスク、光カード、光テープ等の
記録媒体(メデイア)とその製造方法に関するも
のであり、特に情報層を支持する透明プラスチツ
ク基板の改良に関するものである。本発明は特に
光磁気記録媒体に適用可能な透明プラスチツク基
板とその製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to recording media such as optical disks, optical cards, and optical tapes, and methods for manufacturing the same, and in particular to transparent plastic substrates that support information layers. This is related to the improvement of. The present invention particularly relates to a transparent plastic substrate applicable to magneto-optical recording media and a method for manufacturing the same.

(従来技術) 透明基板を介してレーザービームによつてサブ
ミクロンオーダーの情報スポツトを記録再生する
光学式高密度情報記録媒体においては、透明基板
の複屈折が問題となる。特に、光磁気記録のよう
に0.1〜0.3度といつた微小な偏光面の変化を読取
る記録媒体においては複屈折の値が大きいとCN
比が低下し、実用にはならない。上記透明基板は
コスト面および耐吸水変化性等の特性面からポリ
カーボネートを射出成形して作るのが望ましい
が、ポリカーボネート樹脂は複屈折が大きいとい
う欠点がある。
(Prior Art) Birefringence of the transparent substrate poses a problem in optical high-density information recording media in which submicron-order information spots are recorded and reproduced using a laser beam through a transparent substrate. In particular, in recording media that read minute changes in the plane of polarization such as magneto-optical recording of 0.1 to 0.3 degrees, a large birefringence value causes CN
The ratio decreases and it is not practical. The above-mentioned transparent substrate is desirably made by injection molding polycarbonate from the viewpoint of cost and properties such as resistance to change due to water absorption, but polycarbonate resin has a drawback of high birefringence.

本出願人は特願昭59−12565号(特開昭60−
155424号)において、成形条件の改良によつてポ
リカーボネートの射出成形基板の複屈折を大巾に
低下させる方法を開示したが、その後の研究の結
果、プラスチツク基板には従来考えられていた基
板の偏平表面と平行な方向の複屈折だけでなく、
偏平表面と直角な方向の複屈折が存在し、しかも
後者の複屈折の方が光学特性、従つてCN比によ
り重大な影響を与えることを発見し、本発明を完
成した。すなわち、従来の複屈折測定法では直線
偏光を基板表面に垂直に入射させていたため基板
表面と直角な方向の複屈折は観察されなかつた。
しかし、上記直線偏光を基板表面に対して例えば
30°傾けて入射させると、透過光はクロスニコル
下においてもれ光を生じる。この現象は基板表面
に平行な複屈折だけが存在すると仮定しては説明
が付かず、基板と直角な方向の複屈折が存在する
と仮定すると説明が付く。さらに詳細に検討する
と、ポリカーボネート製基板は基板表面に直角な
方向の屈折率nzと、基板表面に平行な方向の屈折
率nx,nyを有する光学的異方性を持つており、一
般に|nx−ny|≒0である。しかし、|nz−nx
および|nz−ny|はゼロではなく、かなり大きな
値、例えば0.0005〜0.0006となり、光デイスクの
厚さ1.2mmを用いると、光デイスクでは600〜
780nmのリターデーシヨンが断面方向に存在する
ことになる。
The present applicant is Japanese Patent Application No. 59-12565
No. 155424) disclosed a method for greatly reducing the birefringence of injection-molded polycarbonate substrates by improving molding conditions, but subsequent research revealed that plastic substrates do not have flattened substrates, which had been previously thought. In addition to birefringence in the direction parallel to the surface,
We completed the present invention by discovering that there is birefringence in the direction perpendicular to the flat surface, and that the latter birefringence has a more significant effect on optical properties and therefore on the CN ratio. In other words, in the conventional birefringence measurement method, linearly polarized light was incident perpendicularly to the substrate surface, so birefringence in a direction perpendicular to the substrate surface was not observed.
However, for example, when the linearly polarized light is applied to the substrate surface,
When the incident light is tilted at 30 degrees, the transmitted light causes leakage light under crossed nicol conditions. This phenomenon cannot be explained by assuming that only birefringence exists parallel to the substrate surface, but can be explained by assuming that birefringence exists in a direction perpendicular to the substrate. When examined in more detail, polycarbonate substrates have optical anisotropy, with a refractive index n z in the direction perpendicular to the substrate surface and refractive indices n x , n y in the parallel directions to the substrate surface. |n x −n y |≒0. However, |n z −n x |
and |n z −n y | are not zero but rather large values, for example 0.0005 to 0.0006, and if the thickness of the optical disc is 1.2 mm, the optical disc will have a value of 600 to
A retardation of 780 nm exists in the cross-sectional direction.

ポリカーボネート製基板がこのような二軸性結
晶と同じような光学的異方性を持つ理由は現在の
ところ不明であるが、成形キヤビテイー中での樹
脂分子の配向が重大な影響を与えていることは事
実である。すなわち、第1図に示す成形キヤビテ
イー中での溶融樹脂の挙動モデルにおいて、溶融
樹脂3には金型表面1,2からの半径方向内向き
の剪断応力と、射出圧力による半径方向外向きの
力とが加わつている。従つて、溶融樹脂には成形
キヤビテイーの厚さ方向に於て半径方向内向きに
配向させる力と、厚さ方向に配向させる力と、半
径方向内向きに配向させる力とが同時に加わつて
いる。第1図ではこれらの力の加わる領域をそれ
ぞれA,B,Aで示してある。前記の3つの主屈
折率nz,nx,nyがこれらのどの領域によつて影響
させるかは不明であるが、基板の厚さ方向に配向
方向の異なる3つの領域が存在すると考えられ
る。
It is currently unclear why polycarbonate substrates have optical anisotropy similar to that of biaxial crystals, but the orientation of resin molecules in the molded cavity has a significant effect. is a fact. That is, in the behavior model of the molten resin in the molding cavity shown in FIG. is added. Therefore, a force for orienting the molten resin radially inward in the thickness direction of the molded cavity, a force for orienting it in the thickness direction, and a force for orienting it radially inward are simultaneously applied to the molten resin. In FIG. 1, the areas to which these forces are applied are indicated by A, B, and A, respectively. Although it is unclear in which region the three principal refractive indices n z , n x , and n y are influenced, it is thought that three regions with different orientation directions exist in the thickness direction of the substrate. .

本発明者達はポリカーボネート樹脂基板を用い
た場合のCN比の低下の原因の一つである高複屈
率を下げるためには上記Bの領域における配向を
制御する必要があるであろうとの仮説に基づき
種々実験を行なつた結果、本発明を完成した。従
来の複屈折測定法、すなわち基板表面に直角に直
線偏光を入射させる方法では上記の基板表面に直
角方向の屈折率nzの影響は測定できず、従つて本
発明の対象とする特定な複屈折値を有するデイス
ク基板は本出願前存在しない。
The present inventors hypothesized that it would be necessary to control the orientation in the above region B in order to reduce the high birefringence, which is one of the causes of the decrease in the CN ratio when using a polycarbonate resin substrate. As a result of various experiments based on the above, the present invention was completed. Conventional birefringence measuring methods, that is, methods in which linearly polarized light is incident perpendicularly to the substrate surface, cannot measure the influence of the refractive index n z in the direction perpendicular to the substrate surface. No disk substrates with refractive values existed prior to this application.

(発明の目的) 従つて、本発明の目的は光学式高密度情報記録
方式に用いられるCN比の高い記録媒体を作るた
めに必要な透明プラスチツク基板の成形方法を提
供することにある。
(Object of the Invention) Therefore, an object of the present invention is to provide a method for molding a transparent plastic substrate necessary for producing a recording medium with a high CN ratio used in an optical high-density information recording system.

(発明の構成) 本発明の第1の特徴は偏平な透明プラスチツク
基板を介してレーザービームを入射させて情報を
記録および/または再生する光学式高密度情報記
録再生方式に用いられる透明プラスチツク基板の
射出成形方法において、上記透明プラスチツク基
板を成形する成形キヤビテイー中に溶融樹脂が流
入開始する時点から溶融樹脂が実質的に固化する
時点までの間の少なくとも一部の時間において、
上記成形キヤビテイーの一部分の容積を変化させ
る点にある。この容積変化は機械的に行うか、流
体圧で行うことができる。
(Structure of the Invention) The first feature of the present invention is that a transparent plastic substrate is used in an optical high-density information recording/reproducing system in which information is recorded and/or reproduced by making a laser beam incident through a flat transparent plastic substrate. In the injection molding method, at least part of the time from the time when the molten resin starts flowing into the molding cavity for molding the transparent plastic substrate until the time when the molten resin substantially solidifies,
The point is that the volume of a portion of the molded cavity is changed. This volume change can be done mechanically or hydraulically.

上記の光学式高密度情報記録再生方式自体は周
知のものであり、レーザービームを1ミクロン程
度に絞つて情報を記録および再生するもので、一
般にはデイスク形状の記録媒体を用いる。上記情
報は本発明による透明プラスチツク基板の一方の
面にプレピツトの形で基板の成形時に記録される
か、トラツク溝やプレフオーマツトピツトを有す
る、または有しないプラスチツク基板の表面上に
Te系等のDRAW膜、Tb Fe Co系等のE−
DRAW膜を付着させて、使用時にユーザーが書
き込む。この場合、レーザービームは上記透明プ
ラスチツク基板を介して入射される(いわゆる背
面読取り方式)。本発明はこの背面読取り方式の
みならず、いわゆる表面読取り方式にも適用でき
る。その場合には上記情報は適当な支持体に担持
され、レーザービームはこの情報の上方に配置さ
れた本発明による透明プラスチツク基板を介して
入射される。いずれの方式の場合でも透明プラス
チツク基板の複屈折はできるだけおさえなければ
ならない。
The above-mentioned optical high-density information recording/reproducing method itself is well known, and information is recorded and reproduced by focusing a laser beam to about 1 micron, and generally uses a disk-shaped recording medium. The above information may be recorded in the form of a prepit on one side of the transparent plastic substrate according to the invention during molding of the substrate, or on the surface of the plastic substrate with or without track grooves or preformat pits.
DRAW films such as Te-based, E- films such as Tb Fe Co-based, etc.
A DRAW film is attached and written by the user during use. In this case, the laser beam is incident through the transparent plastic substrate (so-called back reading method). The present invention can be applied not only to this back-side reading method but also to a so-called front-side reading method. In that case, the information is carried on a suitable support and the laser beam is incident through the transparent plastic substrate according to the invention, which is placed above this information. In either method, the birefringence of the transparent plastic substrate must be suppressed as much as possible.

本発明ではプラスチツク基板の表面に直角な方
向の屈折率nzを考える。第2図に示すように透明
プラスチツク基板5は基板の偏平表面6,7と平
行で且つ互いに直交する屈折率nx,nyと、偏平表
面6,7と直角な方向の屈折率nzを持つものと仮
定する。従来の複屈折測定法では観察用の直線偏
光を偏平表面6,7に直角に入射させていたた
め、上記のnzに起因する複屈折は観測できなかつ
た。本発明者は直線偏光8を偏平表面6に対して
傾けて、例えば入射角θ=30°にして入射させる
ことによつて上記のnzを観測した。この複屈折測
定法は基板への入射角度を0°から30°にした以外
は従来のものと同じであるので、その詳細は省略
する。要は入射角30°で基板に入射させた直線偏
光のクロスニコル下での透過光強度を測定すれば
よい。
In the present invention, the refractive index n z in the direction perpendicular to the surface of the plastic substrate is considered. As shown in FIG. 2, the transparent plastic substrate 5 has refractive indices n x and n y that are parallel to the flat surfaces 6 and 7 of the substrate and perpendicular to each other, and refractive index n z that is perpendicular to the flat surfaces 6 and 7. Assume that you have. In the conventional birefringence measurement method, the linearly polarized light for observation was incident on the flat surfaces 6 and 7 at right angles, so the birefringence caused by the above n z could not be observed. The inventor observed the above n z by making the linearly polarized light 8 incident on the flat surface 6 at an angle of incidence θ=30°, for example. This birefringence measurement method is the same as the conventional method except that the angle of incidence on the substrate is changed from 0° to 30°, so the details will be omitted. In short, it is sufficient to measure the transmitted light intensity under crossed Nicol conditions of linearly polarized light incident on the substrate at an incident angle of 30°.

本発明者達の実験によると、一般にnxとnyは等
しい。しかし|nz−nx|および|nz−ny|の値は
従来考えられている複屈折よりもはるかに大き
く、従来法で射出した基板ではこれらの値は
0.0005以上であり、この基板に光磁気記録膜を形
成して作つた光磁気デイスクのCN比は48dB程度
である。
According to the inventors' experiments, n x and n y are generally equal. However, the values of |n z −n x | and |n z −n y | are much larger than the conventionally thought birefringence, and these values are
0.0005 or more, and the CN ratio of a magneto-optical disk produced by forming a magneto-optical recording film on this substrate is about 48 dB.

一方、本発明によつて上記|nz−nx|および|
nz−ny|の値を0.0004以下に低下させた基板上に
上記と同じ光磁気記録膜を形成して作つた光磁気
デイスクのCN比は50dBに向上した。このように
CN比が向上する理由はθkの増加と、ノイズレベ
ルの低下にあるものと考えられる。
On the other hand, according to the present invention, the above |n z −n x | and |
The CN ratio of a magneto-optical disk produced by forming the same magneto-optical recording film as above on a substrate in which the value of n z −ny | was lowered to 0.0004 or less was improved to 50 dB. in this way
The reason for the improvement in the CN ratio is considered to be the increase in θk and the decrease in the noise level.

上記樹脂としては屈折率異方性を示す樹脂の全
てが本発明方法に適用できる。他の特性とのかね
合いで、ポリカーボネート樹脂に本発明は特に有
効に適用できる。上記成形キヤビテイーの寸法は
成形されるデイスクによつて異るが、直径は約3
cmから約30cm、厚さは1〜2mm、一般には1.2mm
である。成形機は成形されるデイスク寸法に応じ
て適宜選択され、成形条件も以下で述べる保圧工
程における本発明の特殊操作以外は通常のデイス
ク成形で用いられているものと同じである。ポリ
カーボネート樹脂の場合、射出シリンダー温度は
一般に300〜400℃、金型温度は約100℃、樹脂の
キヤビテイー中への流入速度は10〜500ml/秒で
あり、これらは当然ながらデイスク寸法によつて
異なり、他の種類では別の条件が選択される。ポ
リカーボネート樹脂を用いた光デイスク基板の射
出条件については本出願人による前記特開昭60−
155424号を参照されたい。
As the above-mentioned resin, all resins exhibiting refractive index anisotropy can be applied to the method of the present invention. In consideration of other properties, the present invention can be particularly effectively applied to polycarbonate resins. The dimensions of the molded cavity described above vary depending on the disc being molded, but the diameter is approximately 3 mm.
cm to about 30cm, thickness 1-2mm, generally 1.2mm
It is. The molding machine is appropriately selected depending on the size of the disc to be molded, and the molding conditions are the same as those used in ordinary disc molding, except for the special operation of the present invention in the holding pressure step described below. In the case of polycarbonate resin, the injection cylinder temperature is generally 300-400℃, the mold temperature is about 100℃, and the flow rate of resin into the cavity is 10-500ml/sec, which of course varies depending on the disk size. , other conditions are selected for other types. The injection conditions for optical disk substrates using polycarbonate resin are described in the above-mentioned Japanese Patent Application Laid-Open No. 1989-1999 by the present applicant.
Please refer to No. 155424.

本発明の特徴である上記成形キヤビテイーを構
成する成形表面の一部分は一般に割型に移動自在
に保持された移動部材によつて構成できる。この
移動部材は光学式記録媒体の記録領域以外の部
分、一般には成形キヤビテイーの周辺部に配置さ
れる。この移動部材の移動方向は特に限定されな
いが、金型の構造や強度を考慮して一般には成形
品の偏平表面に直交あるいは斜交する方向にする
のが好ましい。この移動部材は突き出し棒(エジ
エクターロツド)を介して金型外部に設けた駆動
体によつて往復駆動される。
A portion of the molding surface constituting the molding cavity, which is a feature of the present invention, can generally be constructed by a movable member movably held by the split mold. This moving member is arranged in a portion other than the recording area of the optical recording medium, generally in the periphery of the mold cavity. The moving direction of this moving member is not particularly limited, but in consideration of the structure and strength of the mold, it is generally preferable to move the moving member in a direction perpendicular or oblique to the flat surface of the molded product. This moving member is reciprocated by a drive body provided outside the mold via an ejector rod.

光デイスクの基板を成形するための偏平円盤状
成形キヤビテイーの場合には、上記移動部材を円
環状成形キヤビテイーの内周部および/または外
周部に配置することができる。この移動部材はリ
ングによつて構成でき、このリングは金型に形成
した溝中に収容され、その一部が成形キヤビテイ
ー中に突出できるように複数のエジエクターに結
合されている。成形キヤビテイーの内周部と外周
部に設けた上記リングは各々独立して駆動する
か、相互に関連させて駆動することができる。例
えば、先ず内周部および外周部の一方のリングを
後退させ且つ他方を突出させた状態で射出し、成
形キヤビテイー充填後に前記一方のリングを前進
し且つ前記他方を後退させることもできる。な
お、内周部のリング先端によつてスプルーと成形
キヤビテイーとの間のゲートを規定することもで
きる。
In the case of a flat disc-shaped molding cavity for molding a substrate of an optical disk, the moving member can be arranged at the inner and/or outer periphery of the annular molding cavity. The moving member can be constituted by a ring, which is housed in a groove formed in the mold and connected to a plurality of ejectors so that a portion thereof can protrude into the mold cavity. The rings on the inner and outer peripheries of the mold cavity can be driven independently or in conjunction with each other. For example, it is possible to first inject one of the inner and outer rings with the ring retracted and the other protruded, and after filling the mold cavity, the one ring can be advanced and the other retracted. Note that a gate between the sprue and the molded cavity can also be defined by the tip of the ring on the inner circumference.

本発明の特徴である成形キヤビテイーの容積変
化は流体圧によつて行うことも可能である。この
場合には上記外周部リングあるいはスタンパーホ
ルダーに流体供給路を設け成形キヤビテイー中に
樹脂が充填された後に上記流体供給路から加圧流
体を供給して上記樹脂の外周部に放射方向内向き
の力を加える。
The volume change of the molded cavity, which is a feature of the present invention, can also be performed by fluid pressure. In this case, a fluid supply path is provided in the outer ring or the stamper holder, and after the resin is filled into the molded cavity, pressurized fluid is supplied from the fluid supply path to the outer periphery of the resin in a radially inward direction. Add force.

上記流体供給路の開口端には耐熱性フイルター
を設けるか、耐熱性ブラダーを設けるのが好まし
い。
It is preferable to provide a heat resistant filter or a heat resistant bladder at the open end of the fluid supply path.

上記の機械的に容積変化をさせる移動部材と上
記の流体圧による加圧手段は組合せて用いること
もできる。いずれの方式を用いるかは必要に応じ
て適宜選択すればよく、いずれの場合にもその目
的は第1図に示す表面に直角な方向の樹脂の配向
を緩和あるいは分散させることにある。上記の容
積変化は射出工程開始時点から保圧工程までの少
なくとも一部に於いて行なうことは重要である。
実際には1〜2秒間の射出工程によつて溶融樹脂
が成形キヤビテイー中に充填完了された直後から
型開き工程開始までの間に行なえばよい。一般的
には転写性の問題を考慮して適当なタイミングで
行なうが、キヤビテイー中に充填された溶融樹脂
の表面が金型温度によつて固化を開始し、且つ内
部にまで冷却温度が伝達される前に行なう。換言
すれば第1図のBの領域が未固化の段階に行なう
のが好ましい。本発明の上記方法を用いることに
よつて成形歪みと冷却歪みの一部が緩和され、前
記の複屈折|nz−nx|および|nz−ny|の値の小
さなデイスク基板が成形できる。
The above-mentioned moving member that mechanically changes the volume and the above-mentioned pressurizing means using fluid pressure can also be used in combination. Which method is used may be selected as appropriate, and in either case, the purpose is to relax or disperse the orientation of the resin in the direction perpendicular to the surface shown in FIG. It is important that the volume change described above be carried out at least in part from the start of the injection process to the pressure holding process.
In fact, it may be carried out immediately after the molten resin is completely filled into the molding cavity by the injection process for 1 to 2 seconds and before the mold opening process starts. Generally, this is done at an appropriate timing taking transferability issues into account, but the surface of the molten resin filled in the cavity begins to solidify due to the mold temperature, and the cooling temperature is transmitted to the inside. Do it before. In other words, it is preferable to carry out the process while the area B in FIG. 1 is still unsolidified. By using the above method of the present invention, a part of molding strain and cooling strain is alleviated, and a disk substrate with small values of birefringence |n z −n x | and |n z −n y | is molded. can.

以下、図面を用いて本発明を説明する。 Hereinafter, the present invention will be explained using the drawings.

第3図に示す本発明一実施例による光デイスク
の基板成形用金型組立体は一対の割型1,2と、
これらを連結するタイロツド3と、各々の割型に
固定された温度調節路6を有するプラテン4,5
と、プラテンにスタンパーホルダー10,11に
よつて保持されたスタンパー9とを有している。
溶融樹脂は射出シリンダー(図示せず)からノズ
ルタツチ部7を介して成形キヤビテイー8中に射
出される。上記割型1,2とポンチ12とを相対
移動してデイスクのセンター孔が形成され、樹脂
が冷却固化した後に型1,2を開いて成形品が取
出される。
A mold assembly for molding an optical disk substrate according to an embodiment of the present invention shown in FIG. 3 includes a pair of split molds 1 and 2;
A tie rod 3 connects these, and platens 4 and 5 each having a temperature control path 6 fixed to each split mold.
and a stamper 9 held on the platen by stamper holders 10 and 11.
Molten resin is injected from an injection cylinder (not shown) through a nozzle touch 7 into a molding cavity 8. The center hole of the disk is formed by relatively moving the split molds 1 and 2 and the punch 12, and after the resin is cooled and solidified, the molds 1 and 2 are opened and the molded product is taken out.

本発明の特徴である成形キヤビテイーの容積を
変化させるために、図示した実施例では移動側割
型2のプラテン5に形成された内周部および外周
部の円環状溝13,14中に内周リング15およ
び外周リング16が摺動自在に収容されている。
これらリングの巾すなわち放射方向寸法は溶融樹
脂の移動量に対応し、実際には0.1〜5mm程度、
好ましくは0.1〜2mm程度である。これらリング
15,16は割型2を貫通するエジエクターロツ
ド17,18に連結ネジ19,20を介して固着
されている。エジエクターロツド17,18は周
方向に複数個均一に分布され、その外側端は金型
外部の駆動リング21,22に固着されている。
この駆動リング21,22は適当なタイミングで
駆動される。
In order to change the volume of the molding cavity, which is a feature of the present invention, in the illustrated embodiment, the inner and outer annular grooves 13 and 14 are formed in the inner and outer peripheral parts of the platen 5 of the movable split mold 2. A ring 15 and an outer ring 16 are slidably housed.
The width of these rings, that is, the radial dimension corresponds to the amount of movement of the molten resin, and is actually about 0.1 to 5 mm.
Preferably it is about 0.1 to 2 mm. These rings 15, 16 are fixed to ejector rods 17, 18 passing through the split mold 2 via connecting screws 19, 20. A plurality of ejector rods 17, 18 are uniformly distributed in the circumferential direction, and their outer ends are fixed to drive rings 21, 22 outside the mold.
The drive rings 21 and 22 are driven at appropriate timing.

操作時には、例えば、円周リング17を突き出
した状態で樹脂を射出し、成形キヤビテイーに樹
脂が充填された後に円周リング17を後退し且つ
外周リング18を突き出す。これらの突き出しタ
イミングは樹脂の種類、金型寸法によつて異る
が、樹脂が完全固化する前に行う必要がある。
During operation, for example, resin is injected with the circumferential ring 17 protruding, and after the molding cavity is filled with the resin, the circumferential ring 17 is retracted and the outer ring 18 is protruded. The timing of these ejections varies depending on the type of resin and the dimensions of the mold, but it must be performed before the resin completely solidifies.

変形例では円周リング17を後退位置のままに
して(あるいは円周リング17を省略して)、成
形キヤビテイーに充填後に外周リング18を突き
出すようにすることもできる。さらには両リング
を同時に突き出したり、同時に後退させたりする
こともできる。
In a variant, the circumferential ring 17 could be left in the retracted position (or the circumferential ring 17 could be omitted) and the outer ring 18 could be pushed out after filling the mold cavity. Furthermore, both rings can be pushed out or retracted at the same time.

第4図は本発明方法を実施するための変形例を
示しており、この場合には成形キヤビテイー容積
の変化が流体によつて行われる。この図では突込
み形のスタンパーホルダー組立体10,30の対
向リング30に流体供給路31が形成され、この
流体供給路31は割型2およびプラテン5に形成
した連絡路を介して外部圧力源ポート32に連通
している。上記流体供給路31の開口部には多孔
質セラミツク等で作られたフイルター33を固定
することができる。このフイルター33に代えて
耐熱弾性ブラダーや機械的膨出部材を用いること
もできる。
FIG. 4 shows a variant for carrying out the method according to the invention, in which the change in mold cavity volume is effected by means of a fluid. In this figure, a fluid supply path 31 is formed in the opposing ring 30 of the thrust-type stamper holder assembly 10, 30. It is connected to 32. A filter 33 made of porous ceramic or the like can be fixed to the opening of the fluid supply path 31. Instead of this filter 33, a heat-resistant elastic bladder or a mechanical expansion member may be used.

操作時には、例えば前記円周リング17を突出
させた状態でキヤビテイー8に樹脂を射出充填
し、その直後に上記流体供給路31を介して加圧
流体、例えば空気を供給し且つ内周リング17を
後退させる。
During operation, for example, resin is injected and filled into the cavity 8 with the circumferential ring 17 protruding, and immediately after that, pressurized fluid, such as air, is supplied via the fluid supply path 31 and the inner circumferential ring 17 is make them retreat.

本発明は上記特殊具体例に限定されるものでは
なく、種々の変形が可能である。例えば、機械的
移動部材を前記対向リング30中に組込んだ摺動
自在な膨出リングによつて構成し、この膨出自在
リングを上記加圧空気によつて放射方向内向に突
出させるようにしてもよい。
The present invention is not limited to the above-mentioned specific examples, and various modifications are possible. For example, the mechanically movable member is constituted by a slidable inflatable ring incorporated in the opposing ring 30, and the inflatable ring is caused to protrude radially inwardly by the pressurized air. It's okay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形キヤビテイー中での溶融樹脂の挙
動を示すモデルの概念図。第2図は屈折率nz
nx,nyを説明するための図。第3図は本発明方法
を実施するのに用いられる射出成形金型組立体の
概念的縦断面図。第4図は本発明方法を実施する
ための他の金型組立体で用いられる加圧流体供給
手段の拡大部分断面図。 図中符号、1,2……割型、4,5……プラテ
ン、8……成形キヤビテイー、9……スタンパ
ー、10……スタンパーホルダー、15,16…
…リング、17,18……エジエクター、21,
22……駆動リング。
FIG. 1 is a conceptual diagram of a model showing the behavior of molten resin in a molding cavity. Figure 2 shows the refractive index n z ,
Diagram for explaining n x and n y . FIG. 3 is a conceptual longitudinal sectional view of an injection mold assembly used to carry out the method of the present invention. FIG. 4 is an enlarged partial sectional view of a pressurized fluid supply means used in another mold assembly for carrying out the method of the present invention. Symbols in the figure: 1, 2... split mold, 4, 5... platen, 8... molding cavity, 9... stamper, 10... stamper holder, 15, 16...
...Ring, 17, 18... Ejector, 21,
22...Driving ring.

Claims (1)

【特許請求の範囲】 1 光デイスク用基板を成形をするための一対の
割型によつて形成される成形キヤビテイー中に溶
融樹脂を射出して成形される透明な偏平円盤状の
光デイスク用基板の射出成形方法において、 溶融樹脂が成形キヤビテイー中に流入を開始す
る時点から溶融樹脂が実質的に固化する時点まで
の間の少なくとも一部の時間において、成形キヤ
ビテイーの表面を構成する成形表面の内周部およ
び/または外周部の一部分のみを成形キヤビテイ
ー中に突出させるか、そこから後退させることに
よつて、成形キヤビテイーの内周部および/また
は外周部の一部分のみの容積を変化させることを
特徴とする射出成形方法。 2 成形表面の内周部および/または外周部の一
部分が少なくとも一方の割型に移動自在に保持さ
れた移動部材によつて構成される特許請求の範囲
第1項に記載の方法。 3 移動部材が成形キヤビテイーの偏平表面に対
して直行する方向に移動する特許請求の範囲第2
項に記載の方法。
[Claims] 1. A transparent flat disk-shaped optical disk substrate molded by injecting molten resin into a molding cavity formed by a pair of split molds for molding the optical disk substrate. In the injection molding method of the invention, during at least a portion of the time between the time when the molten resin begins to flow into the mold cavity and the time when the molten resin substantially solidifies, the inside of the molding surface constituting the surface of the molding cavity is Characterized by changing the volume of only a portion of the inner periphery and/or outer periphery of the molding cavity by causing only a portion of the periphery and/or the outer periphery to protrude into or retreat from the molding cavity. injection molding method. 2. The method according to claim 1, wherein a portion of the inner circumference and/or outer circumference of the molding surface is constituted by a movable member movably held by at least one split mold. 3. Claim 2, in which the moving member moves in a direction perpendicular to the flat surface of the molded cavity.
The method described in section.
JP8018886A 1986-04-09 1986-04-09 Injection molding of optical disk Granted JPS62246709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8018886A JPS62246709A (en) 1986-04-09 1986-04-09 Injection molding of optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8018886A JPS62246709A (en) 1986-04-09 1986-04-09 Injection molding of optical disk

Publications (2)

Publication Number Publication Date
JPS62246709A JPS62246709A (en) 1987-10-27
JPH0579009B2 true JPH0579009B2 (en) 1993-11-01

Family

ID=13711397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8018886A Granted JPS62246709A (en) 1986-04-09 1986-04-09 Injection molding of optical disk

Country Status (1)

Country Link
JP (1) JPS62246709A (en)

Also Published As

Publication number Publication date
JPS62246709A (en) 1987-10-27

Similar Documents

Publication Publication Date Title
US4986938A (en) Process for producing plastic substrate for optical disks
JPH078514B2 (en) Injection molding method for plastic substrates for optical disks
JPS63135211A (en) Injection molding method for disc
US5705105A (en) Process for making optical disk substrates
JPH04105231A (en) Magneto-optical disk
JPH0579011B2 (en)
JPH0579009B2 (en)
JPS62135334A (en) Method and apparatus for preparing disk substrate for recording optical information
JPH0579008B2 (en)
JPS6395920A (en) Injection molding of resin sheet
JPH09295319A (en) Mold for molding disk substrate
JPH0579010B2 (en)
JP3095763B2 (en) Disc substrate molding stamper and disk substrate molding method
JP3072736B2 (en) Optical disk substrate molding equipment
JPH0564570B2 (en)
JPH09314563A (en) Mold device for molding disklike recording medium substrate
JPH07121544B2 (en) Optical disk substrate manufacturing method
JPH0751300B2 (en) Molding method for preformatted optical disk substrate and mold used therefor
JPS59133020A (en) Injection molding machine for high density data carrier base
JP2003053801A (en) Mold for injection molding, method for manufacturing optical recording medium, and optical recording medium
JP2001225360A (en) Method and apparatus for molding disk substrate
JPH05282702A (en) Substrate of information signal recording medium
JPH02147224A (en) Method for molding plastics
JP2000061994A (en) Manufacture of optical disk substrate
JPH02310016A (en) Manufacture of optical disk board